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Abstract. We present a semi-automated process that constructs an on-
tology based on a collection of document abstracts for a given domain.
The proposed process relies on the formal concept analysis (fca), an al-
gebraic method for the derivation of a conceptual hierarchy, namely ’con-
cept lattice’, starting from data context, i.e., set of individuals provided
with their properties. First, we show how various contexts are extracted
and then how concepts of the corresponding lattices are turned into onto-
logical concepts. In order to refine the obtained ontology with transversal
relations, the links between individuals that appear in the text are con-
sidered by the means of a richer data format. Indeed, Relational Concept
Analysis (rca), a framework that helps fca in mining relational data is
used to model these links and then inferring relations between formal
concepts whose semantic is similar to roles between concepts in ontolo-
gies. The process describes how the final ontology is mapped to logical
formulae which can be expressed in the Description Logics (dl) language
FLE . To illustrate the process, the construction of a sample ontology on
the astronomical field is considered.

1 Introduction

Knowledge systems are of great importance in many fields, since they allow
knowledge representation, sharing and reasoning. However, the knowledge acqui-
sition process is complex and can be seen as a ”bottleneck” [12]. The difficulty is
to acquire knowledge (especially from experts) and then to maintain knowledge
in a given domain. For example, in the area of astronomy, assigning classes to
the growing number of celestial objects is a difficult task and leads to a large
number of classes. Traditionally, this classification task is performed manually
according to the object properties appearing in the astronomy documents. The
task consists in reading articles of various sources that deal with a given celes-
tial objects and finding the corresponding class. At present, more than three
million celestial objects were classified in this way and made available through
the Simbad database1, but considerable work has to be done in order to classify
the billion remaining objects. Moreover, human experts are not confident with
the resulting classification as the classes lack precise definitions to be examined
when a new object must be classified.
1 http://simbad.u-strasbg.fr/simbad/sim-fid



The spread of languages and frameworks for building ontologies, mainly
within the Semantic Web initiative, has turned current trends in classification
towards the construction of classification in the form of ontologies [15]. Ontolo-
gies are an explicit specification of a domain conceptualization, developed for
the purpose of sharing and reuse. It comprises a set of concepts and a set of
taxonomic and transversal relations. In attempt to bring a formal representa-
tion to the ontology components (concepts, roles, etc.), several studies [8] have
documented the mapping of an ontology into dl formulae. Such translation is
crucial as it makes the domain knowledge encoded by the means of ontology at
the disposal of dl reasoners which in turn enables sharing and reasoning on a
clear semantic basis.

The aim of this paper is to introduce a semi-automated process for the con-
struction of classifications in the form of ontologies [15] and the derivation of ex-
pressions in Description Logics (dl) that formally describes the resulting classes.
Several approaches were proposed for ontology construction, such those relying
on Formal Concept Analysis (fca) [3]. fca is a mathematical approach for ab-
stracting conceptual hierarchies from set of individuals (e.g., celestial objects,
telescopes, etc.) and the set of their properties (e.g., emitting, collimated, mass,
etc). These individuals and their properties are extracted from text corpora using
NLP tools. Applying fca with the aim of ontology construction brings forward
two main benefits. First, the formal characterization of the fca-powered con-
cept hierarchy provides a basis for a formal specification to the derived ontology.
Moreover, many efficient operations have been designed in fca to maintain the
concept hierarchy over data evaluation, such as those performing an incremental
update of the hierarchy by adding either a formal object or a formal attribute
and those operations for lattice assembly from parts [13]. These various opera-
tions could be used to solve the ’bottleneck’ problem in knowledge acquisition.
Indeed, when the concept hierarchy changes, the ontology will evolve and still
be correct and consistent.

However, in order to deal with complex descriptions of individuals that go
beyond a mere conjunction of properties, an extended fca framework, namely
’Relational Concept Analysis’ (rca) is used to derive conceptual hierarchies
where, beside property sharing, formed concepts reflect commonalties in object
links [5]. rca approach lifts up links between individuals to the rank of relations
between concepts whose meaning is similar to roles in ontologies. rca output —
concepts organized by a partial order relation — is translated in a very obvious
way to an ontology components [9]. Moreover, recent advances in combining rca
and dl languages have shown how rca output, in particular concepts provided
with relational descriptions, can be expressed in the form of dl formulae ranging
in the FLE2 language family [7].

