
The table metaphor: A representation of a class and its 
instances 

Jan Henke 

Digital Enterprise Research Institute (DERI) 
University of Innsbruck, Austria 

jan.henke@deri.org 
 

Abstract 
This paper describes an approach on how to visualize instances and the relation to their 
classes. The approach is motivated and described in the context of ontologies and the Semantic 
Web but is general enough to be utilized for any object model visualization. 

1 Introduction 

For the Semantic Web ontologies are the basic building block. On the one hand they 
allow for a common vocabulary and thus for communication and interoperation. On 
the other hand they can be used for logical reasoning and therefore statements can be 
verified / falsified and knowledge can be inferred. 
 
For ontologies in turn, classes and instances are the building blocks. As in object 
orientation they are used to model abstract definitions on the one hand and concrete 
examples of these on the other hand. How the visual editing of ontologies can be 
gained by a new representation of the class instance relation – called table metaphor – 
will be described in the following. 
 
In section 2 the requirements of a class - instance visualization are listed before sec-
tion 3 checks which of these are fulfilled by current approaches. Section 4 will ad-
dress the table metaphor and section 5 concludes this paper. 

2 Requirements 

A good visualization should provide a correct transformation as well as a high usabil-
ity. Leaving out the first would make it useless; leaving out the second would make it 
unused. Based on this belief some specific requirements shall be described below. 



94      Jan Henke

2.1 Correctness 

Based on a classification by Shneiderman [5] visualization can be divided into the 
seven subtasks “Overview”, “Zooming”, “Filtering”, “Details on demand”, “Rela-
tions”, “History” and “Extraction”. The requirement of correctness to be described 
below is derived from the “Relations” task which is about emphasizing which item 
belongs to which other one. 

Class membership 
An instance cannot be used if its class membership - and thus its definition - isn’t 
clear. The other way around, a class without instances isn’t very useful (except for the 
case of abstract classes) because the definition has never been applied. Therefore it is 
crucial that a visualization unambiguously reveals this relation in both directions. 

Attribute value mapping 
The relation between attributes and their values can be compared to the one between 
classes and instances: While an attribute defines a range (a class) this requirement is 
fulfilled by the respective value (an instance). For this reason also the visualization of 
the attribute-value-relation has to be bidirectional and unambiguous. 

Level matching 
An instance is a concretization of a class. It reduces the abstractness by filling slots 
with values. Nevertheless an instance is neither a sub object of a class nor the other 
way around. Despite the different levels of abstraction they belong onto the same 
level of definition, i.e. an instance is as special as its class – not more special as a 
subclass (see Figure 1). 

 

 
 

Figure 1 Concreteness vs. Specialization 

 
Because of this, a visualization has to make sure that a class and its instances are 
positioned on one and the same level. 

Abstraction 
Instance 
of B 

Instance  
of A 

Specialization 

Class B 
(Subclass of A) 

Class A



The table metaphor: A representation of a class and its instances      95

2.2 Usability 

Usability can be described using the five criterions learnability, efficiency, memora-
bility, errors and subjective pleasure [2]. In the following these requirements shall be 
applied to the special case of visualization. 

Learnability 
Learnability stands for a minimization of the learning phase duration. This is also 
required for a visualization so that it can be utilized as fast as possible. 

Efficiency 
Efficiency describes how much work can be done in a certain amount of time. An 
increased efficiency is a clear indicator for an improved visualization. 

Memorability 
After a longer break between two usage sessions it should not be necessary to restart 
the learning phase. Therefore a visualization should be simple enough to be memo-
rized. 

Errors 
Errors should appear as seldom as possible and if they appear they should be fixable 
as easily as possible. For the visualization case this can be translated to the require-
ment of high clarity. 

Subjective pleasure 
The less formal criterion of subjective pleasure should not be underestimated. The 
user should have a good “feeling” using the visualization in order to improve his / her 
working results. 

3 Current approaches 

In order to show the lack in current instance visualizations and thus to motivate the 
table metaphor two current approaches will be described in the following. 

3.1 Class tree duplication 

One approach in current ontology editors – like for instance Protégé [4] – is to dis-
play instances connected to a copy of the class tree. 
 
Protégé provides different tabs for classes and instances. If the instance tab is selected 
the class tree is displayed again – and once a class is selected, its instances will be 
displayed. Thus the class membership can easily be recognized. 



96      Jan Henke

Also the relation between attributes and their values is revealed unambiguously which 
fulfills the second criterion of the correctness requirement. 
 
