
Ontology Evolution Analysis with OWL-MeT

Natalya Keberle1, Yuriy Litvinenko,
Yuriy Gordeyev, Vadim Ermolayev

Dept. of IT, Zaporozhye National University,
Ukraine

nkeberle@gmail.com, jurlit@rambler.ru,
ygchaos@mail.ru, vadim@ermolayev.com

Abstract. Works on ontology versioning pay special attention to the logical
analysis of ontology evolution. The paper considers extensible declarative
approach to ontology change description. Metric temporal description logic
with metric temporal modalities “future n” and “past n” and hybrid satisfaction
operator @ is proposed as the logical basis for declarative ontology evolution
analysis. Underlying time structure assumed to be linear and discrete, which is
acceptable for modeling of ontology versions sequence. Introduced is OWL-
MeT – metric extension of the Web ontology language OWL, which is
supported with a reasoning engine under development on the basis of Pellet
reasoner.

1 Introduction

Ontology versioning and change detection are one of the Semantic Web research
challenges [1]. Many previous efforts at providing ontology versioning have focused
on the differentiation of the conceptual and explication changes [2], on the
identification of an ontology in the Semantic Web [2], [3], on ontology change
operations and their effects at the instances level [3], [4]. Change detection between
similar ontologies or between versions of the same ontology when there is no version
log is discussed in [5], [6]. Change detection and propagation between versions of the
same ontology, when there is a version log, is investigated in [7]. Special attention is
paid to the change management organization for distributed and modular ontologies
[8], [9], inconsistent ontologies [10].

The approach reported in the paper focuses on the analysis of ontology evolution,
namely, compatibility and interchangeability of ontology versions, and proposes a
formal declarative basis for such analysis. Indeed, an ontology is a formal theory [11],
and for any two versions of the same ontology it is interesting to know whether these
versions are compatible from the logical point of view, whether it is possible to use
definition of an object in one version to access instances of that object in another
version.

1 The work of the author is partially supported in frame of PSI project. Performance Simulation

Initiative (PSI) is the R&D project of Cadence Design Systems, GmbH.

2 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

Presented research aims at the development of logical means which will facilitate
the various tasks of ontology evolution analysis. It is proposed to use temporal logic,
and to combine temporal logic with explicit use of metric properties of time.
Propositional metric temporal language (first introduced by A.Prior [12]) and calculus
(investigated in [13]) serve as the basis for the presented research. Constructive proofs
of soundness, completeness and decidability of propositional metric temporal calculus
[13] are based on the tableau technique.

The contributions of the paper are: (i) further development of proof-theoretic
approach – introduction of metric temporal description logic ALCIO(MT) with
additional sort of nominals representing ontology versions; (ii) introduction of OWL-
MeT – metric extension of OWL with constructs of ALCIO(MT) in a way suitable
for the Semantic Web applications; (iii) introduction of reasoning engine for OWL-
MeT, based on Pellet2 – the open-source OWL-DL reasoner in Java.

The paper is organized as follows: the Section 2 presents the related work and the
motivation to enhance analytical means for ontology evolution; metric temporal
description logic ALCIO(MT) with metric temporal modalities and hybrid
satisfaction operator is described in Section 3; Section 4 introduces OWL-MeT – the
extension of OWL with the constructs of ALCIO(MT) and describes Pellet-based
reasoning engine for OWL-MeT; examples of ontology evolution analysis with
OWL-MeT are given in the Section 5, and Section 6 presents some conclusions made
in frame of the presented research.

2 Related Work and Motivation

Approaches to ontology changes detection and storage basically work on the
syntactic layer. In [2] it was proposed to use rule-based approach to change detection.
The idea behind the approach is to precisely formulate what can be considered as
change for every syntactical construct of ontology description language. The complete
list of possible change operations for OWL-Lite was introduced in [3] in the form of
"the ontology of ontology change", which is used to mark-up change logs. The
framework for ontology change management, OntoView, was described in [5], [3].
Some disadvantages of the rule-based approach to change detection are investigated
in [7]. It was shown that in case of multiple changes occurred in the ontology some
changes may interfere, and in the worst case even cancel one another, as far as change
detection rules work independently of each other.

