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Abstract

Retrieval of images from large image archives based solely on their visual similarity to a query image

provides an exciting alternative to conventional text-based search. For content-based retrieval images

are represented in terms of visual features. The question of how to combine these for similarity

computation is typically addressed by eliciting relevance feedback from the user on the retrieved

images. We argue in this thesis that the prevailing approach to relevance feedback suffers from three

significant shortcomings: firstly, it leaves unsolved the question of how to combine features for the first

retrieval; secondly, the advantage of automated content-extraction over manual annotation is greatest

for large collections but if the query image is not constrained to come from the indexed collection,

content-based retrieval entails imagewise comparisons leading to prohibitive response times; thirdly,

users may only have vaguely defined information needs or may change their needs in the course of

the interaction. The large majority of relevance feedback techniques are ill-suited for such undirected

exploration. We propose a new framework of user interaction that addresses these limitations. It

is centred on what we call the NNk idea. The NNk of an image are all those images that are most

similar to it under some combination of features. They can be viewed as representatives of the possible

semantic facets an image may exhibit to different users. The NNk idea is first applied to the problem

of automated retrieval where it suggests a two-step method of relevance feedback that is shown to

outperform existing techniques. In the continuation of the thesis we broaden the view and introduce

NNk Networks as static structures for browsing image collections. NNk Networks are directed graphs

in which every image is connected to all its NNk. NNk Networks obviate the need to articulate an

information need pictorially. Moreover, by being entirely precomputed we achieve interaction times

that are independent of the collection size. We investigate topological properties of the networks

and analyse how well they capture the semantic structure of a collection. These formal analyses are

complemented by a large-scale quantitative evaluation on 32,000 images and a set of realistic search

tasks. Both approaches suggest that NNk Networks provide a very effective alternative to automated

retrieval both for directed searching and undirected browsing.
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Chapter 1

Introduction

“Hence also it has been found that a classification founded on any single character, however

important that may be, has always failed.”

Charles Darwin, The origin of species (1859)

1.1 Similarity

Similarity in appearance is often revealing about other, and potentially much deeper functional and

causal commonalities between objects, events and situations. Things that are similar in some respect

may owe their existence to similar causes and are likely to behave in a similar way. Prediction,

problem-solving, and classification are cognitive skills that rely in great parts on the existence of

regularities that are revealed to us through similarity. Intelligent interaction with the world is difficult

to imagine without this peculiar sense of sameness.

The ability to infer from known similarities between two things to the existence of further similarities

has often been used as the definition of analogical reasoning (Helman, 1988). Its power can be seen

by noting that it was instrumental in the formulation of what are arguably the two most profound

revolutions in the history of science: Darwin’s theory of origin of species by common descent (Darwin,

1859) and Einstein’s theory of general relativity. The former owes much to the intuition that similarity

betrays common causes and that “propinquity of descent — the only known cause of the similarity

of organic beings — is the bond, hidden as it is by various degrees of modification, which is partially

revealed to us by our classification.” (p. 399). Einstein took his first steps towards a generalisation of

the special theory of relativity by noticing that the effect of gravity is very similar to that of uniform

acceleration and, according to his equivalence principle, physically indistinguishable.

The pivotal role of similarity for human thinking has long been recognised in cognitive psychology

and philosophy, and correspondingly intense have been the efforts to provide formal theories of it.

Geometric models are among the most influential (Torgerson, 1958). They assume that the similarity

relationships between objects can be represented geometrically in a psychological space in which di-

mensions correspond to salient properties such as brightness or saturation of colour. Multi-dimensional

scaling (MDS) has been developed for the particular purpose of reconstructing this space (Shepard,

1962a,b; Torgerson, 1965). Given pair-wise distances between objects such as could be obtained from
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users’ similarity judgments, MDS establishes the positions of objects in an N -dimensional space such

that the distances between them accurately reflect the empirically observed similarities.

Geometric models assume that the similarity between objects can be represented by the metric distance

between their high-dimensional representations. Tversky (1977) observed that the conditions of a

metric are not generally satisfied by empirically obtained similarity judgments. For example, the

triangle inequality is violated if an object is similar to objects A and B by virtue of sharing one property

with A and another with B without A and B having any properties in common. In his contrast model,

similarities are instead characterised in terms of the number of features shared between objects and

those that are distinct. Features may be either present or absent, and similarity is the result of a

feature-matching process.

