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Abstract. In this paper, we present the ontology evolution methodology devel-
oped in the context of the BOEMIE 1 project. Ontology evolution in BOEMIE
relies on the results obtained through reasoning for the interpretation of multi-
media resources in order to evolve (enhance) the ontology, through population
of the ontology with new instances, or through enrichment of the ontology with
new concepts and new semantic relations.

1 Introduction

Ontology learning is a wide domain of research, involving methods and techniques
for the acquisition of an ontology from semantic information/conceptual knowledge
extracted from a domain. Being closely related to the field of knowledge acquisition, a
significant amount of the work has been presented in the bibliography that concentrates
on the task of knowledge acquisition from text, through the re-use of widely adopted
natural language processing and machine learning techniques [1, 2]. The methodology
proposed by the BOEMIE project tries to extend existing approaches by considering
modalities beyond text, such as still image, video and audio. The proposed methodol-
ogy can be separated into three major components:

– A multimodal information extraction engine. This information extraction engine is
responsible for extracting instances of “primitive” concepts as well as instances of
relations between concept instances, from documents belonging to the textual, still
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image, video and audio modalities. “Primitive” concepts (known as “mid-level”
concepts within BOEMIE) are concepts whose instances can be directly identified
in corpora of a specific modality. For example, in the textual modality the name
or the age of a person is a mid-level (or “primitive”) concept, as instances of
these concepts can be associated with relevant text portions. On the other hand,
the concept person is not a mid-level concept, as it is a “compound” concept
that has other concepts as properties, like the person name, age, gender, etc.
“Compound” concepts are referred as high-level concepts within the BOEMIE
project, and cannot be directly identified in a corpus and thus associated with a
corpus segment.

– A semantic interpretation engine, responsible for producing one or more explana-
tions of an event described in a document. Semantic interpretation operates on
the instances of mid-level concepts and relations between them extracted by the
information extraction engine, in order to create instances of high-level concepts
that explain the event, always according to the domain ontology. Semantic inter-
pretation is performed through standard (i.e. induction) but also non-standard
(i.e. abduction) reasoning services and is formalised as a two-level process. During
the first level, semantic interpretation is performed on the extracted information
(mid-level concept instances/relations) from a single modality only, in order to
form modality specific high-level concept instances. At a second level, the modal-
ity specific high-level instances are fused, in order to produce high level concept
instances that are not modality specific, and contain information extracted from
all involved modalities.

– An ontology evolution toolkit, which uses the results obtained through reasoning
at the interpretation phase in order to evolve (enhance) the ontology, through
population of the ontology with instances, or through enrichment of the ontology
with new concepts and new relation types.

In this paper, we focus on the BOEMIE evolution methodology and the role of
semantic interpretation for ontology evolution. Then, we describe how ontology popu-
lation and enrichment are articulated, by discussing the main design principles and by
describing samples evolution scenarios. The paper is organized as follows: a description
of the ontology evolution methodology in BOEMIE is given in Section 2. Methods and
techniques for multimedia interpretation by reasoning are discussed in Section 3. The
evolution activities of population and enrichment are presented in Sections 4 and 5,
respectively. In Section 6, we discuss the original contributions of the present work.
Finally, we give our concluding remarks in Section 7.

2 Ontology Evolution in BOEMIE

Ontology evolution within BOEMIE uses as input the results of the semantic repre-
sentation performed upon information extracted from multiple modalities (combined
through fusion). In order to be able to deal with all possible situations requiring evo-
lution, a pattern-driven approach is adopted. Typical input to the evolution toolkit
is in the form of ABoxes, containing the results of the semantic representation of



the fused extracted information. These results typically include instances of mid-level
concepts, relation instances between mid-level concept instances, high-level instances,
relation instances between instances of high-level concepts, and possibly instances of
the “unknown” mid-level concept. According to the information contained in ABoxes
constituting the input, the evolution pattern selector selects the most prominent evo-
lution pattern, triggering either ontology population or ontology enrichment.

The BOEMIE ontology evolution methodology is shown in Figure 1.
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Fig. 1. The BOEMIE evolution methodology

Ontology population is the activity of adding new instances into the ontology and
it is performed every time at least one explanation can be found for a multimedia
resource.