Proof-theoretic approach to ontology evolution analysis, first introduced in
MORE [14], [4] overcomes the drawbacks of other approaches. First of all, it is
ontology language-independent: meta-level temporal language LTLm was used for
changes analysis. Secondly, reasoning over ontology changes instead of querying
changes was proposed, which allowed to rely not only on heuristics/rules of change
detection, but to deduce complex changes. Finally, usage of temporal logic is natural
as far as changes are characterized with time moments, when they occur.

2 Pellet homepage is http://pellet.owldl.com

Ontology Evolution Analysis with OWL-MeT 3

However, analysis of [14] has shown that the usage of temporal logic LTLm has
some drawbacks. LTLm is past-oriented, therefore complex statements binding future
and past moments can not be described. Further, statements about states of affairs in
two ontology versions which are at a given distance from each other, without naming
these versions are impossible. Finally, the developers of MORE [4] have outlined for
the future work the convenience of explicit usage of version names in a temporal
formula, i.e. hybridization of LTLm.

Interesting ideas for the detailed change analysis of both the extensional and the
structural levels are proposed in [15] for evolving collections of XML documents.
The authors of [15] provide a classification of query types for the analysis of
structural changes occurred in the versions of an XML document: structural
projection, historical queries, temporal selection, content-based selection. Use of
these query types might seriously enhance the ontology versioning frameworks. The
steps in this direction are made in the SEKT3 project [4].

The review of the systems and the approaches presented above shows that
detailed analysis of ontology evolution can be facilitated with the two components: (i)
– there are either all versions of the ontology or the version log for that ontology, and
(ii) – reasoning over the versions is performed with help of temporal logics. The
motivation of the approach proposed in the paper is based on the idea of an ontology
versioning system facilitating the analysis of evolution. Following [14] and [15]
possible analytical queries may include:
− Reasoning queries:

• (non-)derivability of a fact in one version with respect to another version, i.e.
whether the fact belongs to the intersection/difference of ontology models

• (non-)derivability of a fact in a given version
− Meta-level ontology-specific queries:

• compatibility of versions (e.g. "Is the version 1 is subsumed by the version 5?")
• compatibility of concept definitions (e.g. "Is the concept Child defined in the

version 1 subsumed by the concept Child taken from the version 5?") etc.
• most common part of concept definitions taken from different version (e.g.

"What properties remain unchanged in the concept Child from the version 5 to
the version 10") etc.

• detection of conceptual relations [3] between the versions of ontology (e.g.
"What version subsumes the version 5?")

− Retrieval queries
• temporal selection (e.g. "Get the version 5")
• historical queries (e.g. "What was added in the version 5?", "What was added in

the version 5 as compare to the version 2?", "What become obsolete in the
version 5 as compare to the version 10?")

• structural projection (e.g. "Get the definition of the concept Child in the version
5", "Get the new/retired/unchanged instances of the concept Child in the version
5 as compare to the version 2")

3 MORE is developed in frame of SEKT project, http://www.sekt-project.org

4 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

• content-based selection (e.g. "Check all the versions and get all the concept
definitions where role hasChild is used", "Check the versions from 5 to 10 and
get all the concept definitions where the role hasChild is used").

Presented research assumes that all ontology versions are available for analysis.
Its usage in the case of presence of a version log goes beyond the scope of the paper.

Mentioned queries explore the concept of time moment (expressed in an ontology
version number). Moreover, as the time moments / ontology version numbers are used
explicitly in queries, there is a need to have correspondent means in underlying logic
formalism for referencing time points explicitly.

