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Abstract. Works on ontology versioning pay special attention to the logical 
analysis of ontology evolution. The paper considers extensible declarative 
approach to ontology change description. Metric temporal description logic 
with metric temporal modalities “future n” and “past n” and hybrid satisfaction 
operator @ is proposed as the logical basis for declarative ontology evolution 
analysis. Underlying time structure assumed to be linear and discrete, which is 
acceptable for modeling of ontology versions sequence. Introduced is OWL-
MeT – metric extension of the Web ontology language OWL, which is 
supported with a reasoning engine under development on the basis of Pellet 
reasoner. 

1 Introduction 

Ontology versioning and change detection are one of the Semantic Web research 
challenges [1]. Many previous efforts at providing ontology versioning have focused 
on the differentiation of the conceptual and explication changes [2], on the 
identification of an ontology in the Semantic Web [2], [3], on ontology change 
operations and their effects at the instances level [3], [4]. Change detection between 
similar ontologies or between versions of the same ontology when there is no version 
log is discussed in [5], [6]. Change detection and propagation between versions of the 
same ontology, when there is a version log, is investigated in [7]. Special attention is 
paid to the change management organization for distributed and modular ontologies 
[8], [9], inconsistent ontologies [10]. 

The approach reported in the paper focuses on the analysis of ontology evolution, 
namely, compatibility and interchangeability of ontology versions, and proposes a 
formal declarative basis for such analysis. Indeed, an ontology is a formal theory [11], 
and for any two versions of the same ontology it is interesting to know whether these 
versions are compatible from the logical point of view, whether it is possible to use 
definition of an object in one version to access instances of that object in another 
version. 

                                                           
1 The work of the author is partially supported in frame of PSI project. Performance Simulation 

Initiative (PSI) is the R&D project of Cadence Design Systems, GmbH. 
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Presented research aims at the development of logical means which will facilitate 
the various tasks of ontology evolution analysis. It is proposed to use temporal logic, 
and to combine temporal logic with explicit use of metric properties of time. 
Propositional metric temporal language (first introduced by A.Prior [12]) and calculus 
(investigated in [13]) serve as the basis for the presented research. Constructive proofs 
of soundness, completeness and decidability of propositional metric temporal calculus 
[13] are based on the tableau technique. 

The contributions of the paper are: (i) further development of proof-theoretic 
approach – introduction of metric temporal description logic ALCIO(MT) with 
additional sort of nominals representing ontology versions; (ii) introduction of OWL-
MeT – metric extension of OWL with constructs of ALCIO(MT) in a way suitable 
for the Semantic Web applications; (iii) introduction of reasoning engine for OWL-
MeT, based on Pellet2 – the open-source OWL-DL reasoner in Java. 

The paper is organized as follows: the Section 2 presents the related work and the 
motivation to enhance analytical means for ontology evolution; metric temporal 
description logic ALCIO(MT) with metric temporal modalities and hybrid 
satisfaction operator is described in Section 3; Section 4 introduces OWL-MeT – the 
extension of OWL with the constructs of ALCIO(MT) and describes Pellet-based 
reasoning engine for OWL-MeT; examples of ontology evolution analysis with 
OWL-MeT are given in the Section 5, and Section 6 presents some conclusions made 
in frame of the presented research. 

2 Related Work and Motivation 

Approaches to ontology changes detection and storage basically work on the 
syntactic layer. In [2] it was proposed to use rule-based approach to change detection. 
The idea behind the approach is to precisely formulate what can be considered as 
change for every syntactical construct of ontology description language. The complete 
list of possible change operations for OWL-Lite was introduced in [3] in the form of 
"the ontology of ontology change", which is used to mark-up change logs. The 
framework for ontology change management, OntoView, was described in [5], [3]. 
Some disadvantages of the rule-based approach to change detection are investigated 
in [7]. It was shown that in case of multiple changes occurred in the ontology some 
changes may interfere, and in the worst case even cancel one another, as far as change 
detection rules work independently of each other. 

Proof-theoretic approach to ontology evolution analysis, first introduced in 
MORE [14], [4] overcomes the drawbacks of other approaches. First of all, it is 
ontology language-independent: meta-level temporal language LTLm was used for 
changes analysis. Secondly, reasoning over ontology changes instead of querying 
changes was proposed, which allowed to rely not only on heuristics/rules of change 
detection, but to deduce complex changes. Finally, usage of temporal logic is natural 
as far as changes are characterized with time moments, when they occur. 

