
• •

• •1

Ontology Languages for the
Semantic Web

Sean Bechhofer
School of Computer Science,

University of Manchester, UK

http://www.cs.manchester.ac.uk

Ontology Languages, SSSW'08 2

The Semantic Web

• The Web made possible through established standards
– TCP/IP for transporting bits down a wire
– HTTP & HTML for transporting and

rendering hyperlinked text

• Applications able to exploit this common infrastructure
– Result is the WWW as we know it

• 1st generation web mostly handwritten HTML pages
• 2nd generation web often machine generated/active

– But still intended for direct human processing/interaction

• In next generation web, resources should be more
accessible to automated processes
– Metadata annotations that describe content/function
– Web of Data.

• •

• •2

Ontology Languages, SSSW'08 3

What’s the Problem?
• Consider a typical web page

• Markup consists of:
– rendering information (e.g.,

font size and colour)
– Hyper-links to related

content

• Semantic content is
accessible to humans but
not (easily) to computers…

• Requires (at least) NL
understanding

Ontology Languages, SSSW'08 4

A Semantic Web

• Make web resources more accessible to automated
processes

• Extend existing rendering markup with semantic markup
– Metadata annotations that describe content/function of web

accessible resources

• Use Ontologies to provide vocabulary for annotations
– New terms can be formed by combining existing ones
– “Formal specification” is accessible to machines

• A prerequisite is a standard web ontology language
– Need to agree common syntax before we can share semantics
– Syntactic web based on standards such as HTTP and HTML

• •

• •3

Ontology Languages, SSSW'08 5

Technologies for the
Semantic Web

• Metadata
– Resources are marked-up with descriptions of their content. No

good unless everyone speaks the same language;

• Terminologies
– provide shared and common vocabularies of a domain, so search

engines, agents, authors and users can communicate. No good
unless everyone means the same thing;

• Ontologies
– provide a shared and common understanding of a domain that can

be communicated across people and applications, and will play a
major role in supporting information exchange and discovery.

Ontology Languages, SSSW'08 6

Building a Semantic Web

• Annotation
– Associating metadata with resources

• Integration
– Integrating information sources

• Inference
– Reasoning over the information we have.
– Could be light-weight (taxonomy)
– Could be heavy-weight (logic-style)

• Interoperation and Sharing are key goals

• •

• •4

Ontology Languages, SSSW'08 7

Semantic Web Languages

• A number of languages have been defined that provide
basic machinery used to represent the semantic
information
– XML
– RDF
– RDF(S)
– OWL
– …

OWL

Integration

RDF(S)

RDF

XML

Annotation

Integration

Inference

Ontology Languages, SSSW'08 8

Object Oriented Models

• Many languages use an “object oriented model” with
• Objects/Instances/Individuals

– Elements of the domain of discourse

• Types/Classes/Concepts
– Sets of objects sharing certain characteristics

• Relations/Properties/Roles
– Sets of pairs (tuples) of objects

• Such languages are/can be:
– Well understood
– Formally specified
– (Relatively) easy to use
– Amenable to machine processing

• •

• •5

Ontology Languages, SSSW'08 9

Structure of an Ontology

Ontologies typically have two distinct components:

• Names for important concepts in the domain
– Elephant is a concept whose members are a kind of animal
– Herbivore is a concept whose members are exactly those animals

who eat only plants or parts of plants
– AdultElephant is a concept whose members are exactly those

elephants whose age is greater than 20 years

• Background knowledge/constraints on the domain
– AdultElephants weigh at least 2,000 kg
– All Elephants are either AfricanElephants or IndianElephants
– No individual can be both a Herbivore and a Carnivore

Ontology Languages, SSSW'08 10

Ontology Languages

• There are a wide variety of languages for “Explicit
Specification”
– Graphical Notations

• Semantic Networks
• Topic Maps
• UML
• RDF

• •

• •6

Ontology Languages, SSSW'08 11

Ontology Languages

• There are a wide variety of languages for “Explicit
Specification”
– Graphical Notations

• Semantic Networks
• Topic Maps
• UML
• RDF

– Logic Based
• Description Logics

• Rules
• First Order Logic
• Conceptual Graphs

Ontology Languages, SSSW'08 12

Formal Languages

• The degree of formality of ontology languages varies
widely

• Increased formality makes languages more amenable to
machine processing (e.g. automated reasoning).