Hybrid logics [16], [17] which allow naming particular possible world may
provide means for referencing time moments explicitly in a formulae. Metric
temporal logics [18] allow to reference time moments at a given distance to the future
and to the past.

First introduced in [18], metric modalities "future n" and "past n" were then
investigated by Clifford in [19], where the semantics of the metric temporal language
was given. Other temporal modalities (such as Scott's unary temporal operator "next
instant" [12] or Kamp's binary temporal operators "until" and "since" [12]) can be
defined via metric ones. Later on metric modalities were extensively learnt in the
research on real-time logic, and in the recent time, in the research on distance logics
[20]. Composition of hybrid and metric temporal logic may provide means necessary
for ontology evolution analysis.

3 Metric Temporal Description Logic

Highly-expressive and decidable Description Logics are of great interest in the
Semantic Web applications. Known decidable temporal description logics (see, e.g.
[21]) focus on topological properties of time, and provide descriptive means for both
interval-based and point-based time structure. Such logics are usually seen as
combination of a propositional modal logic (as far as description logics have strict
correspondence with propositional multimodal logics) and temporal (therefore, also
modal) logic. Expressive power of obtained composed logic depends on the degree of
interaction between two modal logics.

Metric description logics are relatively new members of the description logics
family. The research on metric description logics was initiated with the development
of logic of distances [20]. Since then many classes of such logics are investigated for
the purpose of decidability.

Metric temporal description logic ALCIO(MT) for point-based time structure is
the composition of ALCIO – description logic with role inverses and nominals and
propositional metric temporal logic. Particularly, ALCIO(MT) allows application of
temporal and hybrid operators only to concepts (both non-temporal and temporal),
and role restrictions are not applied to temporal concepts.

Let BA, denote atomic non-temporal concepts, R - atomic role, FE, -
complex non-temporal concepts, P - complex role, DC, - complex temporal
concept, }{o - object nominal (denoting an individual in some possible world), }{a -
temporal nominal (denoting possible world, e.g. ontology version).

Ontology Evolution Analysis with OWL-MeT 5

Then the rules presented in the Fig.1 generate complex concepts/roles.

E, F → A | top | bottom | E u F | E t F | ¬ E | ∃R. E | ∀R. E | }{o
 P → R | 1−P
C, D → E | }{a | C intersection D | C union D | not C | C@ }{a | future n C |
 | past n C | somefuture C | somepast C | allfuture C | allpast C

Fig. 1. Syntax rules for ALCIO(MT) concepts/roles construction.

If C and D are temporal concepts, and {a} is a temporal nominal, then
C equivalent D, C subclassof D, C(a) are temporal formulae. If ϕ and ψ are temporal
formulae, then ϕ union ψ , ϕ intersection ψ , not ϕ are also temporal formulae.

ALCIO(MT) is interpreted over Kripke model M >Δ=< VIRRdist PF ,},,{,, ,
where },{ Zkk ∈Δ=Δ is a set of possible worlds, kΔ is a set of individuals in k-th
possible world, }0{: ∪→Δ×Δ Ndist is a metric on Δ , PF RR , are accessibility
relations, I is an interpretation function, and V is a hybrid valuation function.

Interpretation I associates with each kΔ an ALCIO-interpretation
>⋅Δ=<)(,)(kIkkI .

Temporal nominals are used as identifiers of ontology versions. Satisfaction
operator @{a}, where {a} is considered as an identifier of an ontology version, is
adopted from hybrid logics [17].

Additionally, let function Zaden →}{: be an encoding of temporal nominals into
integers. Then, given temporal nominal {a}, hybrid valuation V assigns {a} a unique
world)(adenΔ - singleton subset of Δ .