The proposed process is fed with astronomy data to classify celestial objects.
The translation of the ontology into a dl knowledge base (kb) allows querying
the kb through a dl reasoner and thus answering to ‘competency questions’.

2 dl language that comprises the following constructors: conjunction u, universal
quantification ∀ and existential quantification ∃.



These questions are first written in natural language and then translated into
the dl language. Competency questions look like ‘do objects M87 and PSRA belong
to the same class?’, ‘Which objects can be observed with an Xray telescope?’, or
‘What are the objects that MXX-Newton observes?’, etc.

The paper starts with an overview of the proposed methodology that builds a
domain ontology based on free text. The next section introduces the processing
texts with NLP tools that are used to collect rca data. Section 4 recalls the
fca method, its extended framework rca, and their application to the domain
of astronomy. Section 5 presents the translation of the rca output into dl kb.
First, general rules are listed and then applied to the result of the previous step.
We present in the section 6 the related work and conclude with brief discussion
on the learned facts and the remaining open issues.

2 Methodology

Our methodology (described in figure 1) is based on ”Methontology” [1]. The
”Methontology” is a semi-automatic methodology, that builds an ontology from
a set of terms extracted from resources (the resources are not specified). The
objective is to find the exhaustive definition for each concept and each relation
of the ontology in dl language. The four steps of the ”Methontology” are adapted
on proposed methodology.

Fig. 1. Mapping between the ”Methontology” and Methodology + RCA

Resources: They are represented by the texts corpora, the thesaurus of as-
tronomy3 and the syntactic patterns4 such as: all NGC nnnn where n is a number
represents one celestial object.
3 http://msowww.anu.edu.au/library/thesaurus/
4 http://simbad.u-strasbg.fr/simbad/sim-fid



Build glossary of terms: The extraction of the terms is done from the texts
corpora using the existing resources in the astronomical domain. We extract also
in this step the pairs (object,property) and the tuples (object,relation,object)
using Natural language processing (NLP) tools.

Build concept taxonomies: We propose in this step to use the fca. The fca
is the mathematical tool (presented in the section 4) that builds the hierarchy
of concepts by grouping the terms sharing the same properties.

Build transversal binary relation diagrams: The extraction of the transver-
sal relations is done in the same time as the construction of new hierarchy of
concepts taking into account their properties and also their links with other
objects. This step is done with rca (see the section 4).

Describe all elements of the ontology: The representation of all concepts,
relations and instances is done with FLE language. The representation in a
dl language is done to support reasoning, i.e. classification, instantiation and
consistency checking (see the section 5).

3 Processing texts with NLP tools

We want to extract the pairs (object,property) and the tuples
(object1,link,object2) from the text corpora. The links, in the tuples, are
used to define the set of the relations in the ontology (see section 4.2). We
choose to use the Faure’s approach [4] based on the Harris hypothesis [16]. This
hypothesis studies the syntactic regularities in the text corpora of sub-languages
(or specific languages), allowing to identify the syntactic schema to build classes.
There classes are grouping the terms (celestial objects) that are arguments
of the same set of verbs, i.e., the subject of the same set of verbs and the
complement of the same set of verbs. For example: The set {HR5223, PRSA,
SS433} are in the same class because they are appearing as subject with the
verb {to emit} and as complement with the set of verbs {to observe,to locate}.
The set of verbs is translated to the set of properties, like for example if one
term are subject of the verb ”to emit”, it has a property ”emitting” and if one
term are complement of the verb ”to observe”, it has the property ”observed”.
We use the same approach to extract the set of links, if object1 is the subject
of the verb V and the object2 the complement of the verb V then we extract
the tuple (object1,VP,object2) where VP is the verb phrase which represent the
link between (object1,object2).

The parsing of the corpus is done with the shallow parser “Stanford Parser”5 [6].
We give two examples in the astronomic domain:

1. “One HR2 candidate was detected and regrouped in each of the galaxies
NGC 3507 and CygnusA”. We extract the pairs: (HR2, regrouped), (HR2,
detected), (NGC 3507, regrouping), (CygnusA, regrouping).

