
An Analysis of Approaches to Resolving
Inconsistencies in DL-based Ontologies

Peter Haase, Guilin Qi

Institute AIFB, University of Karlsruhe,
D-76128 Karlsruhe, Germany

{haase, gqi}@aifb.uni-karlsruhe.de

Abstract. In this paper we provide an overview and analysis of ap-
proaches for dealing with inconsistencies in DL-based ontologies. We
propose criteria for the comparison of the different approaches. These
criteria facilitate the users to choose an appropriate approach to dealing
with inconsistencies for their purpose.

1 Introduction

The problem of inconsistency (or incoherence) handling in ontologies is recently
attracting a lot of attention. Inconsistency can occur due to several reasons,
such as modeling errors, migration from other formalisms, merging ontologies,
and ontology evolution.

One way to deal with logical contradictions is to resolve logical modeling
errors whenever a logical problem is encountered1. Several methods have been
proposed to debug erroneous terminologies and have them repaired when incon-
sistencies are detected [SC03,Sch05,PSK05,FS05].

Considering the varieties of approaches to resolving inconsistency, we require
criteria for comparing these approaches to facilitate the selection of an appro-
priate approach. Three criteria are proposed in [HvHH+05]: (1) is the approach
applied at development or at runtime, (2) is the input a consistent or an incon-
sistent ontology, (3) is the output a consistent or an inconsistent ontology (or
an answer). While these criteria already provide a useful classification, they are
not sufficient for the selection of an adequate approach for a given application
scenario.

In this paper, we first propose some criteria for comparing approaches for
dealing with inconsistencies. We then give an overview of approaches for resolving
inconsistency and compare them against the proposed criteria.

The paper is organized as follows. Section 2 provides some basic notions of
terminology debugging. Some evaluation criteria are proposed in Section 3. We
then give an overview of approaches for repairing inconsistency in Section 4. In
Section 5, we compare existing approaches against the proposed criteria. Finally,
we conclude the paper in Section 6.
1 Another way to deal with inconsistencies is to reason with inconsistent ontologies

(such as the approach given in [HvHtT05]). However, the analysis of them is out of
the scope of this paper.



2 Preliminaries

We assume that the reader is familiar with Description Logics (DLs) and re-
fer to Chapter 2 of the DL handbook [BCM+03] for an excellent introduc-
tion. A DL knowledge base (or local ontology) O consists of a TBox T and
an ABox A. A TBox contains intensional knowledge such as concept defini-
tions of the form CvD, where C and D are concepts. An ABox contains ex-
tensional knowledge and is used to describe individuals. Throughout this paper,
let T = {Ax1, ..., Axn} be a set of (terminological) axioms, where Axi is of the
form CivDi for each 1≤i≤n and arbitrary concepts Ci and Di. A TBox is called
unfoldable if the left-hand sides of the axioms (the defined concepts) are atomic,
and if the right-hand sides (the definitions) contain no direct or indirect reference
to the defined concept [Neb90].

We introduce the notion of incoherence in DLs defined in [FHP+06].

Definition 1 (Unsatisfiable Concept). A concept name C in a terminology
T , is unsatisfiable iff, for each model I of T , CI = ∅.

That would lead us to consider the kinds of terminologies and ontologies with
unsatisfiable concepts.

Definition 2 (Incoherent Terminology). A TBox T is incoherent iff there
exists an unsatisfiable concept name in T .

Definition 3 (Incoherent Ontology). An ontology O is incoherent iff its
TBox is incoherent.

According to the above definitions, we know that the incoherence can occur
only in the terminology level. Namely, an ontology O = 〈T ,A〉 is incoherent iff
its terminology TBox is incoherent. Incoherence does not provide the classical
sense of the inconsistency because there might exist a model for an incoherent
ontology.

Definition 4 (Inconsistent Ontology). An ontology O is inconsistent iff it
has no model.

Let us consider an ontology O = {C1(a), C2(b), C3vC1, C3vC2, C1v6=C2}. It is
clear that O is incoherent because C3 is an unsatisfiable concept in O and it
is consistent. However, incoherence and inconsistency related with each other.
According to the discussion in [FHP+06], incoherence is potential for the cause
of inconsistency. That is, suppose C is an unsatisfiable concept in T , if a con-
cept assertion C(a) exists in the ABox A, then the ontology O = 〈T ,A〉 is
inconsistent.