                                                           
2 Pellet homepage is http://pellet.owldl.com  
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However, analysis of [14] has shown that the usage of temporal logic LTLm has 
some drawbacks. LTLm is past-oriented, therefore complex statements binding future 
and past moments can not be described. Further, statements about states of affairs in 
two ontology versions which are at a given distance from each other, without naming 
these versions are impossible. Finally, the developers of MORE [4] have outlined for 
the future work the convenience of explicit usage of version names in a temporal 
formula, i.e. hybridization of LTLm. 

Interesting ideas for the detailed change analysis of both the extensional and the 
structural levels are proposed in [15] for evolving collections of XML documents. 
The authors of [15] provide a classification of query types for the analysis of 
structural changes occurred in the versions of an XML document: structural 
projection, historical queries, temporal selection, content-based selection.  Use of 
these query types might seriously enhance the ontology versioning frameworks. The 
steps in this direction are made in the SEKT3 project [4].  

The review of the systems and the approaches presented above shows that 
detailed analysis of ontology evolution can be facilitated with the two components: (i) 
– there are either all versions of the ontology or the version log for that ontology, and 
(ii) – reasoning over the versions is performed with help of temporal logics. The 
motivation of the approach proposed in the paper is based on the idea of an ontology 
versioning system facilitating the analysis of evolution. Following [14] and [15] 
possible analytical queries may include:  
− Reasoning queries: 

• (non-)derivability of a fact in one version with respect to another version, i.e. 
whether the fact belongs to the intersection/difference of ontology models 

• (non-)derivability of a fact in a given version 
− Meta-level ontology-specific queries:  

• compatibility of versions (e.g. "Is the version 1 is subsumed by the version 5?")  
• compatibility of concept definitions (e.g. "Is the concept Child defined in the 

version 1 subsumed by the concept Child taken from the version 5?") etc. 
• most common part of concept definitions taken from different version (e.g. 

"What properties remain unchanged in the concept Child from the version 5 to 
the version 10") etc. 

• detection of conceptual relations [3] between the versions of ontology (e.g. 
"What version subsumes the version 5?") 

− Retrieval queries 
• temporal selection (e.g. "Get the version 5") 
• historical queries (e.g. "What was added in the version 5?", "What was added in 

the version 5 as compare to the version 2?", "What become obsolete in the 
version 5 as compare to the version 10?") 

• structural projection (e.g. "Get the definition of the concept Child in the version 
5", "Get the new/retired/unchanged instances of the concept Child in the version 
5 as compare to the version 2") 

                                                           
3 MORE is developed in frame of SEKT project, http://www.sekt-project.org  
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• content-based selection (e.g. "Check all the versions and get all the concept 
definitions where role hasChild is used", "Check the versions from 5 to 10 and 
get all the concept definitions where the role hasChild is used").  

Presented research assumes that all ontology versions are available for analysis. 
Its usage in the case of presence of a version log goes beyond the scope of the paper. 

Mentioned queries explore the concept of time moment (expressed in an ontology 
version number). Moreover, as the time moments / ontology version numbers are used 
explicitly in queries, there is a need to have correspondent means in underlying logic 
formalism for referencing time points explicitly. 

Hybrid logics [16], [17] which allow naming particular possible world may 
provide means for referencing time moments explicitly in a formulae. Metric 
temporal logics [18] allow to reference time moments at a given distance to the future 
and to the past. 

First introduced in [18], metric modalities "future n" and "past n" were then 
investigated by Clifford in [19], where the semantics of the metric temporal language 
was given. Other temporal modalities (such as Scott's unary temporal operator "next 
instant" [12] or Kamp's binary temporal operators "until" and "since" [12]) can be 
defined via metric ones. Later on metric modalities were extensively learnt in the 
research on real-time logic, and in the recent time, in the research on distance logics 
[20]. Composition of hybrid and metric temporal logic may provide means necessary 
for ontology evolution analysis. 