5 http://nlp.stanford.edu/software/lex-parser.shtml



2. ‘The XMM-Newton X-ray telescope observed the bursting pulsar M87”, the
extraction process will first identify XMM-Newton X-ray as a Telescope,
and M87 as a celestial object. We extract the tuple : (M87, Observed-
ByXRay,XMM-Newton X-ray).

4 Background on concept lattices

4.1 Basics of FCA

fca is a mathematical approach to data analysis based on lattice theory. The
basic data format in fca [3] is a binary table K = (G,M, I) called formal
context, where G is a set of individuals (called objects), M a set of proper-
ties (called attributes) and I the relation ”has” on G × M . Table in the left-
hand side of Fig. 2 represents an example of context. Here, G is the set of
celestial objects and M the set of their properties. A pair (X,Y ) where
X is a maximal set of individuals (called extent) and Y is a maximal set
of shared properties (called intent), is called a formal concept. For instance,
({Andromeda, NGC3507}, {observed, grouping}) is a concept (see diagram in
the right hand side of Fig. 2).

Celestial objects
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PSRA X X X

NGC3507 X X

Andromeda X X X

M87 X X X

HR2 X X

NGC2018 X X X

HR5223 X X X

SS433 X X X

Fig. 2. The binary context of celestial objects and the corresponding concept lattice.

Furthermore, the set CK of all concepts of the context K = (G,M, I) is
partially ordered by extent inclusion also called the specialization (denoted ≤K)
between concepts. L = 〈CK,≤K〉 is a complete lattice, called the concept lattice.
Fig. 2 illustrates a context and its corresponding lattice. A simplified (or reduced)
labeling schema is often used where each object and each attribute appear only
once on the diagram. The full extent of a concept is made up of all objects



whose labels can be reached along a descending path from the concept while its
full intent can be recovered in a dual way (ascending path). For details on the
construction of concept lattices, see [3].

As many practical applications involve non-binary data, many-valued con-
texts has been introduced in fca where individuals have value associated to
properties. The construction of a lattice for this kind of contexts requires a pre-
processing step, called conceptual scaling [3], that derives a binary context out of
many-valued one. Scaling turns a non-binary attribute into a set of binary ones
representing abstractions of values on the domain of the underlying non-binary
attribute. For instance, the values of non-binary attribute orbitalPeriod in the
context illustrated in Tab. 1 could be distributed on the ranges short and long,
each of them expressed as a predicate (e.g., orbital period ≤ 24 hours for short
one). Observe that the definition of the predicates precedes the scaling task and
is usually in charge of a domain expert.

4.2 From FCA to RCA

Relational Concept Analysis (rca)[5] was introduced as an extended fca frame-
work for extracting formal concepts from sets of individuals described by ’local ’
properties and links. In rca data are organized within a structure called ’rela-
tional context family ’ (rcf). rcf comprises a set of contexts Ki = (Gi,Mi, Ii)
and a set of binary relations rk ⊆ Gi ×Gj , where Gi and Gj are the object sets
of the contexts Ki and Kj , called domain and range, respectively. For instance,
table in Fig. 2 and Tab. 1 depict a sample rcf made of two contexts, celestial
objects context and telescopes context.Two inter-context relations, ’Observed
By Xray ’ (OBXray) and ’Observed By Infrared ’ (OBInfrared) indicate the obser-
vation links between telescopes and objects.

The relationnal and non relationnal attributes in both contexts list the fea-
tures of objects such as the orbit height (perigee) and the orbital period for
telescopes and emitting or grouping faculty for the celestial objects.

Telescopes
perigee orbitalPeriod mass

BeppoSAX 600 km 96 min 1400 kg
XMM-Newton 114000 km 48 hours 3800 kg
Chandra 26300 km 66 hours 1790 kg
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SS433 X

Table 1. Sample rcf encoding astronomy data.