Ontology enrichment is the activity of extending the ontology, through the ad-
dition of new elements (e.g., concepts, relations, properties). Ontology enrichment is
performed every time the background knowledge is not sufficient to explain the ex-
tracted information from the processed multimedia documents. Thus, the ontology
enrichment activity is expected to extend this background knowledge through the
addition of new ontology elements.

Coordination is the activity of producing a log of the changes introduced into the
new evolved version of the ontology with respect to the initial version and of defining
and updating the mapping knowledge between the domain ontology and other related
external knowledge sources supporting the enrichment. Since this activity is affected by
the changes of the background knowledge, it is executed after the enrichment activity.

In the remainder of the paper, we focus on the reasoning activity for resource inter-
pretation and on the activities of ontology population and enrichment, by providing
some relevant example.

2.1 Evolution Patterns

The BOEMIE evolution approach is featured by two main requirements:

– the capability of classifying the different situations that trigger ontology evolution
by characterizing the results of the semantic interpretation process (i.e., the infor-
mation specified in the incoming A-Box) with respect to the background knowl-
edge;

– the definition of an appropriate activity articulation to correctly modify the on-
tology in each specific evolution situation.

The expected result of the semantic interpretation is a single explanation for a
multimedia resource, that is, the resource is instance of only one high-level concept.
However, other situations can occur when the background knowledge is not sufficient,
characterized either by more than one possible explanation for the same multimedia
resource or by the absence of explanations, meaning that no high-level concept can
be found in the ontology for describing such a resource. Finally, we can also have the
case where not only the high-level concept describing the resource is missing, but also
for one or more elements identified in the resource a mid-level concept can not be
assigned.

To take these requirements into account, four different evolution patterns (see Fig-
ure 2) have been identified for ontology evolution in BOEMIE. An evolution pattern
determines the characteristics of the input ABox it deals with, defines the kind of
evolution to be performed over the ontology (i.e., population or enrichment), and is
articulated into a set of activities for implementing all the required changes. Popula-
tion patterns (P1 and P2) describe the situation where the interpretation has found
one or more high-level concepts explaining the resource and, thus, the ontology popu-
lation activity is performed. Enrichment patterns (P3 and P4) describe the situation
where no high-level concepts explaining the resource are found in the ontology, thus
triggering ontology enrichment to acquire this missing knowledge. Pattern P4 has been
conceived to deal with situations where not only the high-level concept is missing (like



Evolution Pattern

Population Pattern

Enrichment Pattern

Single explanation of the 
multimedia resource P1

Multiple explanation of the 
multimedia resource P2

Missing explanation of the 
multimedia resource with 

metadata information P3

Missing explanation of the 
multimedia resource without 

metadata information P4

Fig. 2. BOEMIE evolution patterns

P3) but also one or more mid-level concepts are missing for the interpretation of the
incoming resource. In case of missing explanations for mid-level concept instances,
pattern P4 is always selected as prominent, to first enrich the ontology with missing
mid-level concepts, thus enabling the interpretation of all mid-level concept instances.
Then, in a subsequent cycle, the most suitable pattern will be chosen for handling the
new situation appropriately.

3 Reasoning for Multimedia Interpretation

An ontology in a description logic framework is seen as a tuple consisting of a TBox
and an ABox. In order to construct a high-level interpretation, the ABox part of
the ontology is extended with some new assertions describing individuals and their
relations. These descriptions are derived by media interpretation processes using the
ontology (we assume the ontology axioms are denoted in a set Σ).

Interpretation processes are set up for different modalities, still images, videos, au-
dio, and texts. In this section we discuss the interpretation process using an example
interpretation for still images. The output is a symbolic description represented as an
ABox. This ABox is the result of an abduction process (see [3] for a general introduc-
tion). In this process a solution for the following equation is computed: Σ ∪ ∆ |= Γ .
The solution ∆ must satisfy certain side conditions.

The abduction inference service aims to construct a set of (minimal) ABox asser-
tions ∆ for a given set of assertions Γ such that ∆ is consistent w.r.t. to the knowledge
base (T ,A) and satisfies [4]:

1. T ∪ A ∪ ∆ |= Γ

2. If ∆
′
is an ABox satisfying T ∪ A ∪ ∆

′
|= Γ, then ∆

′
|= ∆ (Minimality)

3. ∆ 6|= Γ (Relevance)



In Figure 3 an example from the athletics domain is presented. Assuming that it
is possible to detect a horizontal bar bar1, and a human human1 by image analysis
processes, the output of the analysis phase is represented as an ABox Γ . Assertions
for the individuals and (some of) their relations detected by analysing Figure 3 are
shown in Figure 4.