The model-theoretic semantics of ALCIO(MT)-specific operators is defined as
follows:

)()(kICnfuture },:{)(jIk Conkjo ∈+=∃Δ∈=
)()(kICnpast },::{)(jIk Conjkjo ∈+=∃Δ∈=
)()(kICsomefuture },:{)(jIk Cokjo ∈≥∃Δ∈=
)(kICsomepast) (},:{)(jIk Cokjo ∈≤∃Δ∈=
)()(kICallfuture },:{)(jIk Cokjo ∈≥∀Δ∈=
)()(kICallpast },:{)(jIk Cokjo ∈≤∀Δ∈=
)(})@{(kIaC }{))((adenICo∈=

For the purposes of ontology evolution analysis we restrict the domain Δ to be a
finite linear sequence of ontology versions – time structure, or in terms of [14]
version space. Time structure is a finite sequence of temporal nominals, each of
which identify particular ontology version. Time structure is ordered with the
precedence relation, set between encodings of temporal nominals: if den(a1)<den(a2),
then the version identified with a1 precedes the version identified with a2.

6 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

Satisfiability problem for hybrid multi-modal tense logic with nominals, whose
syntactic variant is ALCIO(MT), is EXPTIME-hard [16].

Releasing the domain Δ from being finite leads to analysis of the decidability
issues for nonbranching discrete transitive and reflexive unbounded frame. Tableau
rule set for hybrid and metric operators provides a ground for constructive proof of
decidability of satisfiability problem for ALCIO (MT). Termination of the decision
procedure is controlled with the application of looptest rules (which are applicable for
transitive frames, see, e.g. [22]), and of the formulae marking rules (see, e.g. [23]).
However, the satifiability problem is still EXPTIME-hard, as the results in [16] were
obtained for arbitrary frame. Results obtained in [24] for NP-completeness of
satisfiability problem for linear frame (irreflexive, transitive and trichotomous) seem
not to be applicable here, as the behaviour of metric operators "future n" / "past n"
when n = 0 requires the accessibility relations to be reflexive.

4 OWL-MeT

OWL-MeT (abbreviation for OWL-MetricTime) is built on top of the language
OWL; it has been assigned namespace owlmet. Main constructs for definition of
temporal concepts of OWL-MET are TClass and TRestriction. TClass, representing
named temporal concepts, is the direct subclass of rdfs:Class, TRestriction,
representing unnamed temporal restrictions, is the subclass of owlmet:TClass.
Standard OWL class owl:Class is defined as subclass of owlmet:TClass, therefore all
OWL concepts are also OWL-MeT temporal concepts. Indeed, each non-temporal
concept A (which is the instance of owl:Class) can be considered as equivalent to an
instance of unnamed temporal restriction future 0 A. In OWL-MeT temporal concepts
are allowed to form unions, intersections and complements, to define axioms of
equivalence and subsumption between them.

OWL-MeT introduces the special sort of nominals for ontology versions –
temporal nominals, or instants. Instant is also the subclass of owlmet:TClass.
TimeStructure construct fixes the sequence of instants and it is defined with help of
rdf:sequence construct.

Metric temporal operators are defined as instances of rdf:property, namely
"future", "allfuture", "past", "allpast", "somefuture", "somepast"; hybrid
satisfaction operator "at", and its supplementary operator "happens" are also the
instances of rdf:property.

The abstract syntax of OWL-MeT extends the OWL abstract syntax, OWL-MeT
new constructs are presented in the Fig. 2. Complete definition4 of OWL-MeT
includes abstract syntax definition, mapping to RDF graphs and usage examples.

The reasoning engine for OWL-MeT is now under development. It is grounded
on the open-source Java-based OWL-DL reasoner Pellet. Jena 2.45 is used for the
validation of OWL-MeT constructs and for correspondent RDF models building.

4 OWL-MeT Web site: http://ermolayev.com/owl-met

Ontology Evolution Analysis with OWL-MeT 7

Fig. 2. Abstract syntax of OWL-MeT (the added part as compare to OWL).

Extension of Pellet to reason over OWL-MeT descriptions requires also
reworking of normalization and internalization procedures, and extending of the
decision procedure with metric and hybrid tableau rules.