Current DL reasoners, such as RACER, can detect logical incoherence and
return unsatisfiable concepts in OWL ontologies. However, typically they do not
support the diagnosis and incoherence resolution. To explain logical incoherence,
it is important to debug relevant axioms which are responsible for the contra-
diction.



Definition 5. [SC03] Let A be a named concept which is unsatisfiable in a TBox
T . A set T ′⊆T is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T
if A is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′. The
set of all MUPS of T w.r.t A is denoted as MUA(T )

A MUPS of T w.r.t A is the minimal sub-TBox of T in which A is unsatis-
fiable. We will abbreviate the set of MUPS of T w.r.t a concept name A by
mups(T , A). Let us consider an example from [SC03]. Suppose T contains the
following axioms:

ax1 : A1v¬AuA2uA3 ax2 : A2vAuA4

ax3 : A3vA4uA5 ax4 : A4v∀s.BuC

ax5 : A5v∃s.¬B ax6 : A6vA1t∃r.(A3u¬C uA4)
ax7 : A7vA4u∃s.¬B

where A, B and C are atomic concept names and Ai (i = 1, ..., 7) are defined
concept names, and r and s are atomic roles. In this example, the unsatisfiable
concept names are A1, A3, A6, A7 and MUPS of T w.r.t Ai (i = 1, 3, 6, 7) are:

mups(T , A1) : {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T , A3) : {ax3, ax4, ax5}
mups(T , A6) : {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T , A7) : {ax4, ax7}
MUPS are useful for relating sets of axioms to the unsatisfiability of specific

concepts, but they can also be used to calculate a minimal incoherence preserving
sub-TBox, which relates sets of axioms to the incoherence of a TBox in general
and is defined as follows.

Definition 6. [SC03] Let T be an incoherent TBox. A TBox T ′⊆T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every
sub-TBox T ′′⊂T ′ is coherent. The set of all MIPSs of T is denoted as MI(T ).

A MIPS of T is the minimal sub-TBox of T which is incoherent. The set of
MIPS for a TBox T is abbreviated with mips(T ). For T in the above example,
we get 3 MIPS:

mips(T ) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

3 Criteria

In this section we discuss a number of criteria for the comparison of approaches
to dealing with inconsistency in distributed knowledge bases.

Applications Resolving inconsistencies is an important issue to address for
a number of different tasks in ontology management. While some approaches
are general and may be applied for different tasks, other approaches are devel-
oped to support particular applications such as Repair of inconsistent ontologies,



Evolution of ontologies, or Merging of potentially mutually inconsistent ontolo-
gies.Depending on the assumptions, particular approaches may be applicable to
one or many of these application scenarios.

Granularity of Repair Dealing with and resolving inconsistencies can be per-
formed on different levels of granularity. Most approaches consider a knowledge
base as a set of axioms. In a trivial way, knowledge bases may be repaired by
simply removing problematic axioms completely. However, often only parts of
an axiom may be the true cause of an inconsistency. In such cases, more fine
granular approaches (e.g. on the level of concepts) would be desirable. Some
approaches are more fine granular in the sense that they allow weaken axioms
by changes on to the substructure of the axioms.

Preservation of Structure Often the algorithms for diagnosing and repair-
ing inconsistencies require some transformation of the knowledge base to some
normal form (e.g. negation normal form.) While the thus obtained knowledge
bases are logically equivalent, they may be un-intuitive to the user. If a repair
is performed based on that normal form, the effect on the original structure of
the knowledge base may be hard to reconstruct. However, the traceability of
effects in terms of the original knowledge base is often important for the user. It
is therefore desirable to preserve the structure of the original axioms wherever
possible.

Inconsistency vs. Incoherence: Inconsistency is often used as a term to refer
to a number of different types of conflicts in a knowledge base. On the level of
the TBox, typically the notions of unsatisfiability and incoherence are relevant.
A concept is unsatisfiable w.r.t. a terminology if, and only if its interpretation
is empty in every model of the terminology. A TBox is incoherent if it contains
an unsatisfiable concept. On the other hand, inconsistency of an ontology means
that there exists no model at all for the ontology. Inconsistency may occur both
in the TBox and the ABox.