Fig. 3. Image displaying a high jump or
a pole vault event.

bar1 : Horizontal Bar
human1 : Human

(bar1, human1) : near

Fig. 4. ABox Γ representing the result of the
image analysis phase.

In order to continue the interpretation example, we assume that the ontology con-
tains the axioms shown in Figure 5 (the ABox of the ontology is assumed to be
empty). For some purposes, description logics are not expressive enough. Thus, some
additional mechanism is required without jeopardizing decidability. In order to cap-
ture constraints among aggregate parts, we assume that the ontology is extended with
DL-safe rules (rules that are applied to ABox individuals only). In Figure 6 a set of
rules for the athletics example is specified. Note that the spatial constraints touches
and near for the parts of a Pole V ault event (or a High Jump event) are not im-
posed by the TBox in Figure 5. Thus, rules are used to represent additional knowledge.
Since spatial relations depend on the specific “subphases” of the events, corresponding
clauses are included on the right-hand sides of the rules. For instance, a jumper as
part of a High Jump is near the bar if the image shows a High Jump in the jump
phase.

In the following we assume that rules such as those shown in Figure 6 are part of the
TBox Σ. In order to provide a high-level interpretation, i.e. to provide a description of
the image content in the form of high-level aggregates, we assume that spatial relations
between certain objects detected by low-level analysis processes are not arbitrary.

In order to construct an interpretation for the image in Figure 3, an explanation
is computed to answer why it is the case that a human is near a horizontal bar. Such
explanations are considered the results of image interpretation processes. As mentioned
above, the idea is to use the abduction inference service for deriving these kinds of
(minimal) explanations (in the sense of interpretations). Minimal explanations can be
extended appropriately in order to match expectations and task context.

We start with the computation of a minimal explanation in the athletics scenario.
For this purpose, we slightly modify the abduction equation by taking into considera-
tion that initially the ABox does not need to be empty. Thus, we divide Γ (see Figure 4)



Athlete ≡ Human u ∃hasProfession.Sport
Jumper v Athlete

Pole v SportEquipment
Horizontal Bar v SportEquipment

Foam Mat v SportEquipment
Jumping Event v Eventu

∃≤1hasParticipant.Jumper
Pole V ault v Jumping Eventu

∃hasPart.Poleu
∃hasPart.Horizontal Bar
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Bar
∃hasPart.Foam Mat

PV InStartPhase v >
PV InEndStartPhase v >

HJ InJumpPhase v >

Fig. 5. A tiny example TBox Σ for the athletics domain.

touches(Y, Z) ← Pole V ault(X),
PV InStartPhase(X),
hasParticipant(X, Y ), Jumper(Y ),
hasPart(X, Z), Pole(Z).

near(Y, Z) ← Pole V ault(X),
PV InEndStartPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasParticipant(X, Z), Jumper(Z).

near(Y, Z) ← High Jump(X),
HJ InJumpPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasParticipant(X, Z), Jumper(Z).

Fig. 6. Additional restrictions for Pole V ault and High Jump in the form of rules.

into a part Γ2 that the agent would like to have explained, and a part Γ1 that the
interpretation agent takes for granted. In our case Γ2 is {(bar1, human1) : near} and
Γ1 is {human1 : Human, bar1 : Horizontal Bar}.

Coming back to the abduction problem specified above, we need solution(s) for the
equation Σ ∪ ∆ ∪ Γ1 |= Γ2. In other words, given the background ontology Σ from
Figures 5 and 6, the query

Q1 := {() | near(bar1, human1)}

derived from Γ2 should return true.
Obviously, this is not the case if ∆ is empty. In order to see how an appropriate ∆

could be derived, let us have a look at the rules in Figure 6. In particular, let us focus on
the rules for Pole V ault first. If we apply the rules to the query in a backward chaining
way (i.e. from left to right) and unify corresponding terms we get variable bindings



for Y and Z. The “unbound” variable X of the corresponding rules is instantiated
with fresh individuals (e.g. pv1). It is easy to see that two possible solutions for the
abduction equation can be derived. For this example the output of the interpretation
process are two interpretation ABoxes representing two possible interpretations of the
same image (see Figures 7 and 8). As a result, this example illustrates the situation
where evolution pattern P2 can be triggered.

