Current Status and Future Promise of the Semantic Web

James Hendler and Ora Lassila

University of Maryland Nokia Research Center
College Park, MD Cambridge, MA

Before We Get Started…

• Two views of the Semantic Web:
 – implementing SEMANTIC applications using web technologies
 – using semantic technologies to support new WEB applications
• Exploring the relationship (and tension) between the two over time
• This talk is
 – a retrospective, a status report
 – an “interpretation”
 – some thoughts on the future…
1990’s: “Pre-history”

- Rebirth of Artificial Intelligence (end of “AI Winter”)
 - “big” AI applications
 - Deep Blue, Mars Rover, Deep Space 1, …
 - embedded vs. stand-alone
 - Web AI
 - IR, statistical NLP, machine learning
 - lots of data!
- Emergence of the Web
 - new ways of doing things
 - new business models (even new social models)
 - new technology
 - “dot-com” boom
- Early forays into “meta-content”

Applicability Across Domains

Model Complexity

Traditional AI applications

“The Web”

Exploration of KR applications on the Web
2000-2001: What Did We Believe?

- Jim: Semantic Web and the advent of pervasive computing (March 2000)
- Jim: Roadmap from the “old” Web to the Semantic Web (October 2001)

2000-2001: What Did We Believe?

- Ora: Semantic Web and the advent of pervasive computing (June 1999)
- Ora: Roadmap from the “old” Web to the Semantic Web (October 2001)
2000-2001: “Early Years”

• “Dot-Com” optimism still prevails: easy to explore new directions
 – Government meddles with semantics
 • DARPA’s DAML program; EU follows
 • DAML+OIL
 – Web community discovers metadata
 • W3C Metadata Activity
 • RDF

“3-pronged” attack:
- DARPA
- EU IST
- W3C

OntoWeb International Workshops

Applicability Across Domains

Semantic Web research & new standards (DARPA, EU, …)
The Semantic Web of 2002 resembles the early days of the World Wide Web. Development is funded primarily by GoVt, but emerging corporate interest. A lot of excitement, but confusion as to business case. Open source tools and “geeks in control” Standards maturing so validation is gained where they permit deployment. Developer tools, libraries, languages. Research, experimentation, early demonstrations. Reminiscent of the early days of the Web.

Original Outline (July 2000)

Scientific American Action notes
[Aunt staring place]
1. Semantic Web Vision (TBL)
2. What are the problems? (imsequence)
 - Semantic Designing (Ont and TBL)
 - Data on Web (Ont and TBL)
 - Topology 2nd on Data Bases (TBL)
 - Ontology Interrelativeness (JNL)
 - Effect of Scale (TBL)

"Then, a miracle occurs"

III. What can we do with “IT” (not necessarily increasing)
 - Semantic-enriched. (JML)
 - Logic to enrich... (TBL)
 - Services and Advertising (TML)
 - Devices-Grids
 - Digital Signatures, Authentication, and Trust (TBL)

2001

- Funded Research
- WG activity
- Recommendation

Semantic Web Today

- The Semantic Web of 2002 resembles the early days of the World Wide Web.
- Development funded primarily by GoVt, but emerging corporate interest.
- A lot of excitement, but confusion as to business case.
- Open source tools and "geeks in control".
- Standards maturing so validation is gained where they permit deployment.
- Developer tools, libraries, languages.

The Semantic Web of 2002

- Reminiscent of the early days of the Web.
- Research, experimentation, early demonstrations.
- Funded Research
- WG activity
- Recommendation

Semantic Web Today
The Semantic Web of 2002 resembles the early days of the World Wide Web.

- Developer tools, libraries, languages
- Standards starting to stabilize to point where they permit deployment
- Open source tools and “geeks in control”
- Development funded primarily by government, but emerging corporate interest
- A lot of excitement, but confusion as to business case

- Scalability
- Commercial tools
- Lots of open source software
- Scalability

2003

- Early government adoption
- Emerging corporate interest

2005
2006: You Are Here!

Then a Miracle Occurs…

"I think you should be more explicit here in step two."