Support for terminological and assertional knowledge When dealing
with inconsistencies it often is important to consider whether an inconsistency
occurs in the TBox (as part of the terminological knowledge) or whether the
ABox (assertional knowledge, i.e. the data corresponding to some TBox) is in-
consistent. In Description Logics, the problem of diagnosis has classically focused
on dealing with coherence on the terminological level. In many applications it is
however important to deal with various forms of inconsistencies and incoherence
in ABoxes and TBoxes in an integrated way. Some approaches provide solutions
to dealing with either one type of inconsistency and disregard the other. Others
do not make the distinction at all.

Complexity Reasoning with expressive Description Logics typically is already
intractable for standard reasoning tasks. Often the approaches for dealing with
inconsistencies introduce an additional level of complexity. Complexity results



thus depend on the complexity on the supported logic on the one hand, and
the properties of the algorithms for handling inconsistencies on the other hand.
In order to assure practicability, these complexity issues need to be taken into
account.

Support for Multiple/networked knowledge bases Many approaches to
dealing with inconsistencies have been developed for dealing with single, iso-
lated ontologies. Few approaches have been developed specifically for dealing
with multiple ontologies that are networked or distributed in a certain way.
Other approaches may be applied to multiple knowledge base scenarios by sim-
ply considering the union of the individual knowledge bases as a single knowledge
base. We evaluate what kind of networking relationships are supported or how
the approach can be extended to operate with multiple ontologies.

Exploitation of background / context knowledge Typical approaches for
dealing with inconsistencies only consider the content of the knowledge base
itself as input for diagnosis and repair. However, often it is useful to consider
additional information about the relevance and importance of particular parts
of the knowledge base as background knowledge. Such context information may
be captured as provenance (e.g., indicating the trustworthiness of the source),
in the form arguments (e.g., why certain axioms have been introduced), etc.

Interactivity, user involvement Many approaches to dealing with inconsis-
tencies aim at a completely automated procedure. Others rely on the user to
decide how to deal with particular situations. For example, it may be possible
that the diagnosis of the problem is performed automatically, but the decision
about how to fix a problem may be left to the user.

Availability of implementations Finally we discuss whether the approach is
implemented and available for use or whether it would be feasible and desirable
to implement it.

4 Overview of Approaches

In this section, we give an overview of the approaches for resolving inconsistency.
When resolving inconsistency, we can either delete some erroneous axioms or
weaken them. In any case, we often expect that minimal information is dropped
to restore inconsistency. To achieve this requirement of minimal change, we of-
ten need a technique called debugging, which we will introduce in the following.
There are mainly two important groups working on debugging and repairing
incoherent ontologies. The first group comes from the Vrije Universiteit Amster-
dam and the second group is the MindSwap group at University of Maryland.
There are other work on resolving inconsistency which discuss specific scenario
such as ontology revision and ontology integration. In the following, we first in-
troduce the approaches for debugging and diagnosis. After that, we give a brief
review of the application of AGM’s belief revision theory to DLs. Finally, we
introduce the approaches for knowledge integration in DLs.



4.1 Debugging and Diagnose DL-based Ontologies in MUPSter

We recapitulate two approaches given in [SHC06] which are proposed to debug
an ontology, i.e. to calculate MUPS and MIPS: a top-down approach and an
informed bottom-up approach.
A top-down approach to explanation: The first approach is originally pro-
posed in [SC03]. Their debugging approach is restricted to unfoldable ALC
TBoxes. Suppose T is an incoherent unfoldable TBox and A is an unsatisfi-
able in it. To calculate a MUPS of T w.r.t A, we can construct a tableaux from
a branch B initially containing only labelled formula (a : A)∅ (for a new in-
dividual name a) by applying the tableaux rules as long as possible. The rules
are standard ALC-tableaux rules with lazy unfolding, and have to be read as
follows: assume that there is a tableaux T = {B,B1, ..., Bn} with n+1 branches.
After applying one of the rules on B, we get a tableaux T ′ = {B′, B1, ..., Bn} or
T ′′ = {B′, B′′, B1, ..., Bn}.

Once no more rules can be applied, we know which atoms are needed to close
a saturated branch and can construct a minimization function for A and T ac-
cording to the tableaux rules. A propositional formula φ is called a minimization
function for A and T if A is unsatisfiable in every subset of T containing the
axioms which are true in an assignment making φ true. Here axioms are used as
propositional variable in φ. As we can identify unsatisfiability of A w.r.t a set
S of axioms with a closed tableaux using only the axioms in S for unfolding,
branching on a disjunctive rule implies that we need to join the functions of the
appropriate sub-branches conjunctively. If an existential rule has been applied,
the new branch B′ might not necessarily be closed on formulas for both indi-
viduals. Assume that B′ closes on the individual a but not on b. In this case
min function(a,B, T ) = ⊥, which means that the related disjunct does not
influence the calculation of the minimal incoherent TBox.