3 Metric Temporal Description Logic 

Highly-expressive and decidable Description Logics are of great interest in the 
Semantic Web applications. Known decidable temporal description logics (see, e.g. 
[21]) focus on topological properties of time, and provide descriptive means for both 
interval-based and point-based time structure. Such logics are usually seen as 
combination of a propositional modal logic (as far as description logics have strict 
correspondence with propositional multimodal logics) and temporal (therefore, also 
modal) logic. Expressive power of obtained composed logic depends on the degree of 
interaction between two modal logics. 

Metric description logics are relatively new members of the description logics 
family. The research on metric description logics was initiated with the development 
of logic of distances [20]. Since then many classes of such logics are investigated for 
the purpose of decidability.  

Metric temporal description logic ALCIO(MT ) for point-based time structure is 
the composition of ALCIO – description logic with role inverses and nominals and 
propositional metric temporal logic. Particularly, ALCIO(MT) allows application of 
temporal and hybrid operators only to concepts (both non-temporal and temporal), 
and role restrictions are not applied to temporal concepts. 

Let BA,  denote atomic non-temporal concepts, R  - atomic role, FE,  - 
complex non-temporal concepts, P  - complex role, DC,  - complex temporal 
concept, }{o - object nominal (denoting an individual in some possible world),  }{a  - 
temporal nominal (denoting possible world, e.g. ontology version).  



Ontology Evolution Analysis with OWL-MeT      5 

Then the rules presented in the Fig.1 generate complex concepts/roles. 
 

E, F  → A  | top | bottom | E u F | E t F | ¬ E | ∃R. E  | ∀R. E | }{o   
    P  →   R  | 1−P  
C, D →   E  | }{a | C intersection D | C union D | not C | C@ }{a | future n C |  
                    | past n C | somefuture C | somepast C | allfuture C | allpast C 

Fig. 1. Syntax rules for ALCIO(MT) concepts/roles construction. 

If C and D are temporal concepts, and {a} is a temporal nominal, then 
C equivalent D, C subclassof D, C(a) are temporal formulae. If ϕ and ψ  are temporal 
formulae, then ϕ union ψ , ϕ intersection ψ , not ϕ  are also temporal formulae. 

ALCIO(MT) is interpreted over Kripke model M >Δ=< VIRRdist PF ,},,{,, , 
where },{ Zkk ∈Δ=Δ  is a set of possible worlds, kΔ  is a set of individuals in k-th 
possible world, }0{: ∪→Δ×Δ Ndist  is a metric on Δ , PF RR ,  are accessibility 
relations, I  is an interpretation function, and V is a hybrid valuation function.  

Interpretation I  associates with each kΔ  an ALCIO-interpretation 
>⋅Δ=< )(,)( kIkkI . 

Temporal nominals are used as identifiers of ontology versions. Satisfaction 
operator @{a}, where {a} is considered as an identifier of an ontology version, is 
adopted from hybrid logics [17].  

Additionally, let function Zaden →}{:  be an encoding of temporal nominals into 
integers. Then, given temporal nominal {a}, hybrid valuation V assigns {a} a unique 
world )(adenΔ  - singleton subset of Δ .  

The model-theoretic semantics of ALCIO(MT)-specific operators is defined as 
follows: 

)()( kICnfuture   },:{ )( jIk Conkjo ∈+=∃Δ∈=  
)()( kICnpast   },::{ )( jIk Conjkjo ∈+=∃Δ∈=  
)()( kICsomefuture },:{ )( jIk Cokjo ∈≥∃Δ∈=  
)(kICsomepast ) ( },:{ )( jIk Cokjo ∈≤∃Δ∈=  
)()( kICallfuture },:{ )( jIk Cokjo ∈≥∀Δ∈=  
)()( kICallpast },:{ )( jIk Cokjo ∈≤∀Δ∈=  
)(})@{( kIaC  }{ ))(( adenICo∈=  

For the purposes of ontology evolution analysis we restrict the domain Δ  to be a 
finite linear sequence of ontology versions – time structure, or in terms of [14] 
version space. Time structure is a finite sequence of temporal nominals, each of 
which identify particular ontology version. Time structure is ordered with the 
precedence relation, set between encodings of temporal nominals: if den(a1)<den(a2), 
then the version identified with a1 precedes the version identified with a2.  
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Satisfiability problem for hybrid multi-modal tense logic with nominals, whose 
syntactic variant is ALCIO(MT), is EXPTIME-hard [16]. 