In short, hybrid extension of tableau rules creates for each temporal nominal {a}
presented in a given OWL-MeT formula a particular tableau, and establishes
accessibility relations between these tableaux depending on values of den(a). Metric
extension of tableau rules describes as movement across the tableaux sequence using
that accessibility relation, as well as creation of a particular tableau. For example,
operator "future 1 C" checks if the tableau at the distance 1 to the future exists, if not -
creates that tableau and establishes accessibility relation RF between the initial tableau
and that new. Operator "future n C" is considered as "future 1 future (n-1) C".

Operators "allfuture C" and "allpast C" due to the transitivity of time copy C to
all tableaux accessible via accessibility relation RF (RP) from the given one. Operators
"somefuture C" and "somepast C" create alternating tableau branches (due to the
reflexivity of the model M): one branch will include C, and the other will include
"future 1 somefuture C"/ "past 1 somepast C" respectively. Tableau termination is
controlled with the help of adopted looptest rules, avoiding the introduction of both
ALCIO -node fully contained in a predecessor ALCIO - node, and the introduction
of a temporal nominal node fully contained in a predecessor node.

5 Jena is the open-source Java framework for building Semantic Web applications. It provides a

programmatic environment for RDF(S), OWL, SPARQL and includes a rule-based inference
engine. Available at http://jena.sourceforge.net

axiom ::= temporalAxiom | owlAxiom
temporalAxiom::= 'TClass(' classID modality {annotation} {description}')' |

| 'DisjointClasses(' description description { description } ')' |
| 'EquivalentClasses(' description { description } ')' |
| 'SubClassOf(' description description ')' |
| 'EnumeratedClass(' classID { annotation } { individualID }')' |
| 'TimeStructure(' instantID {instantID} ')'

modality::= 'complete' | 'partial'
description::= classID |

| trestriction |
| resriction |
| 'unionOf(' { description } ')' |
| 'intersectionOf(' { description } ')' |
| 'complementOf(' description ')' |
| 'oneOf(' { individualID } ')'

trestriction::= 'TRestriction(' timeProperty ')'
timeProperty 'allfuture(' description ')' | 'somefuture(' description ')' |

| 'allpast(' description ')' | 'somepast(' description ')' |
| 'future(' non-negative-integer ')' modality description |
| 'past(' non-negative-integer ')' modality description |
| 'at(' instantID ')' modality description

8 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

Consider several examples of temporal concept definitions. Let concept
"PerpetuumMobile" be defined as some engine that will work always in the future.
Correspondent OWL-MeT definition with the non-metric operator "allfuture" may be
as shown on the Fig. 3. Statements about a temporal concept, relating both future and
past moments use metric operators "future n" and "past n": for example, the definition
of "Student" as "UniversityEntrant" in one moment before is shown on the Fig. 4.
Finally, statements with explicit naming of time moments use hybrid satisfaction
operator "at". Mapping to RDF(S) due to certain limitations of RDF(S) had required
the introduction of supplementary operator, which is called "happens" and which
allows to partition temporal concepts occurring at different points. The definition of
"HappyFather" (see Fig.5) is given as the union of "HappyFatherInXXCentury" and
"HappyFatherInXXICentury", where the disjuncts are defined at different time
moments. Time moments "XXCentury" and "XXICentury" are the individuals of the
owlmet:TInstant.

Fig. 3. Definition of “PerpetuumMobile”.

Fig. 4. Definition of “Student”.