Based on the minimisation function min function(a, {(a : A)∅}, T ), de-
noted φ, which is calculated using some rules, we then can calculate the MUPS
of T w.r.t A.

From MUPS we can easily calculate MIPS based on an additional operation
on sets of TBoxes, called subset-reduction. Let M = {T1, ..., Tm} be a set of
TBoxes. The subset-reduction of M is the smallest subset sr(M)⊆M such that
for all T ∈M there is a set T ′∈sr(M) such that T ′⊆T .

Let T be an incoherent TBox with unsatisfiable concepts ∆T . The set of all
MIPSs of T , denoted mips(T ), is obtained by the following equation: mips(T ) =
sr(

⋃
A∈∆T mups(T , A)), where mups(T , A)) is the set of all MUPSs of T w.r.t

A.
A bottom-up approach to explanation: The top-down approach is based
on modifying the internals of a DL reasoner. This approach is computationally
very hard in the worst-case. In [SHC06], a bottom-up approach is proposed to
calculate MUPS with the support of an external DL reasoner. The main advan-
tage of this approach is that it can deal with any DL-based ontology supported
by an external reasoner. Unlike the top-down approach, they support various
DL-based ontology languages, including OWL-DL.



Given an unsatisfiable concept A and a terminology T , MUPS can be sys-
tematically calculated by checking whether A is unsatisfiable in subsets T ′ of T
of increasing size. Such a procedure is complete and easy to implement, but in-
feasible in practice because the number of the subsets of T is exponential to the
number of axioms in T . To solve this problem, a selection function is introduced
to control the subsets of T that are checked for satisfiability of A. Such a selec-
tion function selects increasingly large subsets which are heuristically chosen to
be relevant additions to the currently selected subset. Although this approach
is not guaranteed to give us the complete solution set of MUPS, it provides an
efficient approach for debugging inconsistent terminologies.
Calculating terminological diagnoses: Terminological diagnosis, as defined
in [Sch05], is an instance Reiter’s diagnosis from first principles. Therefore, we
can use Reiter’s algorithms to calculate terminological diagnoses. An important
notion in diagnosis is called a conflict set, which is an incoherent subset of a
TBox. Given a TBox T , a subset T ′ of T is a diagnosis for an incoherent T if
T ′ is a minimal set such that T \ T ′ is not a conflict set for T .

Reiter introduced a hitting set tree algorithm to calculate diagnoses from
conflict sets [Rei87]. Given a collection of sets C, a hitting set for C is a set
H⊆ ∪S∈C S such that H∩S 6=∅ for each S∈C. A hitting set H for C is minimal
if and only if the following conditions hold: (1) H is a hitting set; (2) for any
H ′∈C, if H⊂H ′, then H ′ is a hitting set for C. It has been shown in [SHC06]
that a subset T ′ of T is a diagnosis for an incoherent TBox T if and only if T ′

is a minimal hitting set for the collection of conflict sets of T .
To calculate minimal hitting sets, we can adapt Reiter’s hitting set tree (HS-

tree) algorithm. Given a collection C of sets, a HS-tree T is the smallest edge-
labeled and node-labeled tree, such that the root is labeled by X if C is empty.
Otherwise it is labeled with any set in C. For each node n in T , let H(n) be the
set of edge labels on the path in T from the root to n. The label for n is any set
S ∈ C such that S u H(n) = ∅, if such a set exists. If n is labeled by a set S,
then for each σ ∈ S, n has a successor, nσ joined to n by an edge labeled by σ.
For any node labeled by X, H(n), i.e. the labels of its path from the root, is a
hitting set for C.

Figure 1 shows a HS-tree T for the collection C =
{{1, 2, 3, 4, 5, 6}, {3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}} of sets. T is created
breadth first, starting with root node n0 labeled with {1, 2, 3, 4, 5, 6}. For
diagnostic problems the sets in the collection are conflict sets which are created
on demand. In our case, conflict sets for a terminological diagnosis problem can
be calculated by a standard DL engine (by definition each incoherent subset of
T is a conflict set).