human1 : Human
bar1 : Horizontal Bar

(bar1, human1) : near
hj1 : High jump
hj1 : HJ InJumpPhase

human1 : Jumper
(hj1, human1) : hasParticipant

(hj1, bar1) : hasPart

Fig. 7. ABox representing the first result
of the abduction process.

human1 : Human
bar1 : Horizontal Bar

(bar1, human1) : near
pv1 : Pole V ault
pv1 : PV InEndStartPhase

human1 : Jumper
(pv1, human1) : hasParticipant

(pv1, bar1) : hasPart

Fig. 8. ABox representing the second result
of the abduction process.

Note that due to the involvement of human1 in the pole vault event in Figure 7,
human1 is now seen as an instance of Jumper, and, due to the TBox, also as an
Athlete. Thus, information from high-level events also influences information that is
available about the related parts. With queries for Jumpers the corresponding media
objects would not have been found otherwise. Thus, recognizing high-level events is of
utmost importance in information retrieval systems (and pure content-based retrieval
does not help).

The example discussed here covers the interpretation of still images. It is necessary,
however, to keep in mind that each media object might consist of multiple modalities,
each of which will be the basis of modality-specific interpretation results (ABoxes).
In order to provide for an integrated representation of the interpretation of media
objects as a whole, these modality-specific interpretation results must be appropri-
ately integrated. A cornerstone of this integration process will be to determine which
modality-specific names refer to the same domain object. This will be discussed in
later sections.

Continuing the example, it might be the case that for some images the ontology
does not contain relevant axioms or rules. In this case, the interpretation result, i.e. the
result of solving the abduction problem Σ ∪∆∪Γ1 |= Γ2 will be degenerated because,
due to missing axioms or rules in Σ, ∆ must necessarily be equal to Γ2 in order to solve
the equation. As an example of such a situation we can discuss an interpretation of
Figure 3 without the rules from Figure 6 and the GCIs for Pole V ault and High Jump
in Figure 5. The degenerate interpretation result is shown (as Γ ) in Figure 4. This
result illustrates the situation where evolution pattern P4 can be triggered.



4 Ontology Population

Ontology population is the process of inserting concept instances and relation instances
into an existing ontology. The proposed by BOEMIE approach for ontology population
is built upon two axes: entity disambiguation and consistency maintenance. With
entity disambiguation we refer to the process of identifying instances that refer to the
same real object or event. If an ontology is populated with an instance without checking
if the real object or event represented by the instance already exists in the ontology
(as an instance that has populated the ontology at an earlier population step), then
redundant information (in the best case) will be inserted into the ontology. A worst
case scenario is the redundant instances to contain contradicting information, which
may lead to an inconsistent ontology. At the same time maintaining the consistency of
an ontology is crucial (mainly through the elimination of contradictory information),
as an inconsistent ontology can not be used to reason with.

The ontology population activity can be decomposed into the following tasks:

– Instance matching: The first task of the population activity is the identification of
similar instances contained in the ontology for each HLC instance (HLCi) in the
set of explanations. Having a single HLCi as input, instance matching is expected
to return a set of instances that populate the HLC and are similar to the incoming
HLCi. Each returned matching instance is also expected to have a similarity figure,
which measures the similarity of the two HLCis. The results of instance matching
can be used to group instances that represent the same real object or event (as
HLCis that are similar are assumed to represent the same real object or event)
and possibly help in disambiguating multiple explanations in the case of evolution
pattern P2 (during the ABox refinement task).

– Instance grouping: This task is responsible for grouping all the instances that
represent the same real object or event, by exploiting the results of the instance
matching task, where every incoming HLCi has been matched with a set of other
instances that populate this HLC. Instance grouping is responsible to decide which
of these matching instances clusters will be kept and grouped together to form a
group that represents the same real object or event.

– ABox refinement (evolution pattern P2 only): In case of multiple explanations
the most suitable explanation is selected by exploiting the results of the instance
matching/grouping tasks. Assertions related to the rest of the explanations are
removed from the ABox, thus leading to a refined version of it.