The requirement of level matching cannot really be decided. As mentioned above 
when a class is selected its instances are displayed. But it is not really clear whether 
they are still on the same level as the class. 
 
Beyond this, the usability requirement of subjective pleasure can hardly be fulfilled 
by an approach that repeats the class tree in two different views, as it is done in Pro-
tégé. 

3.2 Purely textual visualization 

Another approach – as can be found in Oiled [1] e.g. – is to offer no graphical repre-
sentation of the class instance relation but to display it purely textually.  
 
In Oiled there can be found both a tab for classes and one for instances – comparably 
with Protégé. The difference consists in the fact that there’s no class tree available in 
the instance tab. Instead of this the class membership can only be found in a respec-
tive combo box – thus purely textually. 

 
The visualization of attributes and their values utilizes a table and is nicely usable. 

 
The not very smooth class tree repetition of Protégé is not used – but unfortunately, it 
has not been replaced by any other feature. Because of the missing graphical connec-
tion between classes and their instances the level matching criterion cannot be ap-
plied. 

4 The table metaphor 

As shown above current visualization approaches hardly fulfill the mentioned re-
quirements. Therefore a new idea – called table metaphor – shall be introduced. 
 
The table metaphor represents a class and its instances by a table. More precisely this 
means a class is represented by a table header while each table row stands for an 
instance (see Table 1 – three instances of the class “City” with the attributes “Name” 
and “Inhabitants” are displayed). Thus an ontology – consisting of a schema and a 
knowledge base – can be seen as a tree of tables. 

Table 1 Instance table example 

Name Inhabitants 
Berlin 3 420 000 
Hamburg 1 640 000 
Munich 1 220 000 



The table metaphor: A representation of a class and its instances      97

 

4.1 Correctness 

Using the criterions described in the requirements section the correctness of the table 
metaphor will be shown below. 

Class membership 
The table metaphor allows for an easy recognition of class membership. Whenever a 
certain class is selected the respective table can be displayed. 

Attribute value mapping 
Using the table metaphor a certain attribute value is always displayed underneath the 
respective header cell. Thus it is always clear which attribute a value belongs to and 
which values have been assigned to a certain attribute. 

Level matching 
The header and the body of a table can be clearly distinguished thus the class and the 
instance part are explicitly separated. On the other hand a table body is not a sub 
object of a table header which fulfills the level matching criterion. 

4.2 Usability 

In the following it will be shown that a high usability can be expected of object model 
editors that apply the table metaphor.  

Learnability 
The presented approach is very simple. Tables are applied manifold in everyday life. 
Thus the leaning phase can be expected to be minimal. 

Efficiency 
Because of the dissemination of tables they can be read and understood quickly. Be-
yond this available widgets that allow for column wise sorting e.g. should also im-
prove efficiency by far. 

Memorability 
Because hardly anything has to be learned in order to understand the table metaphor 
the problem of insufficient Memorability cannot appear. 



98      Jan Henke

Errors 
Also the error minimization is guaranteed by the simplicity of the approach. If error 
correction strategies should be necessary nevertheless this has to be solved at imple-
mentation level. 

Subjective pleasure 
This criterion can hardly be predicted. But if the approach is well understood and thus 
increases efficiency also the subjective pleasure should be influenced in a positive 
way. 

5 Conclusions 

In this paper a visualization approach – called table metaphor – was introduced. A 
real world implementation of it can be inspected in the Distributed Ontology Man-
agement Environment (DOME) [2] – to be found at http://www.omwg.org. 

References 

1. Bechhofer, Sean; Horrocks, Ian; Goble, Carole; Stevens, Robert. OilEd: a Reason-able 
Ontology Editor for the Semantic Web. Proceedings of KI2001, Joint German/Austrian 
conference on Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI 
Vol. 2174, pp 396--408. 2001. 

2. Henke, Jan. Architecture Design of an Editing & Browsing tool, 2004 
3. Nielsen, Jakob. Usability Engineering. Morgan Kaufmann - An imprint of Academic 

Press, 1993 
4. Noy, N. F.; Sintek, M.; Decker, S.; Crubezy, M.; Fergerson, R. W.; & Musen, M. A.. 

Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16(2):60-
71, 2001.  

5. Shneiderman, Ben. Designing the User Interface – Strategies for effective Human-
Computer Interaction. Addison-Wesley-Longman, 1998 

 
 


	Untitled