• The formal semantics provides an unambiguous
interpretation of the descriptions.

• •

• •7

Ontology Languages, SSSW'08 13

Why Semantics?

• What does an expression in an ontology mean?

• The semantics of a language can tell us precisely how to
interpret a complex expression.

• Well defined semantics are vital if we are to support
machine interpretability
– They remove ambiguities in the interpretation of the descriptions.

BlackTelephone

?

Ontology Languages, SSSW'08 14

RDF

• RDF stands for Resource Description Framework

• It is a W3C Recommendation
– http://www.w3.org/RDF

• RDF is a graphical formalism (+ concrete syntax)
– for representing metadata
– for describing the semantics of information in a machine-

accessible way

• Provides a simple data model based on triples.

• •

• •8

Ontology Languages, SSSW'08 15

The RDF Data Model

• Statements are <subject, predicate, object> triples:
– <Sean,hasColleague,Uli>

• Can be represented as a graph:

• Statements describe properties of resources

• A resource is any object that can be pointed to by a URI

• Properties themselves are also resources (URIs)

Sean Uli
hasColleague

Ontology Languages, SSSW'08 16

Linking Statements

• The subject of one statement can be the object of another
• Such collections of statements form a directed, labeled

graph

• Note that the object of a triple can also be a “literal” (a
string)

Sean Uli
hasColleague

Carole http://www.cs.man.ac.uk/~sattler

hasColleague

hasHomePage

“Sean K. Bechhofer”
hasName

• •

• •9

Ontology Languages, SSSW'08 17

RDF Syntax

• RDF has an XML syntax that has a specific meaning:
• Every Description element describes a resource

• Every attribute or nested element inside a
Description is a property of that Resource

• We can refer to resources by URIs

<Description about="some.uri/person/sean_bechhofer">
 <hasColleague resource="some.uri/person/uli_sattler"/>
 <hasName rdf:datatype="&xsd;string">Sean K. Bechhofer</hasName>
</Description>
<Description about="some.uri/person/uli_sattler">
 <o:hasHomePage>http://www.cs.mam.ac.uk/~sattler</o:hasHomePage>
</Description>
<Description about="some.uri/person/carole_goble">
 <o:hasColleague resource="some.uri/person/uli_sattler"/>
</Description>

Ontology Languages, SSSW'08 18

What does RDF give us?

• A mechanism for annotating data and resources.

• Single (simple) data model.

• Syntactic consistency between names (URIs).

• Low level integration of data.

• •

• •10

Ontology Languages, SSSW'08 19

RDF(S): RDF Schema

• RDF gives a formalism for meta data annotation, and a
way to write it down in XML, but it does not give any
special meaning to vocabulary such as subClassOf or type
– Interpretation is an arbitrary binary relation

• RDF Schema extends RDF with a schema vocabulary that
allows you to define basic vocabulary terms and the
relations between those terms
– Class, Property
– type, subClassOf
– range, domain

Ontology Languages, SSSW'08 20

RDF(S)

• These terms are the RDF Schema building blocks
(constructors) used to create vocabularies:
– <Person,type,Class>
– <hasColleague,type,Property>
– <Professor,subClassOf,Person>
– <Carole,type,Professor>
– <hasColleague,range,Person>
– <hasColleague,domain,Person>

• Semantics gives “extra meaning” to particular RDF
predicates and resources
– specifies how terms should be interpreted

• •

• •11

Ontology Languages, SSSW'08 21

RDF(S) Inference

Lecturer

Academic

Person

rdfs:subClassOf

rdf:subClassOf

rdfs:subClassOf

rdf:type

rdfs:Class
rdf:type

rdf:type

Ontology Languages, SSSW'08 22

RDF(S) Inference

Sean

Lecturer

rdf:type

rdfs:Class

Academic

rdfs:subClassOf

rdf:type

rdf:type

rdfs:type

• •

• •12

Ontology Languages, SSSW'08 23

RDF/RDF(S) “Liberality”

• No distinction between classes and instances (individuals)
<Species,type,Class>
<Lion,type,Species>
<Leo,type,Lion>

• No distinction between language constructors and
ontology vocabulary, so constructors can be applied to
themselves/each other
<type,range,Class>
<Property,type,Class>
<type,subPropertyOf,subClassOf>

• In order to cope with this, RDF(S) has a particular non-
standard model theory.

