
IRS-II: A Framework and Infrastructure for Semantic
Web Services

Enrico Motta1, John Domingue1, Liliana Cabral1, and Mauro Gaspari2

1 Knowledge Media Institute, The Open University, Milton Keynes, UK
{E.Motta, J.B.Domingue, L.S.Cabral}@open.ac.uk

2 Dipartimento di Scienze dell'Informazione, University of Bologna, Italy
gaspari@cs.unibo.it

Abstract. In this paper we describe IRS-II (Internet Reasoning Service) a
framework and implemented infrastructure, whose main goal is to support the
publication, location, composition and execution of heterogeneous web serv-
ices, augmented with semantic descriptions of their functionalities. IRS-II has
three main classes of features which distinguish it from other work on semantic
web services. Firstly, it supports one-click publishing of standalone software:
IRS-II automatically creates the appropriate wrappers, given pointers to the
standalone code. Secondly, it explicitly distinguishes between tasks (what to
do) and methods (how to achieve tasks) and as a result supports capability-
driven service invocation; flexible mappings between services and problem
specifications; and dynamic, knowledge-based service selection. Finally, IRS-II
services are web service compatible – standard web services can be trivially
published through the IRS-II and any IRS-II service automatically appears as a
standard web service to other web service infrastructures. In the paper we illus-
trate the main functionalities of IRS-II through a scenario involving a distrib-
uted application in the healthcare domain.

1 Introduction

Web services promise to turn the web of static documents into a vast library of inter-
operable running computer programs and as such have attracted considerable interest,
both from industry and academia. For example, IDC [8] predicts that the Web Serv-
ices market, valued at $416 million in 2002, will be worth $2.9 billion by 2006.

Existing web service technologies are based on a manual approach to their crea-
tion, maintenance and management. At the centre of the conceptual architecture is a
registry which stores descriptions of published web services. Clients query the regis-
try to obtain relevant details and then interact directly with the deployed service. The
descriptions, represented in XML based description languages, such as WSDL [17]
and UDDI [16], mostly focus on the specification of the input and output data types
and the access details. These specifications are obviously not powerful enough to
support automatic discovery, mediation and composition of web services. A software
agent cannot find out what a web service actually does, by reasoning about a WSDL
specification. Analogously the same agent cannot locate the appropriate service in a

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

UDDI registry, given the specification of a target functionality. As a result, existing
web service infrastructures by and large support a manual approach to web service
management: only manual discovery is supported and only ‘static’, manually config-
ured web applications are possible.

The above issues are being addressed by ongoing work in the area of semantic web
services [3, 5, 14]. The basic idea here is that by augmenting web services with rich
formal descriptions of their competence many aspects of their management will be-
come automatic. Specifically, web service location, composition and mediation can
become dynamic, with software agents able to reason about the functionalities pro-
vided by different web services, able to locate the best ones for solving a particular
problem and able to automatically compose the relevant web services to build appli-
cations dynamically. Research in the area is relatively new and although a number of
approaches have been proposed, such as DAML-S [3] and WSMF [5], no comprehen-
sive tool infrastructures exist, which support the specification and use of semantic
web services.

In this paper we describe IRS-II (Internet Reasoning Service) a framework and im-
plemented infrastructure which supports the publication, location, composition and
execution of heterogeneous web services, augmented with semantic descriptions of
their functionalities. IRS-II has three main classes of features which distinguish it
from other work on semantic web services.

Firstly, it supports one-click publishing of ‘standard’ programming code. In other
words, it automatically transforms programming code (currently we support Java and
Lisp environments) into a web service, by automatically creating the appropriate
wrappers. Hence, it is very easy to make existing standalone software available on
the net, as web services.

