

Iniversity nchester	What's the Problem?		
The U of Mar	<complex-block><complex-block><complex-block><section-header><complex-block></complex-block></section-header></complex-block></complex-block></complex-block>	 Consider a typical web page Markup consists of: rendering information (e.g., font size and colour) Hyper-links to related content Semantic content is accessible to humans but not (easily) to computers Requires (at least) NL understanding 	
		Ontology Languages, SSSW'08 3	

MANCHESTER Building a Semantic Web		
Annotation		
 Associating metadata with resources 		
Integration		
 Integrating information sources 		
Inference		
 Reasoning over the information we have. 		
- Could be light-weight (taxonomy)		
- Could be heavy-weight (logic-scyle)		
 Interoperation and sharing are key goals 		
Ontology Languages, SSSW'08 6		

•

.

University Aanchester	Object Oriented Models
of Ne	<section-header> Many languages use an "object oriented model" with Objects/Instances/Individuals e lements of the domain of discourse Dypes/Classes/Concepts e sets of objects sharing certain characteristics Chations/Properties/Roles e sets of pairs (tuples) of objects Stoch languages are/can be: Well understood formally specified (Relatively) easy to use Amenable to machine processing </section-header>

.

.

ty er	MANCHESTER 1824	OWL Class		
The Universit of Manchest		Constructors		
	Constructor	Example	Interpretation	
	Classes	Class: Human	I(Human)	
	and	(Human and Male)	$I(Human) \cap I(Male)$	
	or	(Doctor or Lawyer)	$I(Doctor) \cup I(Lawyer)$	
	not	not(Male)	$\Delta \setminus I(Male)$	
	0	{john mary}	{ <i>I</i> (<i>john</i>), <i>I</i> (<i>mary</i>)}	
			Ontology Languages, SSSW'08 36	

MANCHESTER B24 OWL Class Constructors		
Constructor	Example	Interpretation
some	hasChild some Lawyer	$ \{x \exists y. \langle x, y \rangle \in I(hasChild) \land \\ y \in I(Lawyer) \} $
only	hasChild only Doctor	$ \{x \forall y. \langle x, y \rangle \in I(hasChild) \Rightarrow \\ y \in I(Doctor) \} $
min	hasChild min 2	$\{\mathbf{x} \# \langle \mathbf{x}, \mathbf{y} \rangle \in I(hasChild) \ge 2\}$
max	hasChild max 2	$ \{x \# \langle x, y \rangle \in I(hasChild) \le 2 \} $
		Ontology Languages, SSSW'08 37

MANCHESTER B24 OWL Axioms		
Axiom	Example	Interpretation
SubClassOf	Class: Human SubClassOf: Animal	$I(Human) \subseteq I(Animal)$
EquivalentTo	Class: Man EquivalentTo: (Human and Male)	$I(Man) = I(Human) \cap I(Male)$
Disjoint	Disjoint: Animal, Plant	$I(Animal) \cap I(Plant) = \emptyset$

OWL Individual Axioms		
Axiom	Example	Interpretation
Individual	Individual: Sean Types: Human	$I(Sean) \in I(Human)$
Individual	Individual: Sean Facts: worksWith Ian	$\langle I(Sean), I(Ian) \rangle \in I(worksWith)$
DifferentIndividuals	Individual: Sean DifferentFrom: Ian	$I(Sean) \neq I(Ian)$
SameIndividuals	Individual: GeorgeWBush SameAs: PresidentBush	I(GeorgeWBush) = I(PresidentBush)

he University f Manchester	OWL Property Axioms		
μ	Axiom	Example	Interpretation
	SubPropertyOf	ObjectProperty: hasMother SubpropertyOf: hasParent	$I(hasMother) \subseteq I(hasParent)$
	Domain	ObjectProperty: owns Domain: Person	$ \begin{array}{l} \forall \mathbf{x}.\langle \mathbf{x}, \mathbf{y} \rangle \in I(owns) \Rightarrow \\ \mathbf{x} \in I(Person) \end{array} $
	Range	ObjectProperty: employs Range: Person	$ \forall \mathbf{x}.\langle \mathbf{x}, \mathbf{y} \rangle \in I(employs) \Rightarrow \\ \mathbf{y} \in I(Person) $
	Transitive	ObjectProperty: hasPart Characteristics: Transitive	$ \begin{array}{l} \forall \mathbf{x}, \mathbf{y}, \mathbf{z}. \; (\langle \mathbf{x}, \mathbf{y} \rangle \in I(hasPart) \land \\ \langle \mathbf{y}, \mathbf{z} \rangle \in I(hasPart)) \Rightarrow \langle \mathbf{x}, \mathbf{z} \rangle \in I(hasPart) \end{array} $
			Ontology Languages, SSSW'08 41