Ontology Languages, SSSW'08 24

What does RDF(S) give
us?

• Ability to use simple schema/vocabularies when describing
our resources.

• Consistent vocabulary use and sharing.

• Basic inference

• •

• •13

Ontology Languages, SSSW'08 25

Problems with RDF(S)

• RDF(S) is too weak to describe resources in sufficient
detail
– No localised range and domain constraints

• Can’t say that the range of hasChild is Person when applied to
Persons and Elephant when applied to Elephants

– No existence/cardinality constraints
• Can’t say that all instances of Person have a mother that is also a

Person, or that Persons have exactly 2 parents
– No transitive, inverse or symmetrical properties

• Can’t say that isPartOf is a transitive property, that hasPart is the
inverse of isPartOf or that touches is symmetrical

• Difficult to provide reasoning support
– No “native” reasoners for non-standard semantics
– May be possible to reason via FO axiomatisation

Ontology Languages, SSSW'08 26

OWL

• OWL: Web Ontology Language

• Extends existing Web standards
– Such as XML, RDF, RDFS

• Is (hopefully) easy to understand and use
– Based on familiar KR idioms

• Of “adequate” expressive power

• Formally specified
– Possible to provide automated reasoning support

• •

• •14

Ontology Languages, SSSW'08 27

Joint EU/US Committee

DAML

OntoKnowledge+Others

The OWL Family Tree

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL
W3C

Ontology Languages, SSSW'08 28

Aside: Description Logics

• A family of logic based Knowledge Representation
formalisms
– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts (classes), roles

(relationships) and individuals

• Distinguished by:
– Formal semantics (typically model theoretic)

• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key problems
• Implemented systems (highly optimised)

• •

• •15

Ontology Languages, SSSW'08 29

DL Semantics

• Model theoretic semantics. An interpretation consists of
– A domain of discourse (a collection of objects)
– Functions mapping

• classes to sets of objects
• properties to sets of pairs of objects

– Rules describe how to interpret the constructors and tell us when
an interpretation is a model.

• In a DL, a class description is thus a characterisation of the individuals
that are members of that class.

Ontology Languages, SSSW'08 30

OWL Layering

Full

DL

Lite

• There are three “species” of OWL
– OWL Full
– OWL DL
– OWL Lite

• Syntactic Layering
• Semantic Layering

– OWL DL semantics = OWL Full semantics
(within DL fragment)

– OWL Lite semantics = OWL DL semantics
(within Lite fragment)

• •

• •16

Ontology Languages, SSSW'08 31

OWL Full

• No restriction on use of OWL vocabulary
(as long as legal RDF)
– Classes as instances (and much more)

• RDF style model theory
– Semantics should correspond with OWL DL

for suitably restricted KBs

Full

Ontology Languages, SSSW'08 32

OWL DL

• Use of OWL vocabulary restricted
– Can’t be used to do “nasty things” (i.e., modify OWL)
– No classes as instances
– Defined by abstract syntax + mapping to RDF

• Standard DL/FOL model theory (definitive)
– Corresponds to SHOIN(Dn) Description Logic
– Direct correspondence with (first order) logic

• Benefits from DL research
– Well defined semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Implemented (optimised) systems

DL

• •

• •17

Ontology Languages, SSSW'08 33

OWL Lite

• Like DL, but fewer constructs
– No explicit negation or union
– Restricted cardinality (zero or one)
– No nominals (oneOf)

• Semantics as per DL
– Reasoning via standard DL engines (+datatypes)

• In practice, not really used.
– Possible alternative: “tractable fragments”

Lite

Ontology Languages, SSSW'08 34

OWL Syntaxes

• Abstract Syntax
– Used in the definition of the language and the DL/Lite semantics

• OWL in RDF (the “official” concrete syntax)
– RDF/XML presentation

• XML Presentation Syntax
– XML Schema definition

• Other, Human readable syntaxes
– Manchester OWL Syntax
– Syndey OWL Syntax
– Rabbit

• •

• •18

Ontology Languages, SSSW'08 35

OWL (DL) Semantics

• OWL has a number of operators for constructing class
expressions.