rca uses the mechanism of ’relational scaling ’ which translates domain struc-
tures (concept lattices) into binary predicates describing individual subsets.
Thus, for a given relation r which links formal objects from Ki = (Gi,Mi, Ii)



to those from Kj = (Gj ,Mj , Ij), new kind of attributes, called ’relational at-
tributes are created and denoted by r:c, where c is concept in Kj . For a given
object g ∈ Gi, relational attribute r : c characterizes the correlation of r(g) and
the extent of c = (X, Y ). Many levels of correlation can be considered such as the
‘universal’ correlation r(g) ⊆ X and the ‘existential’ correlation r(g) ∩X. Due
to correlation constraint, existential encoding of object links yields to richer link
sharing among objects and thus a wider conceptual structure to explore when
mining relevant concepts. In the present work, we consider only existential scal-
ing.

p
er

ig
ee

Is
L
ow

p
er

ig
ee

Is
H

ig
h

sh
o
rt

O
rb

it
a
lP

er
io

d
lo

n
g
O

rb
it

a
lP

er
io

d
li
g
h
t

h
ea

v
y
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Fig. 3. The derived context of telescopes and the corresponding lattice.

For example, suppose that the context of celestial objects has to be scaled
along the relation OBXray with respect to the lattice given in Fig. 3. As
OBXray(M87) = {XMM Newton} and the telescope XMM Newton is present in the
extent of concepts c2, c3 and c5 (see Fig. 3), the celestial objects context is ex-
tended by relational attributes of the form r : ci, where i = {2, 3, 5}. Tab. 2
depicts the extended context of celestial objects after the scaling of both rela-
tions OBXray and OBInfrared. It can be noticed that beside local attributes, new
relational attributes encode object links that have been assigned to objects. For
instance, in Figure 4, objects HR5223 and SS433 in the concept c9 share the
attribute OBInfrared:c0 which is interpreted as a common link with telescope
BeppoSAX (the only object in the extent of concept c0 of Figure 3).
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HR5223 X X X X X X

M87 X X X X X X

SS433 X X X X X X

NGC2018 X X X X X X X
Table 2. The result of scaling of celestial objects context along its relations. Formal
objects that are not affected by relational scaling are not displayed.

4.3 Qualitative interpretation of RCA

The relational scaling is the key step in a process which, given an rcf, derives
a relational lattice family (rlf), one lattice by context. A relational attribute
is interpreted as a relation between two concepts, on the first side the concept
whose intent owns this attribute (i.e. the domain), and, on the other side, the
concept indicated in the relational attribute expression (i.e. the range). The
rlf extraction process is iterative since relational scaling modifies contexts and
thereby the corresponding lattices, which in turn, implies a re-scaling of all the
relations that use these lattices as source of predicates. This iterative process
stops when a fixed point is reached, i.e., additional scaling steps do not involve
any more context extension.

Fig. 4. The final relational lattice of celestial objects context

The analysis of the sample rcf using rca process yields to the concept lat-
tices illustrated in Fig. 3 and Fig. 4. Relational attributes in concept intents are
associated to the most specific concepts in the corresponding lattice. Telescope



context is not a domain of relation in the running rcf. Therefore, the final lat-
tice corresponds to the initial one shown in Fig. 3. By contrast, the lattice of
celestial objects context has changed. The resulting concepts trigger yet further
sharing, at the object links level. Indeed, the intents of various formal objects are
enriched with relational attributes encoding inter-object links. These attributes
lift up object link to relations between concepts. For example, the concept c6

in Fig. 2 represents the celestial objects M87 and NGC2018, that are both binary
stars as they are observed, located and collimated. The intent of the former con-
cept is encoded with the relational attribute OBXray:c5, meaning binary stars
are also observable by XRay telescopes. Moreover, new concept are discovered.
For example, even if the two celestial objects HR5223 and SS433 have already
composed a formal concept in the initial lattice (concept c0 in Fig. 2) with an
additional object, namely PSRA they let a new concept emerge in the final lattice
(concept c9 in Fig. 4), due to the common link they share with the telescope
BeppoSAX. The new concept represents the stars that are observable with an
Infrared telescope such as BeppoSAX.

5 Ontology derivation

The ontology resulting from the rca process is represented with the dl FLE .