Secondly, the IRS-II builds on knowledge modeling research on reusable compo-
nents for knowledge-based systems [2, 6, 9, 10], and as a result, its architecture ex-
plicitly separates task specifications (the problems which need to be solved), from the
method specifications (ways to solve problems), from the domain models (where
these problems, which can be generic in nature, need to be solved). As a conse-
quence, IRS-II is able to support capability-driven service invocation (find me a
service that can solve problem X). Moreover, the clean distinction between tasks and
methods enables the specification of flexible mappings between services and problem
specifications, thus allowing a n:m mapping between problems and methods and a
dynamic, knowledge-based service selection.

Finally, IRS-II services are web service compatible – standard web services can be
trivially published through the IRS-II and any IRS-II service automatically appears as
a standard web service to other web service infrastructures.

The paper is organized as follows: in the following section we outline our overall
approach. We then describe the IRS-II framework in detail and illustrate its main
components through a scenario involving a distributed healthcare application. The fi-
nal section of the paper contains our conclusions.

IRS-II: A Framework and Infrastructure for Semantic Web Services

2 The IRS-II Approach

Work on the IRS-II began in the context of the IBROW project [1], whose overall
goal was to support on-the-fly application development through the automatic con-
figuration of reusable knowledge components, available from distributed libraries on
the Internet. These libraries are structured according to the UPML framework [6],
which is shown in figure 1. The UPML framework distinguishes between the fol-
lowing classes of components:

• Domain models. These describe the domain of an application (e.g. vehicles, a
medical disease).

• Task models. These provide a generic description of the task to be solved, specify-
ing the input and output types, the goal to be achieved and applicable precondi-
tions. Tasks can be high-level generic descriptions of complex classes of
applications, such as Classification or Scheduling, as well as more ‘mundane’
problem specifications, such as Exchange Rate Conversion.

• Problem Solving Methods (PSMs). These provide abstract, implementation-
independent descriptions of reasoning processes which can be applied to solve
tasks in specific domains. As in the case of task models, these can be high-level,
generic PSMs such as Heuristic Classification [2] and Propose&Revise [9], or
they can be specialized methods applicable to fine-grained tasks, such as Ex-
change Rate Conversion.

• Bridges. These specify mappings between the different model components within
an application. For example, the refinement process in heuristic classification
may be mapped onto a taxonomic hierarchy of attributes within some domain, in
order to construct a specific application.

Each class of component is specified by means of an appropriate ontology [7].
The main advantage of this framework from an epistemological point of view is

that it clearly separates the various components of knowledge-based applications, thus
providing a theoretical basis for analyzing knowledge-based reasoners and an engi-
neering basis for structuring libraries of reusable components, performing knowledge
acquisition, and carrying out application development by reuse [10].

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

Fig. 1. The UPML framework.

The application of the UPML framework to semantic web services also provides a
number of advantages and in our view our framework compares favorably with ap-
proaches such as DAML-S, where services are arranged in hierarchies and no explicit
notion of task is provided – tasks are defined as service-seeking agents. In DAML-S
tasks are always application specific, no provision for task registries is envisaged. In
contrast in our approach, tasks provide the basic mechanism for aggregating services
and it is possible to specify service types (i.e., tasks), independently of specific serv-
ice providers. In principle this is also possible in DAML-S. Here a task would be de-
fined as a service class, say S, and its profile will give the task definition. However,
this solution implies that all instances of S will inherit the task profile. This approach
is not very flexible, given that it makes it impossible to distinguish (and to reason
about) the differences between the profile of a task (service class) and the profile of a
method (specific service provider) – attributes are inherited down is-a hierarchies. In
particular, in some cases, a method may only solve a weaker form of a task, and it is
therefore important for a brokering agent to be able to reason about the task-method
competence matching, to decide whether it is OK to use the weaker method in the
given scenario. For instance, in a currency conversion scenario, a task specification
may define currency conversion rates in terms of the official FT quotes, but different
service providers may adopt other conversion rates. By explicitly distinguishing be-
tween tasks and methods we provide a basic framework for representing these differ-
ences and for enabling matchmaking agents [15] to reason about them.