Releasing the domain Δ  from being finite leads to analysis of the decidability 
issues for nonbranching discrete transitive and reflexive unbounded frame. Tableau 
rule set for hybrid and metric operators provides a ground for constructive proof of 
decidability of satisfiability problem for ALCIO (MT). Termination of the decision 
procedure is controlled with the application of looptest rules (which are applicable for 
transitive frames, see, e.g. [22]), and of the formulae marking rules (see, e.g. [23]). 
However, the satifiability problem is still EXPTIME-hard, as the results in [16] were 
obtained for arbitrary frame. Results obtained in [24] for NP-completeness of 
satisfiability problem for linear frame (irreflexive, transitive and trichotomous) seem 
not to be applicable here, as the behaviour of metric operators "future n" / "past n" 
when n = 0 requires the accessibility relations to be reflexive. 

4 OWL-MeT 

OWL-MeT (abbreviation for OWL-MetricTime) is built on top of the language 
OWL; it has been assigned namespace owlmet. Main constructs for definition of 
temporal concepts of OWL-MET are TClass and TRestriction. TClass, representing 
named temporal concepts, is the direct subclass of rdfs:Class, TRestriction, 
representing unnamed temporal restrictions, is the subclass of owlmet:TClass. 
Standard OWL class owl:Class is defined as subclass of owlmet:TClass, therefore all 
OWL concepts are also OWL-MeT temporal concepts. Indeed, each non-temporal 
concept A (which is the instance of owl:Class) can be considered as equivalent to an 
instance of unnamed temporal restriction future 0 A. In OWL-MeT temporal concepts 
are allowed to form unions, intersections and complements, to define axioms of 
equivalence and subsumption between them.  

OWL-MeT introduces the special sort of nominals for ontology versions – 
temporal nominals, or instants. Instant is also the subclass of owlmet:TClass. 
TimeStructure construct fixes the sequence of instants and it is defined with help of 
rdf:sequence construct. 

Metric temporal operators are defined as instances of rdf:property, namely 
"future", "allfuture", "past", "allpast", "somefuture", "somepast"; hybrid 
satisfaction operator "at", and its supplementary operator "happens" are also the 
instances of rdf:property.  

The abstract syntax of OWL-MeT extends the OWL abstract syntax, OWL-MeT 
new constructs are presented in the Fig. 2. Complete definition4 of OWL-MeT 
includes abstract syntax definition, mapping to RDF graphs and usage examples.  

The reasoning engine for OWL-MeT is now under development. It is grounded 
on the open-source Java-based OWL-DL reasoner Pellet. Jena 2.45 is used for the 
validation of OWL-MeT constructs and for correspondent RDF models building.  

                                                           
4 OWL-MeT Web site: http://ermolayev.com/owl-met 



Ontology Evolution Analysis with OWL-MeT      7 

  

Fig. 2. Abstract syntax of OWL-MeT (the added part as compare to OWL). 

Extension of Pellet to reason over OWL-MeT descriptions requires also 
reworking of normalization and internalization procedures, and extending of the 
decision procedure with metric and hybrid tableau rules. 

In short, hybrid extension of tableau rules creates for each temporal nominal {a} 
presented in a given OWL-MeT formula a particular tableau, and establishes 
accessibility relations between these tableaux depending on values of den(a). Metric 
extension of tableau rules describes as movement across the tableaux sequence using 
that accessibility relation, as well as creation of a particular tableau. For example, 
operator "future 1 C" checks if the tableau at the distance 1 to the future exists, if not - 
creates that tableau and establishes accessibility relation RF between the initial tableau 
and that new. Operator "future n C" is considered as "future 1 future (n-1) C". 

Operators "allfuture C" and "allpast C" due to the transitivity of time copy C to 
all tableaux accessible via accessibility relation RF (RP) from the given one. Operators 
"somefuture C" and "somepast C" create alternating tableau branches (due to the 
reflexivity of the model M): one branch will include C, and the other will include 
"future 1 somefuture C"/ "past 1 somepast C" respectively. Tableau termination is 
controlled with the help of adopted looptest rules, avoiding the introduction of both 
ALCIO -node fully contained in a predecessor ALCIO - node, and the introduction 
of a temporal nominal node fully contained in a predecessor node. 