The TBox

rca entity Ontology Example

Context K Atomic concept c ≡ α(K) α(Telescope)≡ Telescope

Formal attribute m ∈
M

Defined concept c ≡ α(m) ≡
∃m.>

α(observed)=Object ≡
∃observed.>

Concept c = (X, Y ) ∈ C Defined concept α(c), i.e. α(c) ≡
um∈Y α(m)

α(C5) ≡ ∃observed.> u
∃located.>

∀(c, c̄) ∈ C×C, i.e. c ≺ c̄ Inclusion axiom α(c) v α(c̄) α(C8) v α(C6)

Relation r ∈ R primitive role α(r) OBXray is a primitive role in
the TBox

Relational attribute r.C Atomic concept c ≡ α(r) ≡
∃r.α(c)

α(OBXray.XMM-Newton)≡
∃OBXray.XMM-Newton

The ABox

rca entity Ontology Example

Formal object g ∈ G Instance α(g) Andromeda is an instance

Element (g, m) ∈ I Assertion α(m)(α(g)) Object(HR2)

Let c = (X, Y ), ∀g ∈ X Concept instantiation
α(c)(α(g))

HR2 is an instance of the
concept Star

Table 3. Mapping between lattice and DL knowledge base

The translation between the rca formal concepts and relations and the dl
FLE is carried on using a function α defined as follows: α : (K,R) → TBox t



ABox, where: (K,R) is a family rcf, TBox and ABox being the components of
the ontology. The function α is presented in the Tab. 3. The application of the
function α in the two lattices (Fig. 3 and Fig. 4) results in the ontology in the
Fig.5.

5.1 The translation of the concepts lattice into the ontology

The translation of each context represents an atomic concept, that express the
top > of the hierarchy in this context. Each formal attribute is translate in
defined concept. For example, attribute observed is translated into the concept
c ≡ ∃ observed.>. Each relational attribute r.C is translated in defined concept in
the TBox. For example, the relational attribute if the form OBXray.BeppoSAX
is translated into c ≡ ∃ OBXray.BeppoSAX, etc.

The design of the ontology is carried out in collaboration with as-
tronomers. The astronomers have to give a label to each concept in the on-
tology according to the properties and the links associated to the instances
of a concept. For example, the class of objects having the set of proper-
ties {observed,located,collimating} and the link {Observed-By-Xray} with
the range X-Ray-Telescope is labeled by Binary-Star. The class of objects
having the set of properties {observed,located,emitting} and the relation
{Observed-By-Infra-Red} with the range Infra-Red-Telescope is labeled by
Pulsing-Variable-Star: Infra-Red-Telescope observes Young-Star that has
a large emission compared with the X-Ray-Telescope that observes older stars
like Binary-Star. This representation is done only to give one label for each set
of celestial objects and to help the experts to read the ontology.

Fig. 5. Complete Ontology



5.2 Representation of the concepts in the DL language FLE

The ontology is represented within the FLE language. Tab. 4 presents the de-
finition of each concept in the ontology presented in the figure (Fig. 5). The
ontology can be used for three kinds of tasks :

N◦ in the lattice Concept Name Defined Concept

C2 Object ∃observed.>
C5 Star ∃observed.> u ∃located.>
C0 Young-Star ∃observed.> u ∃located.> u ∃emitting.>
C9 Pulsing-

Variable-Star
∃observed.> u ∃located.> u ∃emitting.> u
∃OBInfrared. Infra-Red-Telescope

C6 Binary-Star ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.Xray Telescope

C7 M87 ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.XMM-Newton

C8 NGC 2018 ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.Chandra

C3 Galaxy ∃observed.> u ∃grouping.>
C4 Individual-

Galaxy
∃observed.> u ∃grouping.> u ∃accreting.>

T2 Telescope Telescope

T4 light Telescope ∃light.>
T5 XRay-

Telescope
∃longOrbitalPeriod.> u ∃perigeeIsHight.>

T0 Infra-Red-
Telescope

∃shortOrbitalPeriod.> u ∃perigeeIsLow.>

T6 Chandra ∃longOrbitalPeriod.> u ∃perigeeIsHight.> u ∃light.>
T3 XMM-Newton ∃longOrbitalPeriod.> u ∃perigeeIsHight.> u ∃heavy.>

Table 4. Definition of each concept of the Fig 5 in FLE

1. Ontology population: Let o1 an object with the properties {a,b}, and
the relations {r1.c1,r2.c2}. A first task is instantiation,i.e. to find the
class of an object such as o1. The class of o1 is the most general class
X such that X v ∃a.>u∃b.>u∃r1.c1u∃r2.c2. For example, let us consider
the question ”What is the class of the object GRO, that has the prop-
erties {observed,located,emitting} and the relation OBInfrared with
the range Infra-red-Telescope? The answer is: the most general class
X v ∃observed.>u∃located.>u∃emitting.>u∃OBInfrared. Infra-red-Telescope.
This class in the ontology is the concept Pulsing-Variable-Star.