—from What’s soFunny about Science? by Sidney Harris (1977)
Significant Corporate Activity

• Semantic (Web) technology companies starting & growing
 – Joost, Radar Networks, MetaWeb, Siderean, SandPiper, SiberLogic, Ontology Works, Intellidimension, Intellisophic, TopQuadrant, Data Grid, …

• Bigger players buying in
 – Adobe, Cisco, HP, IBM, Microsoft, Nokia, Oracle, Sun, Vodaphone… announcements/use in 2006-2007
 – integrator and contractor uptake: Northrop Grumman buys Tucana, Lockheed-Martin uses SiberLogic in FGS, WebMethods buys Cerebra, …
 – tools being announced: AllegroGraph, TopBraid, …

• Government projects in and across agencies
 – US, EU, Japan, Korea, China, …

• Life sciences/pharma an increasingly important market
 – Health Care and Life Sciences Interest Group at W3C

• Many open source tools available
 – Kowari, RDFLib, Jena, Sesame, Protégé, SWOOP, Onto(xxx), Wilbur, …
Growing Government Activity (US&EU)

• Agencies moving beyond the "talk" phase
 – primarily prototyping, but first acquisitions starting
• Example:
 – NASA is developing an enterprise data strategy around using existing data via Semantic Web integration

Lots of activities across NASA

• Science, Engineering, and Mission all have SWT production or development efforts in place
• Now focus in on re-using the data systems we already have in place
• Agency wide integration planning is underway for building a federation of models into an integrated information service across all disciplines

There's a Lot Out There!

2,120,000 hits on "RDF filetype: rdf"
13,600 hits on "ontology filetype: owl"

Paid ads
More OWL Use

- The OWL namespace has been declared by 113,000 SWDs (8%) and actually used by 108,000 (7%).
- The RDFS namespace enjoys more use, being declared by 677,000 (47%) and used by 538,000 (37%) SWDs.
- owl:Class is the most used term from the OWL namespace with about 1,800,000 instantiations in 68,000 SWDs.
- Significant use of two OWL equality assertions: owl:sameAs (280,000 assertions in 17,000 SWDs) and owl:equivalentClass (70,000 assertions in 4,300 SWDs) – their common use may be an indication of increased ontology alignment.

(from Ebiquity blog, Sept 1, 2006)

Semantic WEB

Rich metadata

Data harvesting & visualization

A little **Semantics** goes a long way

Web-based social networks
SEMANTIC Web

Digital asset management

Scientific portals

Tools for developers

Enterprise Information Integration

- Deployment of semantic technologies is easier in a "controlled" environment
 - such as a corporate intranet
- Key benefits from Semantic Web Technology:
 - reuse of installed clients and servers
 - careful design of SW languages for Web compatibility
 - leave data in place, integrate through an RDF store
 - analogous to 3-tiered Web application
 - heterogeneity supported by ontologies

"Corporate Semantic Web", Gartner "hot pick" for 2006
2006: The Gap Is Closing

Semantic Web applications of varying complexity and applicability

Applicability Across Domains

Model Complexity

SEMANTIC Web Lessons

• What we learned from AI…
 – embedded AI succeeded, stand-alone did not
 – tools are hard to sell
 – reasoners are a means, not an end
 – knowledge engineering bottleneck

• …applied in the Web context
 – futureproofing
 • URIs are important
 – good standards evolve
 • languages (RDFS, OWL, RIF, …)
 • content!

NOKIA
Connecting People
Semantic WEB Lessons

- Web needed high value sites
 - personal (homepages, pets)
 - public (hobbyists, govt)
- As these linked up, new functionality emerged
 - Yahoo, Alta Vista, …
- New business models followed…
 - “give it away” (Netscape)
 - marketplace (Amazon)
 - advertising (Yahoo, Google)
- Semantic Web?
 - SHARE; GIVE IT AWAY!