The separation between tasks and methods also provides a basic model for dealing
with ontology mismatches. While in DAML-S subscribing to a Service Class implies
a strong ontological commitment (i.e., it means to define the new service as an in-
stance of the class), the UPML framework assumes that the mapping between meth-
ods and tasks may be mediated by bridges. In practice this means that if task T is
specified in ontology A and a method M is specified in ontology B, which can be used
to solve T, it is still possible to use M to solve T, provided the appropriate bridge is
defined.

Finally, another advantage of our approach is that the task-method distinction also
enables capability-driven service invocation. While this is also possible in principle
in approaches such as DAML-S, as discussed above, our approach provides both an

IRS-II: A Framework and Infrastructure for Semantic Web Services

explicit separation between service types and service providers and more flexibility in
the association between methods and tasks.

3 IRS-II Architecture

The overall architecture of the IRS-II is shown in figure 2. The main components are
the IRS Server, the IRS Publisher and the IRS Client, which communicate through a
SOAP-based protocol [13].

3.1 IRS Server

The IRS server holds descriptions of semantic web services at two different levels. A
knowledge level description is stored using the UPML framework of tasks, PSMs and
domain models. These are currently represented internally in OCML [10], an Onto-
lingua-derived language which provides both the expressive power to express task
specifications and service competencies, as well as the operational support to reason
about these. Once rule and constraint languages are developed for OWL [12], we will
provide the appropriate import/export mechanisms. In addition we have also special-
purpose mapping mechanisms to connect competence specifications to specific web
services. These correspond to the notion of grounding in DAML-S.

Fig. 2. The IRS-II architecture

3.2 Task Descriptions

An example task description, exchange_rate_provision, is shown in figure 3. As
can be seen in the figure the task has two input roles, a source_currency and a
target_currency, and one output role, the exchange_rate. The supporting defi-
nitions, such as currency and positive_number, are defined in the task ontology
associated with this task, or in ontologies included by it.

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

(def-class exchange_rate_provision (goal-specification-task)
 ?task
 ((has-input-role :value has_source_currency
 :value has_target_currency)
 (has-output-role :value has_exchange_rate)
 (has_source_currency :type currency :cardinality 1)
 (has_target_currency :type currency :cardinality 1)
 (has_exchange_rate :type positive_number)
 (has-goal-expression
 :value (kappa (?psm ?sol)
 (= ?sol (the_official_exchange_rate
 (role-value ?psm has_source_currency)
 (role-value
 ?psm has_target_currency)))))))

Fig. 3. Definition of the exchange_rate_provision task.

Web service mediation and composition are supported by task preconditions and
goal expressions. No precondition is specified for this task, although the specifica-
tions of the input roles implicitly state that one (and no more than one) source and
target currency have to be specified. The goal expression states that the output for the
task must be compliant with the “official exchange rate”, as specified in the relevant
ontology.

 (def-irs-soap-bindings
 exchange_rate_provision_ontology ;;ontology name
 exchange_rate_provision ;;task name
 ((has-source-currency "xsd:symbol") ;;source currency
 (has-target-currency "xsd:symbol")) ;;target currency
 "xsd:float") ;;output

Fig. 4. The soap-bindings for the exchange_rate_provision task.

The integration of semantic specifications and web service descriptions is achieved
at the task level by means of SOAP bindings. A SOAP binding maps the input and
output roles onto SOAP types - the soap binding for the ex-
change_rate_provision task is shown in figure 4. The binding specifies that the
input roles, source_currency and target_currency, are mapped to the SOAP
type xsd:symbol and the output role is mapped to the SOAP type xsd:float. The
relation between SOAP types and ontological input and output types is analogous to
the distinction between knowledge and symbol level in knowledge-based systems
[11]. The ontology specifies what knowledge is required and produced; the SOAP
types specify the way this knowledge is effectively encoded in the symbol-level
communication mechanism. Hence, any web service which solves a particular task
must comply with both knowledge and symbol level requirements, or alternatively,
bridges need to be defined to ensure interoperability.