2. Comparison of celestial objects: Let us consider two objects o1 and
o2. A second task consists in comparing o1 and o2 and determining whether
o1 and o2 have the same class. One way for checking that is to find the



class of o1, then the class of o2, and then to test whether the two classes are
equivalent. For example, let us consider the two objects M87 and PSRA. M87 is
an instance of the class M87 and PSRA is an instance of the class Young-Star.
Knowing that M87 u Young-Star = ⊥, it can be inferred that both objects
do not belong to the same class.

3. Detection of the domain or the range of relation: Let us consider the
relation r1 with the range C1. A third task consists in finding the domain
of the relation r1. The domain of r1 is the most specific class X such that X
is the most specific class, union of all the classes linked to the class C1 by
the relation r1. For example Which objects can be observed by Xray with a
Xray telescope? The most specific class domain of the relation observed by
Xray where Xray telescope is the range, is the concept Binary-star.

6 Related work

6.1 Building the core ontology

There are two main approaches for building ontologies from text corpora. The
first one is based on the co-occurrence of terms in text and on the use of similarity
measures for building the hierarchy of the objects classes [10]. This approach
can not satisfy our needs to give a definition to each concept of the hierarchy,
because every concept is represented by numeric vector and it is difficult to
find an interpretation for each vector. The second approach is symbolic, and is
based on the use of a syntactic structure to describe an object by the verb with
which it appears. Faure uses this structure for building the object classes and
the statistic measures for building the hierarchy of the classes [4]. Cimiano uses
the same approach but builds the hierarchy of classes using fca, without taking
into account the relations between objects [12].

6.2 Extracting the transversal relations

The extraction of transversal relations allows us to have a better definition of
each concept. The concepts are not only defined by their properties but also
by their relations with other concepts. We cite two related approaches in the
extraction of relations. The first one is the work of Aussenac-Gilles [11], who
proposes to use a learning method to extract syntactic patterns. Tuples manu-
ally extracted from the texts (term1, relation1, term2) are the inputs. All
the tuples (term1, relationk, term2) are searched to build a general rela-
tion R, such that R = relation1 t . . . t relationn. Then, tuples of the form
(termi, R, termj) are extracted. This method groups the set of objects accord-
ing to the relations that they share, and extracts the general relations between
two concepts. It does not use the hierarchy of the concepts to make a general-
ization. A second approach by Maedche and Staab [2] consists in extracting the
association rules [14] (term1 ⇒ term2) and in keeping only those rules having a
given support and frequency. This method finds all the pairs (C1, C2) linked by
one relation but does not specify the name of the relation between these pairs.



7 Conclusion

A method for building an ontology from text corpora was proposed. The method
uses the rca framework that extends standard fca for mining relational data.
rca derives a structure that is compatible with an ontology. We have shown
how rca output could be represented in terms of dl expressions ranging in the
FLE dl family. The proposed method was applied to the astronomy domain
in order to extract knowledge about celestial objects that can be used through
a dl reasoner for problem-solving such as celestial objects classification and
comparison. The construction of a first prototype ontology from astronomy data
proved that rca-based ontology construction is a promising method allowing to
data mining and knowledge representation techniques.

On going work consists in improving the rca input data gathering process by
considering alternate syntactic patterns in the extraction of object pairs such as
(subject, verb), (complement, verb), (subject, adjective), etc. These new sorts of
pairs will provide a contexts with additional formal attributes that make formal
object descriptions richer as well as a new inter-context relations. Eventually, the
construction of hierarchy of relations need to be addressed. The principle consists
of using once again the rca abstraction process to introduce abstract relations
between concepts based on the transversal relations —originally inferred from
instances links— that hold among their subsumers. Once the derived relation hi-
erarchy merged with concept hierarchy, the resulting structure forms a complete
ontology that fully captures the domain knowledge.
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