– ABox validation: This task performs consistency checking, to detect possible in-
consistencies due to the additions that will be performed to the ontology. Two
tasks must be validated: the addition of the incoming ABox (i.e., the one that
originally triggered the population activity) into the ontology and the addition
of a new instance of a grouping concept or the modification of an existing one.
Both types of validation can be performed through standard reasoning (inference)
services.

– ABox assimilation: The final task is responsible for performing the needed changes
in the ontology (by creating all instances/relations in all ontological modules), in
order to incorporate the information in the new ABox into the ontology.



Continuing the example presented in Section 3 where the ABox obtained by the seman-
tic interpretation process contains two explanations (Figures 7 and 8), if this ABox is
processed by the evolution pattern selector, then evolution pattern P2 will be selected,
triggering a population operation. The first task of population (instance matching) will
try to measure the similarity of each of the explanations found in the input ABox with
instances already in the ontology, explained by the same concept. For example, in the
case of the first explanation which is explained by an instance of the High Jump con-
cept (hj2), instance matching will employ matching techniques in order to measure the
similarity of the hj2 instance with all instances that already populate the High Jump
concept. The same will happen for the pv2 instance, and all other instances of HLCs
that may be found in the input ABox (such as human2). During instance grouping, all
instances that were found similar during instance matching (i.e. they had a similarity
above a certain threshold) will be checked whether they represent the same real object
or event, and instances that do represent the same real object or event will be grouped
by associating them with an instance that represents this real object or event (and
no instances will be merged or eliminated from the ontology). For example, if there
was enough information to identify that instance human2 refers to the same person
as another instance humanx already in the ontology, then both human2 and humanx

will be retained and associated with a new instance humanreal that represents the
real person (while human2 and humanx are seen as “participations” of this person in
specific event, location and time, which may even have different properties like age).
Returning to our example, due to the very limiting information available, no grouping
can be performed for any of the instances, as usually grouping requires information
from more than one modality (i.e. the name of the athlete usually provided by the text
modality is important to identify whether two instances refer to the same athlete).

Assuming that enough instances of both High Jump and Pole V ault concepts
exist in the ontology, the ABox refinement task may be able to disambiguate multiple
explanations, by selecting one instance as most “prominant”. For example, the overal
similarity of the hj2 with other instances of the High Jump concept may be better
than the overal similarity of pv2 with other instances of Pole V ault (i.e. due to a
missing pole instance). In such a case, a single explanation (i.e. hj2) will be selected
from the available explanations. In such a case, all instances not associated with hj2,
such as pv2, will be discarded from the input ABox. Finally, during ABox validation
the resulting ABox will be checked for consistency and if it is found to be consistent,
it will be assimilated to the ontology.

5 Ontology Enrichment

Ontology enrichment is the activity of extending an ontology, through the addition of
new concepts and relations. Ontology enrichment is performed every time the back-
ground knowledge is not sufficient to explain the extracted information from the pro-
cessed multimedia documents. Thus, the ontology enrichment activity is expected to
extend this background knowledge through the addition of new concepts/relations, in
order to better explain extracted information in the future.



The ontology enrichment activity is triggered by either P3 or P4 evolution patterns.
Evolution pattern P3 is selected when no explanation (i.e., an HLCi) has be found for
a given ABox, and can lead to the insertion of a new HLC or a new relation into
the ontology, or in the accumulation of the ABox in a “waiting” queue if available
evidence cannot justify the addition of a new concept/relation. On the other hand,
evolution pattern P4 is selected when the background knowledge is not sufficient to
even assign MLCs to all of the extracted elements of a multimedia resource, thus
inserting instances of the “unknown” MLC in the ABox. In this case, pattern P4 can
result in the addition of a new MLC in the ontology. In fact, the detection of new MLCs
is considered to have priority over the identification of new HLCs, because knowledge
about a new MLC can lead to different semantic interpretation results about the same
resources. As a result, when instances of the “unknown” MLC are found in ABoxes
that contain no explanations, evolution pattern P4 is selected instead of P3.