                                                                                                                                           
5 Jena is the open-source Java framework for building Semantic Web applications. It provides a 

programmatic environment for RDF(S), OWL, SPARQL and includes a rule-based inference 
engine. Available at http://jena.sourceforge.net  

axiom ::= temporalAxiom | owlAxiom 
temporalAxiom::= 'TClass(' classID modality {annotation} {description}')' | 

| 'DisjointClasses(' description description { description } ')' | 
| 'EquivalentClasses(' description { description } ')' | 
| 'SubClassOf(' description description ')' | 
| 'EnumeratedClass(' classID { annotation } { individualID }')' | 
| 'TimeStructure(' instantID {instantID} ')'  

modality::= 'complete' | 'partial' 
description::= classID | 

| trestriction | 
| resriction | 
| 'unionOf(' { description } ')' | 
| 'intersectionOf(' { description } ')' | 
| 'complementOf(' description ')' | 
| 'oneOf(' { individualID } ')' 

trestriction::= 'TRestriction(' timeProperty ')' 
timeProperty 'allfuture(' description ')' | 'somefuture(' description ')' | 

| 'allpast(' description ')' | 'somepast(' description ')' | 
| 'future(' non-negative-integer ')' modality description | 
| 'past(' non-negative-integer ')' modality description | 
| 'at(' instantID ')' modality description 
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Consider several examples of temporal concept definitions. Let concept 
"PerpetuumMobile" be defined as some engine that will work always in the future. 
Correspondent OWL-MeT definition with the non-metric operator "allfuture" may be 
as shown on the Fig. 3. Statements about a temporal concept, relating both future and 
past moments use metric operators "future n" and "past n": for example, the definition 
of "Student" as "UniversityEntrant" in one moment before is shown on the Fig. 4. 
Finally, statements with explicit naming of time moments use hybrid satisfaction 
operator "at". Mapping to RDF(S) due to certain limitations of RDF(S) had required 
the introduction of supplementary operator, which is called "happens" and which 
allows to partition temporal concepts occurring at different points. The definition of 
"HappyFather" (see Fig.5) is given as the union of "HappyFatherInXXCentury" and 
"HappyFatherInXXICentury", where the disjuncts are defined at different time 
moments. Time moments "XXCentury" and "XXICentury" are the individuals of the 
owlmet:TInstant. 

 

 
Fig. 3. Definition of “PerpetuumMobile”. 

 
Fig. 4. Definition of “Student”. 

 

<owlmet:TClass rdf:ID="Student"> 
 <rdfs:subClassOf> 

<owlmet:TRestriction> 
<owlmet:past rdf:datatype="&xsd;#NonNegativeInteger"> 1</owlmet:past> 
<owlmet:equivalentClass> <owlmet:TClass rdf:about="#UniversityEntrant"/> 
</owlmet:equivalentClass> 
</owlmet:TRestriction> 
</rdfs:subClassOf> 

</owlmet:TClass> 

<owlmet:TClass rdf:ID="PerpetuumMobile"> 
 <rdfs:subClassOf> 
 <owlmet:TRestriction> 
 <owlmet:allfuture> 
   <owlmet:TClass> 
     <owl:intersectionOf rdf:parseType="Collection"> 
     <owl:Class rdf:about="#Engine"/> 
     <owl:Restriction> 
     <owl:allValuesFrom> <owl:Class rdf:about="#Thing"/> </owl:allValuesFrom> 
     <owl:onProperty> <owl:ObjectProperty rdf:about="#works"/> </owl:onProperty> 
     </owl:Restriction> 
     </owl:intersectionOf> 
 </owlmet:TClass>  
 </owlmet:allfuture> 
 </owlmet:TRestriction> 
 </rdfs:subClassOf> 
</owlmet:TClass> 
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Fig. 5. Definition of “HappyFather”. 

5 Ontology Evolution Analysis with OWL-MeT 

Let us show how OWL-MeT may serve for the task of ontology evolution 
analysis. Recall that it was proposed in the Section 2 to differentiate three types of 
analytical queries: retrieval queries (or, queries on the structure of vocabulary), meta-
level ontology queries and reasoning queries.  

Reasoning queries answer the questions about derivability of a certain fact across 
versions. For example, to answer the question “Are individuals of concept C in a 
version v5 derivable both in versions v2 and v10?” one may check satisfiability of a 
temporal formula (C @{v5}) subclassof (C @{v2} intersection C @{v10}).  