• These have an associated semantics which is given in
terms of a domain:
– Δ

• And an interpretation function
– I:concepts ! ℘(Δ)
– I:properties ! ℘(Δ £ Δ)
– I:individuals ! Δ

• I is then extended to concept expressions.

Ontology Languages, SSSW'08 36

OWL Class
Constructors

I(Human)Class: HumanClasses

{I(john), I(mary)}{john mary}{}

Δ \ I(Male)not(Male)not

I(Doctor) [I(Lawyer)(Doctor or Lawyer)or

I(Human) Å I(Male)(Human and Male)and

InterpretationExampleConstructor

• •

• •19

Ontology Languages, SSSW'08 37

OWL Class
Constructors

{x|9y.hx,yi2I(hasChild)Æ
 y2I(Lawyer)}

hasChild some Lawyersome

{x|#hx,yi2I(hasChild) · 2}hasChild max 2max

{x|#hx,yi2I(hasChild) ¸ 2}hasChild min 2min

{x|8y.hx,yi2I(hasChild))
 y2I(Doctor)}

hasChild only Doctoronly

InterpretationExampleConstructor

Ontology Languages, SSSW'08 38

OWL Axioms

• Axioms allow us to add further statements about
arbitrary concept expressions and properties
– Subclasses, Disjointness, Equivalence, characteristics of properties

etc.

• An interpretation I satisfies an axiom if the interpretation
of the axiom is true.
– Axioms constrain the allowed models
– They provide the additional “assumptions” about the way in

which the domain should be interpreted.

• I satisfies or is a model of an ontology (or knowledge
base) if the interpretation satisfies all the axioms in the
knowledge base.

• •

• •20

Ontology Languages, SSSW'08 39

OWL Axioms

I(Human) µ I(Animal)Class: Human
 SubClassOf: Animal

SubClassOf

I(Man) = I(Human) Å I(Male)Class: Man
 EquivalentTo: (Human and Male)

EquivalentTo

I(Animal) Å I(Plant) = ;Disjoint: Animal, PlantDisjoint

InterpretationExampleAxiom

Ontology Languages, SSSW'08 40

OWL Individual Axioms

I(Sean) 2 I(Human)Individual: Sean
 Types: Human

Individual

hI(Sean),I(Ian)i2I(worksWith)Individual: Sean
 Facts: worksWith Ian

Individual

I(Sean) ≠ I(Ian)Individual: Sean
 DifferentFrom: Ian

DifferentIndividuals

I(GeorgeWBush) =
I(PresidentBush)

Individual: GeorgeWBush
 SameAs: PresidentBush

SameIndividuals

InterpretationExampleAxiom

• •

• •21

Ontology Languages, SSSW'08 41

OWL Property Axioms

8x,y,z. (hx,yi2I(hasPart) Æ
hy,zi2I(hasPart))) hx,zi2I(hasPart)

ObjectProperty: hasPart
 Characteristics: Transitive

Transitive

8x.hx,yi2I(employs))
 y2I(Person)

ObjectProperty: employs
 Range: Person

Range

I(hasMother) µ I(hasParent)ObjectProperty: hasMother
 SubpropertyOf: hasParent

SubPropertyOf

8x.hx,yi2I(owns))
 x2I(Person)

ObjectProperty: owns
 Domain: Person

Domain

InterpretationExampleAxiom

Ontology Languages, SSSW'08 42

Consequences

• An ontology (collection of axioms) places constraints on
the models that are allowed.

• Consequences may be derived as a result of those
constraints.

• C subsumes D w.r.t. an ontology O iff for every model I of
O, I(D) µ I(C)

• C is equivalent to D w.r.t. an ontology O iff for every model
I of O, I(C) = I(D)

• C is satisfiable w.r.t. O iff there exists some model I of O
s.t. I(C) ≠ ;

• An ontology O is consistent iff there exists some model I
of O.

• •

• •22

Ontology Languages, SSSW'08 43

Reasoning

• A reasoner makes use of the information asserted in the
ontology.