<owlmet:TClass rdf:ID="Student">
 <rdfs:subClassOf>

<owlmet:TRestriction>
<owlmet:past rdf:datatype="&xsd;#NonNegativeInteger"> 1</owlmet:past>
<owlmet:equivalentClass> <owlmet:TClass rdf:about="#UniversityEntrant"/>
</owlmet:equivalentClass>
</owlmet:TRestriction>
</rdfs:subClassOf>

</owlmet:TClass>

<owlmet:TClass rdf:ID="PerpetuumMobile">
 <rdfs:subClassOf>
 <owlmet:TRestriction>
 <owlmet:allfuture>
 <owlmet:TClass>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Engine"/>
 <owl:Restriction>
 <owl:allValuesFrom> <owl:Class rdf:about="#Thing"/> </owl:allValuesFrom>
 <owl:onProperty> <owl:ObjectProperty rdf:about="#works"/> </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owlmet:TClass>
 </owlmet:allfuture>
 </owlmet:TRestriction>
 </rdfs:subClassOf>
</owlmet:TClass>

Ontology Evolution Analysis with OWL-MeT 9

Fig. 5. Definition of “HappyFather”.

5 Ontology Evolution Analysis with OWL-MeT

Let us show how OWL-MeT may serve for the task of ontology evolution
analysis. Recall that it was proposed in the Section 2 to differentiate three types of
analytical queries: retrieval queries (or, queries on the structure of vocabulary), meta-
level ontology queries and reasoning queries.

Reasoning queries answer the questions about derivability of a certain fact across
versions. For example, to answer the question “Are individuals of concept C in a
version v5 derivable both in versions v2 and v10?” one may check satisfiability of a
temporal formula (C @{v5}) subclassof (C @{v2} intersection C @{v10}).

The question “What are new individuals of concept C in a version v5, which were
not present two versions before” may be answered by checking satisfiability of a
temporal concept (C intersection ((past 2) not C)) @{v5}.

The question “What are individuals of concept C in a version v5, which are not
derivable at a distance of two versions in the future?” may be answered by checking
satisfiability of correspondent temporal concept (C intersection ((future 2) not
C)) @{v5}. These examples show the benefits of descriptive means of ALCIO (MT),
as compare to known formalisms, e.g. [4].

To discuss the application of OWL-MeT to meta-level ontology specific queries
recall that an ontology O is a set of terminological and assertional axioms [25], and
satisfiability checking of a knowledge base is equivalent to satisfiability checking of a
concept G, equivalent to the conjunction of definitions of all concepts and individuals
taken from O6. From the other side, meta-level queries have obvious relationship with
the theory of modular ontologies [9]. Indeed, ontology versions in their usual form are
ontology modules without concepts, defined externally.

6 Internalization procedure is applicable to logics allowing the definition of a universal role

[25]; OWL-Lite and OWL-DL as the languages of ontology version definition possess role-
forming operators – union and reflexive transitive closure – necessary to construct a
universal role.

<owlmet:TClass rdf:ID="HappyFather">
<owlmet:equivalentClass>
<owlmet:TClass> <owlmet:unionOf rdf:parseType="Collection">
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXthCentury"/> <owlmet:happens>
<owlmet:TClass rdf:about="#HappyFatherInXXthCentury"/>
</owlmet:happens>
</owlmet:TRestriction>
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXIthCentury"/>
<owlmet:happens><owlmet:TClass rdf:about="#HappyFatherInXXIthCentury "/>
</owlmet:happens>
</owlmet:TRestriction>
</owlmet:unionOf></owlmet:TClass>
</owlmet:equivalentClass></owlmet:TClass>

10 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

Let Oi be an ontology, actual at the version i, and let Gi be a concept, equivalent
to the conjunction of definitions of all concepts and individuals in Oi. Such Gi may be
considered as the concept, defined internally [9] in an ontology version (or module) i.
Then simple checking of the fact that Oi in the version i is satisfiable may be written
as Gi @{i}.

Checking satisfiability of a particular concept E taken from an ontology version i
in another version, say j, may be executed in several steps. Initially, introduce a
compiled concept GE,i – conjunction of all explicit and implicit definitions of concepts
and individuals, used to define E in Oi . This can be done, e.g. with the help of
compilation algorithm, defined in [9]. Then check satisfiability of concept (Gj
intersection GE,i) @{j}.