The question “What are new individuals of concept C in a version v5, which were 
not present two versions before” may be answered by checking satisfiability of a 
temporal concept (C intersection ((past 2) not C)) @{v5}.  

The question “What are individuals of concept C in a version v5, which are not 
derivable at a distance of two versions in the future?” may be answered by checking 
satisfiability of correspondent temporal concept (C intersection ((future 2) not 
C)) @{v5}. These examples show the benefits of descriptive means of ALCIO  (MT), 
as compare to known formalisms, e.g. [4].  

To discuss the application of OWL-MeT to meta-level ontology specific queries 
recall that an ontology O is a set of terminological and assertional axioms [25], and 
satisfiability checking of a knowledge base is equivalent to satisfiability checking of a 
concept G, equivalent to the conjunction of definitions of all concepts and individuals 
taken from O6. From the other side, meta-level queries have obvious relationship with 
the theory of modular ontologies [9]. Indeed, ontology versions in their usual form are 
ontology modules without concepts, defined externally. 

                                                           
6 Internalization procedure is applicable to logics allowing the definition of a universal role 

[25]; OWL-Lite and OWL-DL as the languages of ontology version definition possess role-
forming operators – union and reflexive transitive closure – necessary to construct a 
universal role. 

<owlmet:TClass rdf:ID="HappyFather"> 
<owlmet:equivalentClass> 
<owlmet:TClass> <owlmet:unionOf rdf:parseType="Collection"> 
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXthCentury"/> <owlmet:happens> 
<owlmet:TClass rdf:about="#HappyFatherInXXthCentury"/> 
</owlmet:happens> 
</owlmet:TRestriction> 
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXIthCentury"/> 
<owlmet:happens><owlmet:TClass rdf:about="#HappyFatherInXXIthCentury "/> 
</owlmet:happens> 
</owlmet:TRestriction> 
</owlmet:unionOf></owlmet:TClass> 
</owlmet:equivalentClass></owlmet:TClass>
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Let Oi be an ontology, actual at the version i, and let Gi be a concept, equivalent 
to the conjunction of definitions of all concepts and individuals in Oi. Such Gi may be 
considered as the concept, defined internally [9] in an ontology version (or module) i. 
Then simple checking of the fact that Oi in the version i is satisfiable may be written 
as Gi @{i}.  

Checking satisfiability of a particular concept E taken from an ontology version i 
in another version, say j, may be executed in several steps. Initially, introduce a 
compiled concept GE,i – conjunction of all explicit and implicit definitions of concepts 
and individuals, used to define E in Oi . This can be done, e.g. with the help of 
compilation algorithm, defined in [9]. Then check satisfiability of concept (Gj 
intersection GE,i) @{j}.  

Analogously, given the whole ontology Oi, checking of the fact that in another 
version, j (where j≠ i), the ontology Oi is satisfiable may be written as (Gj intersection 
Gi ) @{j}. 

Retrieval queries serve for analysis of the structure of vocabulary, used to define 
an ontology version, and for analysis of structural changes between ontology versions. 
Some of the retrieval queries, such as temporal selection, may be formulated without 
usage of temporal logic. However, retrieval queries benefit from tight relationship 
with the underlying ontology language. A collection of interesting retrieval query 
templates, such as "NewChildren", "ObsoleteChildren" etc. in [14], or, ideally, proper 
ontology of ontology change operators, such as in [3] may serve as the source of 
various templates. More detailed analysis might require extension of ALCIO(MT) 
with role restrictions on temporal concepts.  

6 Conclusions and Future Work 

The paper proposes an enhancement of the formal apparatus for ontology 
evolution analysis, and introduces metric temporal description logic ALCIO (MT), 
which attempts to release the restrictions of known logical approaches. Reasoning 
support of OWL-MeT – the extension of Web Ontology language OWL with metric 
temporal operators proposed in ALCIO (MT) is now under development on the basis 
of open-source reasoner Pellet.  

Future work is seen in following directions: encoding of interesting change 
operations, such as "RestrictRange", "ExtendRange", "RestrictDomain", 
"ExtendDomain", "ModifyEquivalenceToSubclass" etc., taken e.g. from [3], and 
adopted to OWL DL, in OWL-MeT; development and implementation of 
optimization strategies of reasoning; and, finally, testing the reasoner services on real 
cases. 
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