IRS-II: A Framework and Infrastructure for Semantic Web Services

3.3 Problem Solving Methods

The IRS server holds both the method descriptions (PSMs) and a registry of web
services, which implement them. An example PSM, which tackles the ex-
change_rate_provision task, is shown in figure 5. We can see that the type of the
input roles has been constrained from currency to european_currency. Also pre
and post conditions have been introduced.

The precondition states that the bank must have available stock of the target cur-
rency, whilst the post-condition states that the rate provided is the one supplied by the
European Central Bank (ECB). Hence, this particular service may or may not ‘solve’
the exchange provision task, depending on whether the exchange rate provided by
ECB is the same as the one required by the task, or whether the matchmaking agent is
happy to consider them as ‘close enough’. The explicit distinction between tasks and
PSMs makes it possible to precisely specify, by means of ontologies, both the prob-
lems to be addressed and the different ways to address them and provides a basis to
matchmaking agents to reason about the method-to-to-task mapping and to mediation
services to try and ‘bridge the gap’ between service requirements and service provid-
ers.

In a similar fashion to tasks, web service discovery is supported by the pre and post
conditions. For instance, the conditions formulated in the
MM_Bank_exchange_rate_provider PSM can be used to answer agent queries
such as “which exchange rate services focus on European currencies” and “which ex-
change rate services are able to change 250K pounds into euros?”.

 (def-class MM_Bank_exchange_rate_provider (primitive-method)
 ?psm
 ((has-input-role
 :value has-source-currency
 :value has-target-currency)
 (has-output-role
 :value has-exchange-rate)
 (has-source-currency :type european_currency :cardinality 1)
 (has-target-currency :type european_currency :cardinality 1)
 (has-exchange-rate :type positive_number)
 (has-precondition
 :value (kappa (?psm) (stock-available
 (role-value ?psm has-target-currency))
 (has-postcondition
 :value (kappa (?psm ?sol)
 (= ?sol (the-European-Central-Bank-exchange-rate
 (role-value ?psm has-source-currency)
 (role-value ?psm has-target-currency)))))))

Fig. 5. A PSM which addresses the exchange_rate_provision task.

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

3.4 IRS Publisher

The IRS Publisher plays two roles in the IRS-II framework. Firstly, it links web serv-
ices to their semantic descriptions within the IRS server. Note that it is possible to
have multiple services described by the same semantic specifications (i.e., multiple
implementation of the same functionality), as well as multiple semantic specifications
of the same service. For instance, the same exchange rate converter can be described
using two different ontologies for the financial sector.
Secondly, it automatically generates a set of wrappers which turn standalone Lisp or
Java code into a web service described by a PSM. Standalone code which is published
on the IRS appears as a standard java web service. That is, a web service endpoint is
automatically generated.

Fig. 6. The IRS-II form based interface for publishing a web service.

Web services can be published using either the IRS Java API or the Publisher form
based interface. Figure 6 shows an IRS-II user publishing a web service which im-
plements the MM_Bank_exchange_rate_provider. As it can be seen from the fig-
ure, publishing a standard web service through the IRS is very easy. All the web
service developer has to do to is:
1. Specify the location of the IRS server via a host and port number.
2. Indicate the PSM implemented by the service by providing its name and ontology.

The menu of available PSMs is generated automatically once the location of the
IRS server has been specified.

3. Specify the endpoint for the web service. If the ‘service’ in question is a piece of
java code, specified as <java class, java method>, then the appropriate wrapper and
an end-point are automatically generated by the IRS publisher

IRS-II: A Framework and Infrastructure for Semantic Web Services

Once the ‘Publish Web Service’ button has been pressed, a SOAP message en-
coding the information in the form is sent to the IRS server where an association be-
tween the PSM and the web service endpoint is stored in the registry of implementers.
A Java API, which replicates the functionality of the form, also exists.