What do we need?
- Open Source Tools
- Open Source Datasets
- Open Source Harvesters

The “Layer Cake” is Evolving…
New Languages Underway

- **RIF**: Rules Interchange Format
 - representing rules on the Web
 - linking rule-based systems together
- **SPARQL**: Query language for (distributed) triple stores
 - the “SQL of the Semantic Web”
- **GRDDL/RDFa**: Integration of HTML and Semantic Web
 - “embedding” RDF-based annotation on traditional Web pages
- **OWL**: New features, specialized subsets
 - RDF++/OWL Mini – simplification, identity, scaling to large datasets
 - OWL 1.1 – additional expressivity for OWL constructs
- And more…
 - multimedia annotation, Web-page metadata annotation, Health Care and Life Sciences (LSID), privacy, etc.

Linking Is **Power!**
Semantic Web vs. “Web 2.0”

- Data with formal semantics
 - RDF, OWL
 - SPARQL, RIF
- Spontaneous information integration (finally!)
- Semantic Web services, agents
- Strong emphasis on open standards

- New social phenomena: blogs, wikis, tagging, folksonomies
- New user interfaces
 - AJAX (or: “Rich User Experience”)
- “New” kinds of data
 - microformats, RSS
 - “mash-ups”
 - Web services
- Plays “fast & loose” with standards

Semantic Web & “Web 2.0”

- What is their relationship?
- Will they stay separate? Does that even make sense?
Semantic Web & “Web 2.0”

• NO! Considerable synergies exist

Exploiting “Web 2.0”

• Vast amounts of “semi-engineered” knowledge
 – Flickr: tens of millions of keyword-tagged photos
 – microformatted Web documents
 – Wikipedia: thousands of carefully documented subjects
 (in a hierarchy, with disambiguation, …)

• Generate “persistent” URIs
 (small town in Pakistan)

• Remember: Anything with a URI can be linked to
 the Semantic Web!
Linking of “Web 2.0” & Semantic Web

- Using informal Knowledge Engineering (KE) to bootstrap “formal” KE
- Extending formal KE from tags/wiki

Looking Further Out

Applicability Across Domains

Model Complexity
Where Are the Agents?

• “Brave New Applications”
 – operate autonomously in “unanticipated” situations
 – exhibit robustness in the face of
 • changing, inconsistent and unexpected data
 • variations in reliability, trust
 – capable of serendipitous behavior, opportunism
• Move from the “tool use” of personal computing to systems that work on our behalf
• (Semantic) Web services as “plumbing” for agents
 – emerging as we speak…

Pervasive Computing & Semantic Web

• Pervasive Computing is an interoperability nightmare!
 – instead of sometimes connecting a handful of devices, dynamically connect/disconnect/reconnect possibly hundreds of devices
• Today, high cost of ensuring interoperation
 – any interaction has to be specifically designed/engineered
 – heavy emphasis on application-specific standardization
 – spontaneous interoperability is next to impossible
• The vision is largely contingent on getting unanticipated “encounters” of devices to work
 – how do you behave in a situation not covered by a standard?
 – not “future-proof”
• Semantic Web is a good match
 – (it is an “interoperability technology”)
Other Emerging Trends

• Semantic Web Services
 – crucial for linking “programs” into the mix
 – “plumbing” for agents…

• Scaling Semantic Web stores to database sizes

• Information extraction and semantics ("Web 3.0")
 – can we “retrofit” semantics on the existing Web?

• Semantic Web information creation
 – can we make it so we don't have to retrofit in the future?
 • tools that help embed the semantics as a document is created
 • better dynamic integration of structured data into the Semantic Web

 – “Semantic Desktop”

Summary

• Most things we predicted have happened
 – (or are happening at the moment…)

• Some things happened faster than we anticipated
 – triple store scaling
 – reasoner performance actually matters
 – ontologies are there (but very little linking)

• Some things are yet to materialize (but we are hopeful)
 – public information sources (as RDF, OWL, …)
 – digital convergence, pervasive computing just emerging
 – little progress on agents

Now go out there and make some money off this…!
Any Questions?

“A Little Web Goes A Long Way”

Model Complexity

Applicability Across Domains

“The Semantic Web

“A Little Semantics Goes A Long Way”