Ontology enrichment is decomposed into the following tasks:

– Concept learning: The goal of this task is to propose new concepts (either HLCs or
MLCs) and relations by exploiting similarities found through clustering, either in
unexplained documents (evolution pattern P3) or in unknown objects recognised
by the information extraction engine (evolution pattern P4). It can be decomposed
into two main sub-tasks, clustering and concept formation.
• Clustering: The main objective of the clustering task is to provide evidence

that can support the creation of new concepts or relations.
• Concept formation: This task is applicable only if a new HLC has been pro-

posed by clustering. Exploiting the results of clustering, concept formation ex-
amines the clustered elements in order to extract common information (such as
concepts/properties and relations) and use this common information to form
a new concept, which is the result of this task.

– Concept enhancement (evolution pattern P3 only): This task is responsible for
improving a concept identified by concept learning, through knowledge acquired
from external sources, such as external domain ontologies or taxonomies.

– Concept definition: This task receives the new concept (either a new MLC or HLC)
or relation as defined through the previous tasks, and shows the concept/relation
definition to the ontology expert. The ontology expert must approve the new
concept/relation in order to be assimilated into the ontology and additionally
can revise the definition of the new concept/relation.

– Concept validation: This task performs consistency checking, by trying to detect
possible inconsistencies due to the addition of the new concept relation to the
ontology.

– Concept assimilation: The last task of ontology enrichment is responsible for per-
forming the needed changes in the ontology in order to incorporate the newly
formed concept/relation into the ontology.

As an example, we can assume an ABox where the semantic interpretation activity
was unable to found an explanation, and in addition instances of the ”unknown” MLC
have been extracted by the information extraction toolkit. When such an ABox is
processed by the evolution pattern selector, pattern P4 will be selected. In such a case,



the ABox will be placed in a “waiting” stage. Once a significant number of instances of
the “unknown” MLC have been assimilated, then clustering will be performed, during
concept formation. If enough (modality specific) information is available that can lead
to the formation of clusters, the concept definition task is responsible to present the
results of the clustering to the ontology expert. The ontology expert must decide if
the presented information is enough to justify the addition of a new MLC. In such a
case, the expert must define the new concept(s), and associate all presented instances
represented by the new concept with it.

In case of an ABox that has no explanation and also no instances of the “unknown”
MLC, evolution pattern P3 will be selected. In such a case, the ABox will be also placed
in a “waiting” stage, until enough ABoxes have been gathered. The ABox gathered
are clustered in order to obtain clusters of ABoxes that are similar and all ABoxes in
a cluster can possibly be explained by a single concept, which is not contained into
the current version of the ontology. Once clusters have been identified, a new concept
is formed for each found cluster by using all common information among all ABoxes
of the cluster. Each newly formed concept will be further enhanced during concept
enhancement, by trying to locate the formed concept in external knowledge sources
through coordination and exploiting information from these knowledge sources, like
concept/relation names and properties. Once new concepts/relations have been formed
and possibly enhanced, they must be approved and reviewed by the ontology expert
during the concept definition task: the expert must decide which of these proposed
concepts/relations will be kept, what their definition will be and which ABoxes can be
associated with them. Each concept/relation definition must be checked for consistency
and assimilated into the ontology, if no inconcistencies have been found.

6 Original Contributions

The recent success of distributed and dynamic infrastructures for knowledge sharing
has raised the need of semiautomatic/automatic ontology evolution strategies [5, 6].
An overview of some proposed approaches in this direction is presented in [7], even if
limited concrete results have appeared in the literature. In most recent work, formal
and logic-based approaches to ontology evolution are also being proposed. In [8], the
authors provide a formal model for handling the semantics of change phase embedded
in the evolution process of an OWL ontology. The proposed formalization allows to
define and to preserve arbitrary consistency conditions (i.e., structural, logical, and
user-defined).

A six-phase evolution methodology has been implemented within the KAON [9]
infrastructure for business-oriented ontology management. The ontology evolution pro-
cess starts with the capturing phase, that identifies the ontology modifications to apply
either from the explicit business requirements or from the results of a change discovery
activity. In the representation phase, the identified changes are described in a suitable
format according to the specification language of the ontology to modify (e.g., OWL).
The effects of the changes are evaluated in the semantics of change phase, where the
ontology consistency check is also performed. Due to the fact that an ontology can
reuse or extend other ontologies (e.g., through inclusion or mapping), the propaga-



tion phase ensures that any ontology change is propagated to the possible dependent
artifacts in order to preserve the overall consistency. The subsequent implementation
phase has the role to log all the performed changes in order to support the recovery
facilities that in the final validation phase are provided to reverse an ontology change
in case that an undesired effect occurs.