4.2 Debugging and Repairing OWL Ontologies in SWOOP

A drawback of the debugging approach in [SC03] is that it is restricted to unfold-
able ALC TBoxes. Furthermore, it is based on the tableaux algorithms for DLs.
Therefore, it is dependent on the tableaux reasoner. In [PSK05,KPGS06], two



Fig. 1. HS-Tree with small conflict sets

orthogonal debugging approaches are proposed to detect the clash/sets of sup-
port axioms responsible for an unsatisfiable classes, and to identify root/derived
unsatisfiable classes. The first one is a glass box approach which is based on
description logic tableaux reasoner-Pellet. This approach is closely related to
the top-down approach to explanation in [SHC06]. However, the approach pro-
posed in [PSK05] is not limited to DL ALC and is designed for OWL DL. The
second one is a black box approach [KPGS06] which is better suitable to iden-
tify dependencies in a large number of unsatisfiable classes. The approach is
reasoner-independent, in the sense that the DL reasoner is solely used as an
oracle to determine concept satisfiability with respect to a TBox. It consists of
two main steps. In the first step, it computes a single MUPS of the concept and
then it utilizes the Hitting Set algorithm to retrieve the remaining ones. This
approach is closely related to the bottom up approach to explanation. Based on
the debugging approach, in [KPSG06], the authors give a tool to repair unsatis-
fiable concepts in OWL ontologies. The basic idea is to rank erroneous axioms
and then to generate a plan to resolve the errors in a given set of unsatisfiable
concepts by taking into account the axiom ranks.

4.3 Consistent Ontology Evolution

[HS05] describes a process to support the consistent evolution of OWL DL based
ontologies, which ensures that the consistency of an ontology is preserved when
changes are applied to the ontology. The process consists of two main phases:
(1) Inconsistency Detection, which is responsible for checking the consistency of
an ontology with the respect to the ontology consistency definition and identi-
fying parts in the ontology that do not meet consistency conditions; (2) Change
Generation, which is responsible for ensuring the consistency of the ontology by
generating additional changes that resolve detected inconsistencies. The authors
define methods for detecting and resolving inconsistencies in an OWL ontology



after the application of a change. As for some changes there may be several
different consistent states of the ontology, resolution strategies allow the user to
control the evolution.

The methods for detecting inconsistencies rely on the idea of a selection
function are to identify the relevant axioms that contribute to the inconsistency.
In the most simple case, syntactic relevance – considering how the axioms of
the ontology are structurally connected with the change – is used. Based the
selection function, algorithms to find minimal inconsistent subontologies and
maximal consistent subontologies are presented.

The approach only supports repairs by removing complete axioms from the
ontology, a weakening based on a finer granularity as future extension is men-
tioned, but no algorithms are proposed. The approach does not make a distinc-
tion between ABox and TBox axioms, as such both ABox and TBox inconsisten-
cies are trivially supported. Further, the approach does not provide any explicit
support for dealing with networked ontologies.

4.4 AGM’s Postulates for Belief Change and Description Logics

AGM’s theory of belief change [Gar88] has been widely used to deal with log-
ical inconsistency resulting from revising a knowledge base by newly received
information. There are three types of belief change, i.e. expansion, contraction
and revision. Expansion is simply to add a sentence to a knowledge base; con-
traction requires to consistently remove a sentence from a knowledge base and
revision is the problem of accommodating a new sentence to a knowledge base
consistently. Alchourrón, Gardenfors and Markinson proposed a set of postulates
to characterize each belief change operator. The application of AGM’ theory to
description logics is not trivial because it is based on the assumptions that gen-
erally fail for DLs [FPA04]. For example, a DL is not necessarily closed under
the usual operators such as ¬ and ∧. In [FPA05,FPA06], the basic AGM pos-
tulates for contraction were generalized to DLs and the feasibility of applying
the generalized AGM theory of contraction to DLs and OWL was studied. Their
work is based on the coherence model2. That is, the knowledge base is closed un-
der consequence operation, i.e., K = Cn(K), where K is a knowledge base and
Cn is the consequence operation of the underlying language. They showed that
in many important DLs, such as SHOIN (D) and SHIQ, it is impossible to
define a contraction operator that satisfies the generalized AGM postulates. In
[FHP+06], the authors first defined the notions of axiom negation and discussed
postulates for revision. However, explicit construction of a revision operator was
not considered in these papers.