As we mentioned earlier the IRS Publisher also allows standalone Java and Lisp
code to be turned into a web service and associated with a PSM through a simple API.
For Lisp a macro irs-method-registration is used - an example for the
MM_Bank_exchange_rate_provider PSM is given in figure 7. When the form in
figure 7 is executed, a set of wrappers are generated which make the function mm-
exchange-rate available as a web service. Executing a second IRS form (pub-
lish-all-services) sends the description and location of all the newly created
web services to the IRS server. The IRS Server automatically generates an endpoint,
which enables the Lisp function to be accessed as a standard web service.

(irs-method-registration
 MM_Bank_exchange_rate_provider_ontology ;; the ontology
 MM_Bank_exchange_rate_provider ;; the PSM
 mm-exchange-rate) ;; the Lisp function

Fig. 7. Registering the lisp function mm-exchange-rate as an implementation of the
MM_Bank_exchange_rate_provider PSM.

A similar API is provided for Java. Figure 8 below shows how a Java method im-
plementing the MM_Bank_exchange_rate_provider PSM could be published
through the IRS publisher.

IRSPublisher irsPublisher =
 new IRSPublisher
 ("http://137.108.24.248:3000/soap"); //IRS server URL

irsPublisher.PublishPSM(
 "MM_Bank_exchange_rate_provider”, //PSM Name
 "MM_Bank_exchange_rate_provider_ontology", //PSM Ontology
 "MM_Bank", //Class name
 "exchangeRate”); //method name

Fig. 8. The exchangeRate method of the Java class MM_bank published as an implementation
of the MM_Bank_exchange_rate_provider PSM through the IRS Publisher.

3.5 IRS Client

A key feature of IRS-II is that web service invocation is capability driven. The IRS
Client supports this by providing an interface and a set of APIs which are task centric.
An IRS-II user simply asks for a task to be achieved and the IRS-II broker locates an
appropriate PSM and then invokes the corresponding web service - see section 4 for

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

an example. The same functionality can also be invoked programmatically, through
appropriate APIs associated with the current client platforms, currently Lisp and Java.

4 The Patient Shipping Healthcare Scenario

To illustrate how the IRS can be used to develop applications in terms of a number of
co-operating, distributed semantic web services, we will describe a scenario taken
from the health-care domain. This scenario covers a UK health care policy which was
introduced in 2002. The policy was to reduce waiting lists for the treatment of some
non-urgent medical problems by giving patients who were expected to wait more than
6 months for an operation the option to be treated in mainland Europe. Figure 9
graphically illustrates how we have implemented the scenario, which we dub “patient
shipping”, within the IRS-II. To limit the scope of the application we focused on the
medical condition of arthritis which can sometimes require surgery.

Fig. 9. A graphical overview of the patient shipping scenario

As can be seen in figure 9 five main types of web services are supported. Starting
from the top left of the figure and proceeding clockwise these are:
• A diagnostic and recommender service able to diagnose a condition, for example a

type of arthritis, from a set of symptoms, and to recommend a therapy such as a
particular kind of surgery.

• A yellow pages service able to indicate which hospitals around Europe perform
specific medical services.

IRS-II: A Framework and Infrastructure for Semantic Web Services

• Services associated with individual hospitals able to answer queries about the
availability and cost of the specific medical treatments they offer.

• Ambulance services able to provide prices for shipping patients from one hospital
to another across international boundaries.

• An exchange rate service for converting prices into local currencies.
Task and PSM descriptions were created for the above services within the IRS

server, using our knowledge modelling tool, WebOnto [4]. The services were then
implemented in a mixture of Java Web Services (exchange rate, ambulance services
and a number of the hospitals) and Lisp (all the remaining), and published using the
IRS Publisher. Finally, a patient shipping web service which integrates the above
services was implemented and published.

Fig. 10. A visualization of the patient shipping web service in mid execution.