• Based on the semantics described, a reasoner can help us
to discover inferences that are a consequence of the
knowledge that we’ve presented that we weren’t aware of
beforehand.

• Is this new knowledge?
– What’s actually in the ontology?

Ontology Languages, SSSW'08 44

Reasoning

• Subsumption reasoning
– Allows us to infer when one class is a subclass of another
– B is a subclass of A if it is necessarily the case that (in all models),

all instances of B must be instances of A.
– This can be either due to an explicit assertion, or through some

inference process based on an intensional definition.
– Can then build concept hierarchies representing the taxonomy.
– This is classification of classes.

• Satisfiability reasoning
– Tells us when a concept is unsatisfiable

• i.e. when there is no model in which the interpretation of the class is
non-empty.

– Allows us to check whether our model is consistent.

• •

• •23

Ontology Languages, SSSW'08 45

Instance Reasoning

• Instance Retrieval
• What are the instances of a particular class C?
• Need not be a named class

• Instantiation
• What are the classes that x is an instance of?

Ontology Languages, SSSW'08 46

Why Reasoning?

• Reasoning can be used as a design support tool
– Check logical consistency of classes
– Compute implicit class hierarchy

• May be less important in small local ontologies
– Can still be useful tool for design and maintenance
– Much more important with larger ontologies/multiple authors

• Valuable tool for integrating and sharing ontologies
– Use definitions/axioms to establish inter-ontology relationships
– Check for consistency and (unexpected) implied relationships
– Already shown to be useful technique for DB schema integration

• •

• •24

Ontology Languages, SSSW'08 47

Example

• A pet_owner is a person that has some pet that is an
animal

• This is a equivalent class, thus any person who has a pet
that is an animal will be a pet_owner.

• If we know someone is a pet_owner, then we know that
there must be some animal that is their pet: we may not
know the name of this particular animal though.

Class: pet_owner
EquivalentTo:
 person
 and has_pet some animal

Ontology Languages, SSSW'08 48

Example

• A giraffe is an animal that only eats leaves.

• This is a partial definition, thus every giraffe must have
these characteristics, however there may be animals that
eat only leaves that are not giraffes.

Class: giraffe
SubClassOf:
 animal,
 eats only leaf

• •

• •25

Ontology Languages, SSSW'08 49

If it looks like a
duck and walks
like a duck, then
it’s a duck!

Necessary and Sufficient
Conditions

• Classes can be described in terms of necessary and
sufficient conditions.
– This differs from some frame-based languages where we only have

necessary conditions.

• Necessary conditions
– Must hold if an object is to be an instance of the

class

• Sufficient conditions
– Those properties an object must have

in order to be recognised as a member
of the class.

– Allows us to perform automated classification.

Ontology Languages, SSSW'08 50

Example

• An animal_lover is a person that has at least 3 pets.

• All of these pets must be distinct individuals.

• Any person with 5 pets will be inferred to be an instance
of this class.

Class: animal_lover
EquivalentTo:
 person
 and has_pet min 3

• •

• •26

Ontology Languages, SSSW'08 51

Example

• A newspaper is either a broadsheet or a tabloid.

• By default there is no mutual exclusion.

• If we know something is a newspaper we can infer that it
must be either a broadsheet or a tabloid, but we may not
know for sure which one it actually is (cf Open World).

Class: newspaper
SubClassOf:
 publication
 broadsheet or tabloid

Class: broadsheet
SubClassOf: newspaper
DisjointWith tabloid

Class: tabloid
SubClassOf: newspaper

Ontology Languages, SSSW'08 52

Example

• Mick is an individual and an instance of the class male.

• He is related to individuals Daily_Mirror and Q123_ABC
via the properties reads and drives.

Individual: Mick
Types: male
Facts:
 reads Daily_Mirror
 drives Q123_ABC

DifferentFrom:
 Dewey, Fido, …, Walt

• •

• •27

Ontology Languages, SSSW'08 53

Common Misconceptions

• Disjointness of primitives

• Interpreting domain and range

• And and Or

• Quantification
• Closed and Open Worlds

Ontology Languages, SSSW'08 54

Disjointness

• By default, primitive classes are not disjoint.