4.5 Knowledge Base Revision in Description Logics

The work in [FPA04,FPA05,FPA06] presumes that the original DL knowledge
base is closed under logical consequence relation and the result of revision is
2 The notion of coherence model has nothing to do the notion of incoherence in DLs

defined in Section 2.



still a DL knowledge base which is closed under logical consequence relation. In
[QLB06a], the revised AGM postulates for belief revision in [KM92] were gener-
alized and two revision operators which satisfy the generalized postulates were
given. One operator is the weakening-based revision operator which is defined
by weakening of statements in a DL knowledge base. The weakening-based re-
vision operator may result in counterintuitive results in some cases, so another
operator was proposed to refine it. It was shown that both operators capture
some notions of minimal change.

4.6 Knowledge integration for description logics

In [MLB05], an algorithm, called refined conjunctive maxi-adjustment (RCMA
for short) was proposed to weaken conflicting information in a stratified DL
knowledge base and some consistent DL knowledge bases were obtained. To
weaken a terminological axiom, they introduced a DL expression, called cardi-
nality restrictions on concepts. However, to weaken an assertional axiom, they
simply delete it. In [QLB06b], the authors first define two revision operators
in description logics, one is called a weakening-based revision operator and the
other is its refinement. The revision operators are defined by introducing a DL
constructor called nominals. The idea is that when a terminology axiom or a
value restriction is in conflict, they simply add explicit exceptions to weaken it
and assume that the number of exceptions is minimal. Based on the revision
operators, they then propose an algorithm to handle inconsistency in a stratified
description logic knowledge base. It was shown that when the weakening-based
revision operator is chosen, the resulting knowledge base of their algorithm is se-
mantically equivalent to that of the RCMA algorithm. However, their syntactical
forms are different.

5 Discussion

We have introduced some existing approaches for resolving inconsistency and
incoherence in DLs. In this section, we compare these approaches with respect
to the evaluation criteria proposed in Section 3.1. The results of comparison are
compactly summarized in Table 1 and Table 2.

According to Table 1 and Table 2, MUPSter and SWOOP are mainly ap-
plied to debug and repair incoherence, whilst other approaches are applied to
deal with inconsistency. When resolving incoherence, MUPSter will delete ax-
ioms in the TBox and SWOOP deletes either axioms or concepts in the TBox.
To resolve inconsistency, the knowledge base revision approaches and knowledge
integration approaches either delete axioms in a DL knowledge base or remove
some instances which are responsible for inconsistency. However, the AGM-based
approach for revision in DLs and the approach on consistent ontology evolution
simply delete the whole axioms. Before dealing with incoherence, both MUPster
and SWOOP may split the axioms into smaller axioms, so the structure will be
lost. One of the knowledge base revision approaches given in [QLB06a], called



Table 1. Evaluation results

Criteria MUPSter SWOOP AGM-based
approaches

Application debugging, repair debugging, repair revision
Granularity axiom axiom or concept axiom

Preservation of structure partially partially no
Support for ABox, TBox TBox TBox TBox and ABox

Inconsistency vs. Incoherence incoherence incoherence inconsistency
Complexity EXPTIME-complete NEXPTIME-hard PSPACE-hard

User involvement no yes no
Availability of implementation yes yes no

Support for networked ontologies no no no
Exploitation of context no partially no

Table 2. Evaluation results

Criteria consistent ontology knowledge base knowledge
evolution revision integration

Application ontology evolution revision merging
Granularity axiom axiom or instance axiom or instance

Preservation of structure yes partially partially
Support for ABox, TBox TBox and ABox TBox and ABox TBox and ABox

Inconsistency vs. Incoherence inconsistency inconsistency inconsistency
Complexity PSPACE-hard PSPACE-hard PSPACE-hard

User involvement yes no no
Availability of implementation yes no no

Support for networked ontologies no no yes
Exploitation of context no no yes

refined weakening-based revision approach, also requires to split axioms, so it
does not preserve the structure of the axioms. The weakening-based revision ap-
proach in [QLB06a] does not change the structure of the axioms. The knowledge
integration approach proposed in [MLB05] needs to transform all terminology
axioms into the cardinality restrictions on concepts. So the structure of the ax-
iom is lost. Debugging in MUPSTter requires satisfiability checking in the DL
ALC, which is known to be EXPTIME-complete. Depending on the supported
underlying DL, the other approaches are at least PSPACE-hard. Among all the
approaches, only MUPSter and SWOOP are implemented, and only SWOOP
has a user interface. The MUPSter, AGM-based approaches and the knowledge
base revision approaches do not exploit context information to deal with inco-
herence or inconsistency, whilst SWOOP and knowledge integration approaches
exploit ranking information to resolve incoherence or inconsistency.