The patient shipping task has five input roles. The first four are the symptoms
which the patient displays and the fifth is the location of the patient.

Figure 10 shows a visualization of the distributed application during the execution.
The visualization is composed of two columns showing the IRS server and eleven
published services. Each published web service is displayed in a panel containing a)
the name of the PSM, b) an iconic representation of the status of the web service, and
c) a log of the messages the web service sends and receives. The meanings of the
icons are:

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

 - the web service is currently idle.

 - the web service is currently processing.

 - the web service is sending a message.

We can see in figure 10 that a number of services have been called with the fol-
lowing results:

• The patient has been diagnosed with severe osteoarthritis by the Arthritis-
Diagnosis-Service.

• The Arthritis-Therapy-Service recommends that the patient is treated by
means of Arthroplasty, a synonym for hip-replacement.

• The Medical_Service_Locator service has found three hospitals which offer
hip-replacement as a medical service, specifically Another-Hippy-Hospital,
The-Hippy-Hospital, and the Hip-Hip-Hospital.

• The Hip-Hip-Hospital can treat the patient first (on the 20th of June, 2003).
• The Air_Ambulance_Service can move the patient from Milton Keynes to

Paris, the location of the Hip-Hip-Hospital, for 3000 Euros.

We can also see from figure 10 that three web services are currently running: the
Shipping-Patient-Service; the Generic_Currency_Converter and the Ex-
change-Rate-Provider. The IRS server has just sent a message to the Exchange-
Rate-Provider requesting an exchange rate between the Euro source currency and
the Pound target currency. Three more steps will occur before the application termi-
nates. First, the Exchange-Rate-Provider will send an exchange rate to the Ge-
neric_Currency_Converter. Second, the Generic_Currency_Converter will
convert the 3000 Euros to 1920 pounds. Finally, the Shipping-Patient-Service
will send the result back to the client interface (shown in figure 10).

This application illustrates some of the advantages of semantic web services in
general and our approach in particular. Service discovery is carried out using semantic
descriptions. For instance, once a need for hip replacement has been ascertained, the
appropriate hospitals are identified, which can provide hip replacement, using a di-
rectory of hospitals and interrogating each hospital agent in turn. Thanks to the avail-
ability of semantic descriptions, it is not necessary to invoke hospital web services
directly. Instead, a semantic query for hospitals providing hip replacement services is
sent to the IRS and the IRS broker is then able to match this query against the seman-
tic descriptions of the various hospital service providers. The other important aspect is
the use of capability-driven service invocation. For instance, once a hospital has been
identified, which can treat the patient in Paris, the application client simply sends an
“achieve-task” message to the IRS server, asking the latter to find the cheapest pro-
vider of ambulance services between Milton Keynes and Paris.

IRS-II: A Framework and Infrastructure for Semantic Web Services

5 Related Work

The framework used by the IRS-II has much in common with the Web Service Mod-
elling Framework (WSMF) [5], as both the IRS-II and WSMF build on research in
knowledge modelling and in particular on the UPML framework. As a result both
approaches emphasize the importance of separating goal and service descriptions to
ensure flexibility and scalability. The main difference between IRS-II and WSMF is
that while the latter is exclusively a framework, the IRS-II is also an implemented in-
frastructure, providing publishing support, client APIs, brokering and registry mecha-
nisms.

The IRS-II also differs from the DAML-S work in a number of ways, as already
discussed in section 2. In particular, DAML-S does not include flexible tasks-to-
methods mappings and relies instead on hierarchies of services, thus limiting the pos-
sibilities for flexible, n:m mediation between problems and services. Indeed no serv-
ice-independent notion of problem type is present in DAML-S. Another difference is
that IRS-II represents descriptions in OCML, while DAML-S uses DAML+OIL. This
is likely to be a temporary difference, given that both approaches plan to move to
OWL-based representations in the near future.