Analogously, given the whole ontology Oi, checking of the fact that in another
version, j (where j≠ i), the ontology Oi is satisfiable may be written as (Gj intersection
Gi) @{j}.

Retrieval queries serve for analysis of the structure of vocabulary, used to define
an ontology version, and for analysis of structural changes between ontology versions.
Some of the retrieval queries, such as temporal selection, may be formulated without
usage of temporal logic. However, retrieval queries benefit from tight relationship
with the underlying ontology language. A collection of interesting retrieval query
templates, such as "NewChildren", "ObsoleteChildren" etc. in [14], or, ideally, proper
ontology of ontology change operators, such as in [3] may serve as the source of
various templates. More detailed analysis might require extension of ALCIO(MT)
with role restrictions on temporal concepts.

6 Conclusions and Future Work

The paper proposes an enhancement of the formal apparatus for ontology
evolution analysis, and introduces metric temporal description logic ALCIO (MT),
which attempts to release the restrictions of known logical approaches. Reasoning
support of OWL-MeT – the extension of Web Ontology language OWL with metric
temporal operators proposed in ALCIO (MT) is now under development on the basis
of open-source reasoner Pellet.

Future work is seen in following directions: encoding of interesting change
operations, such as "RestrictRange", "ExtendRange", "RestrictDomain",
"ExtendDomain", "ModifyEquivalenceToSubclass" etc., taken e.g. from [3], and
adopted to OWL DL, in OWL-MeT; development and implementation of
optimization strategies of reasoning; and, finally, testing the reasoner services on real
cases.

7 Acknowledgements

Authors would like to thank anonymous reviewers for their helpful comments.

Ontology Evolution Analysis with OWL-MeT 11

References

1. Research Challenges and Perspectives of the Semantic Web, EC-US NSF Strategic Research
Workshop, Sophia Antipolis, France, October 3-5 (2001)

2. Klein M.C.A., Kiryakov A., Ognyanov D., Fensel D.: Finding and Characterizing Changes
in Ontologies. In: Proc. of the 21st Int. Conf. on Conceptual Modeling (ER'2002), Tampere,
Finland, October 7-11. LNCS 2503 (2002) 79–89

3. Klein M.C.A.: Change Management for Distributed Ontologies. Ph.D. Thesis, Aug. 2004,
ISBN 90-9018400-7.

4. Huang Z., Stuckenschmidt H.: Reasoning with Multi-version Ontologies. EU-IST Integrated
Project (IP) IST-2003-506826 SEKT, Deliverable D3.5.1 (2005)

5. Klein M.C.A., Noy N.F.: A Component-Based Framework For Ontology Evolution. In:
Proc. of the Workshop on Ontologies and Distributed Systems, IJCAI ’03, Acapulco,
Mexico.

6. Noy N.F., Musen M.: PromptDIFF: A Fixed-Point Algorithm for Comparing Ontology
Versions. In: Proc. of the 19th Nat. Conf. on Artificial Intelligence (AAAI/IAAI 2002),
Edmonton, Alberta, Canada, July 28 – August 1. AAAI Press (2002) 744–750

7. Plessers P., De Troyer O.: Ontology Detection Using a Version Log. In: Proc. of the 4th
International Semantic Web Conference (ISWC'2005), Galway, Ireland, November 6–10.
LNCS 3729 (2005) 578–592

8. Stojanovic L., Maedche A., Motik B., Stojanovic N.: User-driven ontology evolution
management. In: Proc. of the 13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW02), Siguenza, Spain, October 1-4. LNCS 2473 (2002)
285–300

9. Stuckenschmidt H., Klein M.C.A.: Integrity and change in modular ontologies. In: Proc. of
the Intl. Joint Conf. on Artificial Intelligence (IJCAI'2003), Acapulco, Mexico, August 9-15.
Morgan Kaufmann (2003) 900–905