• Unless we explicitly say so, the description (Animal and
Vegetable) is not inconsistent.

• Similarly with individuals -- the so-called Unique Name
Assumption (often present in DL languages) does not
hold, and individuals are not considered to be distinct
unless explicitly asserted to be so.

• •

• •28

Ontology Languages, SSSW'08 55

Domain and Range

• OWL allows us to specify the domain and range of
properties.

• Note that this is not interpreted as a constraint.
• Rather, the domain and range assertions allow us to make

inferences about individuals.
• Consider the following:

• ObjectProperty: employs
 Domain: Company
 Range: Person
Individual: IBM
 Facts: employs Jim

• If we haven’t said anything else about IBM or Jim, this is
not an error. However, we can now infer that IBM is a
Company and Jim is a Person.

Ontology Languages, SSSW'08 56

And/Or and
Quantification

• The logical connectives And and Or often cause confusion
– Tea or Coffee?
– Milk and Sugar?

• Quantification can also be contrary to our intuition.
– Universal quantification over an empty set is true.
– Sean is a member of hasChild only Martian
– Existential quantification may imply the existence of an individual

that we don’t know the name of.

• •

• •29

Ontology Languages, SSSW'08 57

Closed and Open
Worlds

• The standard semantics of OWL makes an Open World
Assumption (OWA).
– We cannot assume that all information is known about all the

individuals in a domain.
– Facilitates reasoning about the intensional definitions of classes.
– Sometimes strange side effects

• Closed World Assumption (CWA)
– Named individuals are the only individuals in the domain

• Negation as failure.
– If we can’t deduce that x is an A, then we know it must be

a (not A).
– Facilitate reasoning about a particular state of affairs.

Ontology Languages, SSSW'08 58

OWL isn’t everything

• OWL is not intended to be the answer to all our
problems.

• For some applications, less formal vocabularies may be
more appropriate

• For some applications, more expressiveness may be
needed.

• •

• •30

Ontology Languages, SSSW'08 59

Lightweight Vocabularies

• For many applications, lightweight representations are
more appropriate.

• Thesauri, classification schemes, taxonomies and other
controlled vocabularies
– Many of these already exist and are in use in cultural heritage,

library sciences, medicine etc.
– Often have some taxonomic structure, but with a less precise

semantics.

Ontology Languages, SSSW'08 60

Concept Schemes

• A concept scheme is a set of concepts, potentially
including statements about relationships between those
concepts
– Broader Terms
– Narrower Terms
– Related Terms
– Synonyms, usage information etc.

• Concept schemes aren’t formal ontologies in the way that
OWL ontologies are formal ontologies.

• •

• •31

Ontology Languages, SSSW'08 61

SKOS: Simple Knowledge
Organisation System

• SKOS aims to provide an RDF vocabulary for the
representation of such schemes.

• W3C Semantic Web Deployment Group currently
working towards a Recommendation for SKOS

• Focus on Retrieval Scenarios
A. Single controlled vocabulary used to index and then retrieve

objects
B. Different controlled vocabularies used to index and retrieve

objects
• Mappings then required between the vocabularies

– Initial use cases/requirements focus on these tasks
• Not worrying about activities like Natural Language translation

Ontology Languages, SSSW'08 62

SKOS Example

• •

• •32

Ontology Languages, SSSW'08 63

SKOS

• Semantic Web Deployment Working Group

http://www.w3.org/2006/07/SWD/

• SKOS Reference:

http://www.w3.org/TR/skos-reference/
• SKOS Primer

http://www.w3.org/TR/skos-primer/

• Last Call Planned 1st July

Ontology Languages, SSSW'08 64

Rules: RIF

• W3C Group Rules Interchange Format WG

http://www.w3.org/2005/rules/

• Identification of Use Cases and Requirements

• Drafts identifying Basic Logic Dialect (BLD)
– Horn rules plus equality
– FOL Semantics

• Extensions defined using Framework for Logic Dialects
(FLD)

• Somewhat slow moving process
– Large and disparate group, e.g. production rules, business rules,

FOL.