Regarding W3C Web Services standards, there are differences in the approach we
take towards application development and in the roles of architecture components.
For example, unlike UDDI registries, when a service description is published to IRS,
the code for service invocation is automatically generated and later used during task
achievement.

6 Conclusions

In this paper we have described IRS-II, a framework and an infrastructure which sup-
ports the publication, discovery, composition and use of semantic web services. IRS-
II provides one-click publishing support for different software platforms, to facilitate
publishing and semantic annotation of web services. Like WSMF, IRS-II capitalizes
on knowledge modelling research and is based on a flexible framework separating
service from problem specifications.

Future work on IRS-II will improve error handling, which at the moment is very
basic. We also want to facilitate automatic mediation, in order to exploit the separa-
tion of tasks and methods more fully. Another important goal is to move away from a
built-in matchmaking facility and generalize this to a matchmaking infrastructure, es-
sentially providing hooks for different matchmaking approaches to be integrated. Fi-
nally, we plan to OWL-ify the infrastructure, to ensure its compliance with emerging
semantic web standards.

Enrico Motta, John Domingue, Liliana Cabral and Mauro Gaspari

Acknowledgements

This work has been partially supported by the Advanced Knowledge Technologies
(AKT) Interdisciplinary Research Collaboration (IRC), which is sponsored by the UK
Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University.

References

1. Benjamins, V. R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Schreiber, G.,
Zdrahal, Z., and Decker, S. An intelligent brokering service for knowledge-component re-
use on the World-Wide Web. In Gaines, B. and Musen, M. (Editors), 11th Workshop on
Knowledge Acquisition, Modeling and Management, Banff, Canada, 1998.
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/benjamins3/

2. Clancey W. J. (1985). Heuristic Classification. Artificial Intelligence, 27, pp. 289-350.
3. DAML-S 0.7 Draft Release (2002). DAML Services Coalition.. Available online at

http://www.daml.org/services/daml-s/0.7/.
4. Domingue, J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontolo-

gies on the Web. 11th Knowledge Acquisition for Knowledge-Based Systems Workshop,
April 18th-23rd. Banff, Canada.

5. Fensel, D., Bussler, C. (2002). The Web Service Modeling Framework WSMF. Available
at http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis2002.pdf

6. Fensel, D. and Motta, E. (2001). Structured Development of Problem Solving Methods.
IEEE Transactions on Knowledge and Data Engineering, 13(6), pp. 913-932.

7. Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2).

8. IDC (2003) IDC direction 2003 Conference, Boston, March 2003
9. Marcus, S. and McDermott, J. (1989). SALT: A Knowledge Acquisition Language for

Propose and Revise Systems. Journal of Artificial Intelligence, 39(1), pp. 1-37.
10. Motta E. (1999). Reusable Components for Knowledge Modelling. IOS Press, Amsterdam,

The Netherlands.
11. Newell A. (1982). The knowledge level. Artificial Intelligence, 18(1), pp. 87-127.
12. Semantic Web. W3C Activity. Available online at http://www.w3.org/2001/sw/
13. Simple Object Access Protocol (SOAP) (2000). W3C Note 08. Available online at

http://www.w3.org/TR/SOAP/.
14. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services. IEEE Intelligent Systems,

Mar/Apr. 2001, pp.46-53.
15. Sycara, K., Lu, J., Klusch, M. and Widoff, S. Matchmaking among Heterogeneous Agents

on the Internet. Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents in
Cyberspace, Stanford University, USA, 22-24 March 1999.

16. UDDI Specification. Available online at http://www.uddi.org/specification.html
17. Web Services Description Language (WSDL) (2001). W3C Note 15. Available online at

http://www.w3.org/TR/wsdl

http://ksi.cpsc.ucalgary.ca/KAW/KAW98/benjamins3/
http://www.daml.org/services/daml-s/0.7/
http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis2002.pdf
http://www.w3.org/2001/sw/
http://www.uddi.org/specification.html
http://www.w3.org/TR/wsdl