10. Haase P., van Harmelen F., Huang Z., Stuckenschmidt H., Sure Y.: A Framework for
Handling Inconsistency in Changing Ontologies. In: Proc. of the 4th International Semantic
Web Conference (ISWC'2005), Galway, Ireland, November 6–10. LNCS 3729 (2005)
353–367

11. Guarino N.: Formal Ontology and Information Systems. In: Proc. of the 1st Int. Conf.
Formal Ontology in Information Systems (FOIS'1998), Trento, Italy, June 6–8. IOS
Press/Ohmsha (1998) 3–15

12. Prior A.N.: Past, Present and Future. Oxford University Press, Oxford (1967)
13. Keberle N. G.: Properties of Propositional Metric Temporal Calculus for Description of

Evolving Conceptualizations. In: Theses of the 3rd Int. Conf. on Mathematical Support and
Software for Artificial Intelligence (MSSAI’2005), Dnepropetrovsk, Ukraine, November
16–18 (2005) 65–66

14. Huang Z., Stuckenschmidt H.: Reasoning with Multi-version Ontologies: A Temporal Logic
Approach. In: Proc. of the 4th International Semantic Web Conference (ISWC'2005),
Galway, Ireland, November 6–10. LNCS 3729 (2005) 398–412

15. Chien S.-Y., Tsotras V., Zaniolo C.: Efficient Management of Multiversion Documents by
Object Referencing. In: Proc. of the 27th VLDB Conference, Roma, Italy, (2001)

16. Areces C., Blackburn P., Marx M.: A roadmap on the complexity of hybrid logics. In: Flum
J. and Rodriguez-Artalejo M. (eds.): Computer Science Logic, LNCS 1683. Springer (1999)
307–321

17. Blackburn P.: Representation, Reasoning, and Relational Structures: a Hybrid Logic
Manifesto. In: Areces C., Franconi E., Goré R., de Rijke M. and Schlingloff H. (eds.):
Special Issue of the Logic Journal of the IGPL 8:3 (2000) 339–625

18. Prior A.N.: Stratified Metric Tense Logic. Theoria 33 (1967) 28–38

12 Natalya Keberle, Yuriy Litvinenko, Yuriy Gordeev

19. Clifford J.E.: Tense and Tense Logic. Mouton Publishers. The Hague, The Netherlands
(1975)

20. Kutz O., Wolter F., Zakharyaschev M.: A Note on Concepts and Distances. Working Notes
of the 2001 Intl. Description Logics Workshop (DL-2001), Stanford, CA, USA, August 1-3
(2001)113–121

21. Artale A., Franconi E.: Temporal Description Logics. In: Vila L. et al, van Beek P., Boddy
M., Fisher M., Gabbay D., Galton A. and Morris R. (Eds.): Handbook of Time and
Temporal Reasoning in Artificial Intelligence. MIT Press (1999)

22. Gasquet O., Herzig A., Sahade M.: Terminating Modal Tableaux with Simple Completeness
Proof. In: Advances in Modal Logic, 6 (2006) 167-186

23. Horrocks I., Sattler U.: A Tableaux Decision Procedure for SHOIQ. In: Kaelbling L.P.,
Saffiotti A. (eds.): Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30-August 5, 2005. Professional Book Center (2005) 448–4533.

24. Franceschet M., de Rijke M., Schlingloff B.-H.: Hybrid Logics on Linear Structures:
Expressivity and Complexity. In: Proc. of 10th Int. Symposium on Temporal Representation
and Reasoning and 4th Int. Conf. on Temporal Logic (TIME-ICTL’2003), Cairns,
Queensland, Australia, July 8-10. IEEE Computer Society (2003) 166–173

25. Baader F., Calvanese D., McGuinness D., Nardi D. and Patel-Schneider P.F.: The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press (2003)