• •

• •33

Ontology Languages, SSSW'08 65

OWL 2

• A number of domains require expressivity that is not in
the current OWL specification
– Driven by User Requirements and technical advances
– OWLEd series of workshops

• Much of this functionality can be added in a principled way
that preserves the desirable properties of OWL (DL).

• The proposed extended language is now known as
OWL 2

http://www.w3.org/2007/OWL

Ontology Languages, SSSW'08 66

OWL 2

• Syntactic Sugar
– DisjointUnion
– Negated Property assertions

• Richer Datatypes
• Complex Role Axioms

– Role inclusion

• Metamodelling and Annotations
– Punning

• Tractable Fragments
– Language fragments with desirable computational

complexity

• •

• •34

Ontology Languages, SSSW'08 67

OWL 2: Role Axioms

• Many applications (for example medicine) have
requirements to specify interactions between roles:
– A fracture located in part of the Femur is a fracture of the Femur.

• We cannot express such general patterns in OWL.

• Algorithms have been developed to support sound and
complete reasoning in a DL extended with complex role
inclusions

Ontology Languages, SSSW'08 68

OWL 2: Metamodelling

• OWL DL has strict rules about separation of namespaces.

• A URI cannot be typed as both a class and individual in the
same ontology.

• OWL 2 allows punning, where a URI can be used in
multiple roles.
– However, the use of the URI as an individual has no bearing on

the use of the URI as a class.
– Requires explicit context telling us the role that a URI is playing

• •

• •35

Ontology Languages, SSSW'08 69

OWL 2: Fragments

• EL++
– Medical Ontologies
– SNOMED/GALEN

• DL Lite
– Tailored for handling large numbers of facts
– Efficient Querying

• DLP
– Subset of OWL DL and Horn Logic
– OWL semantics

• Horn-SHIQ
– Similar to DLP

• RDF Schema
– RDFS ontologies that are valid OWL 2

Ontology Languages, SSSW'08 70

OWL 2: Fragments
OWL 2

OWL DL

OWL Lite

EL++ DL Lite DLP Horn SHIQ

RDF Schema

• •

• •36

Ontology Languages, SSSW'08 71

Query and Retrieval

• In standard DLs, reasoning is split into:
– T-Box: reasoning about classes
– A-Box: reasoning about instances

• T-Box reasoning is well understood, at least for languages
like SHIQ (~OWL Lite)
– e.g. subsumption & satisfiability testing

• Full A-Box reasoning is much more challenging
– E.g. instance retrieval & instantiation

Ontology Languages, SSSW'08 72

Query Languages

• SPARQL Query Language for RDF.
– http://www.w3.org/TR/rdf-sparql-query/

• SPARQL Protocol
– http://www.w3.org/TR/rdf-sparql-protocol/

• W3C Recommendations as of 15th January

• •

• •37

Ontology Languages, SSSW'08 73

Tools

• Editors
– Protégé OWL, SWOOP, ICOM, TopQuadrant Composer,

OntoTrack, NeOn…
– Tend to present the user with “frame-like” interfaces, but allow

richer expressions
– Offer the possibility of using reasoners.

• Reasoners
– DL style reasoners based on tableaux algorithms

• Racer, FaCT++, Pellet
– Based on rules or F-logic

• F-OWL, E-Wallet…..

• APIs and Frameworks
– Jena, WonderWeb OWL-API, Protégé OWL API, OWLIM

Ontology Languages, SSSW'08 74

Take Home

• Representation languages are needed to allow us to
describe our annotations and semantic information

• RDF, RDF Schema, OWL, SKOS etc. all provide
mechanisms for this, with greater or lesser degrees of
formality

• Formal Semantics seen as important when unambiguous
interpretations of expressions are required
– Facilitates use of reasoning

• Tools, both research and commercial, now available to
support these languages

• •

• •38

Ontology Languages, SSSW'08 75

Acknowledgements

• “If I have seen further, it is by standing on the shoulders of
giants”

• Many thanks to all the people who I “borrowed” material
from, in particular
– Ian Horrocks, Frank van Harmelen, Alan Rector, Nick

Drummond, Matthew Horridge, Uli Sattler, Bijan Parsia

• and thanks to all those that they borrowed material from!
– Too many to mention…

Ontology Languages, SSSW'08 76

Thank you!

