Semantic Interoperability

Jérôme Euzenat
INRIA & LIG
France

Natasha Noy
Stanford University
USA

Being serious about the Semantic Web

• It is not one person’s ontology
• It is not several people’s common ontology
• It is many people’s ontologies
• So it is a mess, but a meaningful mess
Heterogeneous Ontologies: Example

SessionEvent
 hasLocation: Place
 hasTimeAndDate: Date
 hasAttendee: Person

DemoSession

PosterSession

PaperSession

Session
 location: String
 time: TimeAndDate
 attendees: Person
 sessionType: (Presentations, Demos, Panel, Keynote)

Person
 name: String
 email: String

TimeAndDate
 time: String
 date: String

Person
 name: String
 email: String

Ontology alignment at a glance

Parameters

Alignment tool

External resources

New alignment between Ontology 1 and Ontology 2

Prior alignment between Ontology 1 and Ontology 2

Ontology 1

Ontology 2
Why should we learn to deal with this?

- Applications of semantic integration
 - Catalogue integration
 - Schema and data integration
 - Query answering
 - Peer-to-peer information sharing
 - Web service composition
 - Agent communication
 - Data transformation
 - Ontology evolution

Application: Catalogue integration

[Diagram showing the process of matching schemas and generating transformations between databases for Catalog 1 and Catalog 2]
Application: Query answering

Ontology 1 \rightarrow \text{match} \rightarrow \text{generate} \rightarrow \text{mediator} \rightarrow \text{answer}

Ontology 2

Server 1 \rightarrow \text{query} \rightarrow \text{reformulated query} \rightarrow \text{match} \rightarrow \text{generate} \rightarrow \text{mediator} \rightarrow \text{answer}

Server 2

Alignment between Ontology 1 and Ontology 2

Application: agent communication

Ontology 1 \rightarrow \text{match} \rightarrow \text{generate} \rightarrow \text{translator} \rightarrow \text{translated message}

Ontology 2

Agent 1 \rightarrow \text{message} \rightarrow \text{match} \rightarrow \text{generate} \rightarrow \text{translator} \rightarrow \text{translated message}

Agent 2

Alignment between Ontology 1 and Ontology 2

Axioms linking Ontology 1 and Ontology 2
Why is semantic interoperability difficult?
Why is semantic interoperability difficult?

SessionEvent
hasLocation: Place
hasTimeAndDate: Date
hasAttendee: Person

Person
name: String
e-mail: String

DemoSession
PosterSession

PaperSession

Session
location: String
time: TimeAndDate
attendees: Person

time: TimeAndDate

Session
location: String
time: TimeAndDate
attendees: Person

Why is semantic interoperability difficult?
Possible mismatches

- Different context (databases, ontologies) and different logics
- Same concept, different names
- Same name, different concepts
- Different approaches to conceptualization (e.g., subclasses versus property values)
- Different levels of granularity
- Different, but overlapping, areas

How can we address the problem?

- Names of entities
 - Comments, alternate names, names of related entities
- Structure
 - Internal structure: constraints on relations, types
 - External structure: relations between entities
- Extensions
 - Instances themselves
 - Related resources: annotated documents, exchanged message or queries
- Semantics (models)
- Background knowledge
 - The Web
 - Ontologies
 - Thesauri, e.g. WordNet
Name similarity

SessionEvent
 hasLocation: Place
 hasTimeAndDate: Date
 hasAttendee: Person

DemoSession

PosterSession

PaperSession

Person
 name: String
 email: String

Session
 location: String
 time: TimeAndDate
 attendees: Person
 sessionType: (Presentations, Demos, Panel, Keynote)

TimeAndDate
 time: String
 date: String

Person
 name: String
 email: String

Similar names

Similarity in structure

SessionEvent
 hasLocation: Place
 hasTimeAndDate: Date
 hasAttendee: Person

DemoSession

PosterSession

PaperSession

Person
 name: String
 email: String

Session
 location: String
 time: TimeAndDate
 attendees: Person
 sessionType: (Presentations, Demos, Panel, Keynote)

TimeAndDate
 time: String
 date: String

Person
 name: String
 email: String

Similar property name and range (structure)
Instance similarity

Common set of instances or documents

External sources

• A common reference ontology
• User input
• Lexicons, thesauri, etc.
• Prior matches
• Background knowledge (other ontologies, documents, etc.)
Combining different techniques

- Using several matchers in sequence (composing)
- Using several matchers in parallel (combining)
- Aggregating matcher results
 - aggregating specialised matcher results
 - aggregating competing matcher results
- Filtering results (trimming)
- Extracting alignment (optimizing)
- Iterating
- Learning
How well do these approaches work?

- Ontology Alignment Evaluation Initiative
 - Formal comparative evaluation of different ontology-matching tools
 - Run every year
 - Variety of test cases (in size, in formalism, in content)
 - Results very dependent on the tasks and the data (from under 50% of precision and recall to well over 80% if ontologies are relatively similar)
 - Results consistent across test cases
 - Progress every year!

Compared OAEI Results
Tools you should be aware of

- **Frameworks**
 - PROMPT (a Protégé plug-in): includes a user interface and a plug-in architecture
 - Alignment API: used by many tools in OAEI provides an exchange format and evaluation tools
 - COMA++: oriented toward database integration (many basic algorithms implemented).

- **Matching systems**
 - OAEI best performers (Falcon, RiMOM, etc.)
 - Available systems (FOAM, OLA, Rondo, etc.)
 - …

Current challenges: what to look for in conference papers

- How do we help users perform the alignments interactively?
- How do we explain the alignments that the tools create?
- How do we have system working across all cases? Do we need to?
- Can we use imperfect or inconsistent alignments?
- How do we maintain the alignments when ontologies evolve?
Current challenges (cont’d)

• Design space of alignment approaches
 – Can we create a “toolbox for designing alignment approaches that fit a given problem?
 – We have identified some components, but how can we bring them together?

• Have we discovered a “ceiling” in automatic discovery of alignments?
 – Will it be “lots of work for little gain” from now on?
 – Are there serious untapped resources?

Further reading

• “Ontology Matching” by Euzenat and Shvaiko
• Proceedings of ISWC, ASWC, ESWC, WWW conferences, etc.
• Journal of web semantics, Journal on data semantics, etc.
• http://www.ontologymatching.org