With respect to the state of the art literature on ontology evolution, original con-
tributions of BOEMIE can be seen at two different levels, the whole methodology and
the specific activities. The methodology as a whole proposes a new conceptualization
of the problem of evolving multimedia ontologies, by presenting a pattern-driven evo-
lution approach, where the most prominent evolution pattern for a specific evolution
scenario is automatically identified on the basis of the results of the semantic interpre-
tation activity against the background knowledge. Moreover, the methodology aims
to minimize the human involvement by providing a set of learning, matching, and
reasoning techniques that offer support in the various evolution activities, to allow
the ontology expert to refine proposed working knowledge and/or to validate/choose
among proposed alternative choices. Concerning novel contributions at the level of spe-
cific activities, the methodology for ontology population uses an innovative approach
for the detection of instances which refer to the same real object or event, based on
instance matching and non-standard clustering techniques. For ontology enrichment,
clustering is used for detecting enough information to support the introduction of a
new concept/relation and this supporting information is enhanced though information
retrieved from external knowledge sources. Thus, the involvement of the ontology ex-
pert is reduced, as the expert is required to revise an already formed concept/relation
than define this concept/relation from scratch. Matching techniques are used in combi-
nation with reasoning and clustering techniques in BOEMIE, thus leading to the devel-
opment of a more flexible and comprehensive approach to concept/instance matching
for evolution, by enforcing both structural matching and semantic matching.

The ontology evolution approach proposed by BOEMIE puts significant effort in
maintaining the consistency of the ontology while trying on the same time to identify
and eliminate redundant information. With respect to the state of the art in the field
of knowledge representation and reasoning, the novel contribution of the evolution
methodology regards the following issues: i) formalization of high-level multimedia in-
terpretation as a logical decision problem and its implementation as a non-standard
inference service, namely abduction; ii) extension of the knowledge representation for-
malism (SWRL) in order to support adequate knowledge representation for abduction
tasks; iii) development of new optimization techniques for ABox consistency checking
and query answering and its integration into a state-of-the art DL reasoner; iv) first
approach for using non-standard description logic inference problems for formalizing
the learning problem in BOEMIE (e.g., LCS, MSC, rewriting).

7 Concluding Remarks

In this paper, we have presented the methodology for multimedia ontology evolution
developed in the context of the BOEMIE project. We have specified how the semantic
interpretation of the information extracted from multimedia resources can be used to



achieve the coordinated and consistent evolution of the ontology. We have described
different evolution scenarios triggering population or enrichment patterns over the on-
tology. Current and future work within BOEMIE is devoted to: i) the investigation of
instance matching techniques to support ontology population and to complement the
role of reasoning techniques in the resource interpretation activity; ii) the investigation
of clustering techniques to extract common information (such as concepts and rela-
tions) from ABoxes and use this common information to form new concepts; iii) the
implementation of an ontology evolution toolkit providing an interactive environment
where all the proposed techniques will be integrated into a coherent whole according
to an open architecture.

References

1. Alani, H., Kim, S., Millard, D., Weal, M., Hall, W., Lewis, P., Shadbolt, N.: Automatic
ontology-based knowledge extraction from web documents. IEEE Intelligent Systems 18
(2003) 14–21

2. Buitelaar, P., Cimiano, P., Racioppa, S., Siegel, M.: Ontology-based information extrac-
tion with soba. In: Proceedings of the International Conference on Language Resources
and Evaluation. (2006) 2321–2324

3. Shanahan, M.: Perception as Abduction: Turning Sensor Data into Meaningful Repre-
sentation. Cognitive Science 29 (2005) 103–134

4. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In:
Proc. OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11. (2006)

5. Haase, P., Sure, Y.: State-of-the-art on ontology evolution. SEKT informal deliverable
3.1.1.b, Institute AIFB, University of Karlsruhe (2004)

6. Klein, M., Noy, N.: A component-based framework for ontology evolution (2003)
7. Ding, Y., Foo, S.: Ontology research and development. part 2 - a review of ontology

mapping and evolving. Journal of Information Science 28 (2002) 375–388
8. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In Gómez-Pérez, A.,
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