6 Conclusion

In this paper, we have provided a survey of existing work on resolving inconsis-
tency in DL-based ontologies. We then proposed a set of criteria for comparing
between different approaches.

It does not come as a surprise that none of the surveyed approaches is uni-
versally applicable for any application scenario, instead different approaches are
good for different purposes. Our comparison aims at supporting the selection of
the right tools for the job.

As a general observation we see that the use of context information in the
process of repairing ontologies as well as the support for multiple, networked
ontologies is still underdeveloped. As part of our future work, we plan to advance
the techniques for dealing with inconsistencies in these directions.

Acknowledgements Research presented in this paper was supported by the Eu-
ropean Commission under contract IST-2006-027595 NeOn (http://www.neon-
project.org/).

References

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, New York, NY, USA,
2003.

[FHP+06] Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis, and
Holger Wache. Inconsistencies, negations and changes in ontologies. In
Proc. of AAAI’06, 2006.

[FPA04] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Generalizing
the agm postulates: preliminary results and applications. In NMR, pages
171–179, 2004.

[FPA05] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying
the AGM theory to DLs and OWL. In Proc. of 4th International Confer-
ence on Semantic Web (ISWC’05), pages 216–231. 2005.

[FPA06] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Evolving
ontology evolution. In SOFSEM, pages 14–29, 2006.

[FS05] Gerhard Friedrich and Kostyantyn M. Shchekotykhin. A general diagno-
sis method for ontologies. In Proc. of 4th International Conference on
Semantic Web (ISWC’05), pages 232–246, 2005.

[Gar88] Peter Gardenfors. Knowledge in Flux-Modeling the Dynamic of Epistemic
States. The MIT Press, Cambridge, Mass, 1988.

[HS05] Peter Haase and Ljiljana Stojanovic. Consistent evolution of owl ontologies.
In Asunción Gómez-Pérez and Jérôme Euzenat, editors, ESWC, volume
3532 of Lecture Notes in Computer Science, pages 182–197. Springer, 2005.

[HvHH+05] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt, and York Sure:. A framework for handling inconsistency in chang-
ing ontologies. In Proc. of 4th International Semantic Web Conference
(ISWC’05), pages 353–367. Springer, 2005.



[HvHtT05] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reasoning
with inconsistent ontologies. In Proc. of 19th International Joint Con-
ference on Artificial Intelligence(IJCAI’05), pages 254–259. Morgan Kauf-
mann, 2005.

[KM92] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge
base revision and minimal change. Artif. Intell., 52(3):263–294, 1992.

[KPGS06] Aditya Kalyanpur, Bijan Parsia, Bernardo Cuenca Grau, and Evren Sirin.
Justifications for entailments in expressive description logics. Technical
report, University of Maryland Institute for Advanced Computer Studies
(UMIACS), 2006.

[KPSG06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau.
Repairing unsatisfiable concepts in owl ontologies. In ESWC’06, pages
170–184, 2006.

[MLB05] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration
for description logics. In Proc. of 20th National Conference on Artificial
Intelligence (AAAI’05), pages 645–650. AAAI Press, 2005.

[Neb90] Bernhard Nebel. Terminological reasoning is inherently intractable. Artif.
Intell., 43(2):235–249, 1990.

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL on-
tologies. In Proc. of WWW’05, pages 633–640, 2005.

[QLB06a] Guilin Qi, Weiru Liu, and David A. Bell. Knowledge base revision in
description logics. In Proc. of JELIA’06, pages 386–398. Springer Verlag,
2006.

[QLB06b] Guilin Qi, Weiru Liu, and David A. Bell. A revision-based algorithm for
handling inconsistency in description logics. In Proc. of NMR’06, pages
124–132, 2006.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services
for the debugging of description logic terminologies. In IJCAI’03, pages
355–362, 2003.

[Sch05] Stefan Schlobach. Diagnosing terminologies. In Proc. of AAAI’05, pages
670–675, 2005.

[SHC06] Stefan Schlobach, Zhisheng Huang, and Ronald Cornet. Inconsistent on-
tology diagnosis: Evaluation. Technical report, Department of Artificial
Intelligence, Vrije University Amsterdam; SEKT Deliverable D3.6.2, 2006.