Both types of models offer alternative explanations of how similarity is computed once objects have

been cast into the appropriate representation. Both acknowledge that similarity is a compound mea-

sure that integrates over multiple attributes. Neither of them, however, addresses what is arguably

a more fundamental problem: Not all features are equally useful for arriving at a similarity judg-

ment. Objects may seem similar merely by virtue of sharing accidentals. In the context of analogical

reasoning some features may be important for some inferences and not for others. “Both today and

yesterday occurred in this week, yet we do not infer the further similarity that today like yesterday,

is a Friday.” (Russell, 1988, p. 2). The question thus arises how we arrive at the psychological space

in the case of geometric models or at the set of relevant features in Tversky’s contrast model. How do

we discriminate between dimensions or features that matter and those that don’t? Similarity-based

reasoning rests crucially on our ability to distinguish essentials from accidentals. The conceptual

simplicity of similarity conceals a conundrum full of operational difficulties.

1.2 Similarity-based image retrieval

Similarity-based reasoning requires efficient modes of retrieval. It is perhaps only in experimental

settings that subjects have direct sensory access to the patterns which they are asked to compare.

In most situations an observed pattern is evaluated by comparing it with patterns stored in memory.

The efficiency with which we can classify and thus recognise objects suggests that the retrieval process

is itself based on similarity. According to Steven Wolfram the use of memory “underlies almost

every major aspect of human thinking. Capabilities such as generalization, analogy and intuition

immediately seem very closely related to the ability to retrieve data from memory on the basis of

similarity.” He extends the ambit of similarity-based retrieval to the domain of logical reasoning which

ultimately involves little more than “retrieving patterns of logical argument that we have learned from

experience” (Wolfram, 2004, p. 627).

That early logic-based approaches to artificial intelligence proved not quite as successful as originally

hoped has partly to do with their limited scope for modelling similarity. We may conjecture, more

specifically, that similarity-based information retrieval is an essential prerequisites for human-like

intelligence. As argued in the previous section one of the principal challenges of information retrieval

lies in the choice of attributes that are relevant to a particular retrieval problem. This is a problem

pertaining to information retrieval in general but it is greatly compounded in the case of image retrieval

in two significant ways. First, documents readily suggest a representation in terms of its constituent

words. This might not be the best representation but it is a principled start and one to which
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Tversky’s contrast model can readily be applied. Images do not suggest such a natural decomposition

into semantic atoms. There is a certain arbitrariness about image representations. Secondly, images

typically admit to a multitude of different meanings. Each one of an image’s semantic facets may

have its own set of supporting features so that the right set of features depends not only on the object

itself but also on the user. Image dependency provides a potential application of statistical machine

learning techniques but it is increasingly recognised that in order to reach beyond the level of expert

systems that rely on domain-specific knowledge bases, computers require general world knowledge,

perhaps even an ontogeny as suggested by proponents of embodied AI. With these requirements still

out of reach, it is becoming clear that the most promising short-term approach is to seek a synergy

between users and computers by bringing together the strengths of computers with those of users.

Users can provide essential context and meaning. “We thus witness the emergence of a new computer

philosophy. No longer is it the goal to endow machines with as many human qualities as possible and

to render them intelligent. Intelligence does not arise in the machine but only through the co-operation

and interaction of a user with a machine.”(Mainzer, 2004, p. 164).

While interaction provides a potential means to resolve the problem of image dependency, it is strictly

indispensable for disambiguating between different user-specific meanings of an image. While in the

early years of image retrieval interaction was merely seen as a necessary part of the task not as an

opportunity, this view has changed. Nowadays, it forms an integral part of most image retrieval

systems. The rapid growth of image retrieval over the past decade may suggest that a considerable

methodological diversification has by now taken place. Yet it seems that image retrieval reveals the

same pattern of evolution as many a new discipline: the initial phase is characterised by a co-existence

of the most varied approaches, by experimentation and the often ad hoc application of techniques

from neighbouring disciplines. Out of this fruitful chaos gradually emerges a research programme as

the community develops a clear understanding of the field’s challenges and objectives. Most, albeit

certainly not all, of current research in content-based image retrieval is concerned with iteratively

adjusting feature weights or improving the representation of the query. The common assumption is

that users articulate their needs in the form of an example image. In this thesis we will argue that

some of these assumptions are too narrow and that the framework of image retrieval is in need of

substantial broadening.

1.3 Organisation of the thesis

The main body of the thesis divides into seven chapters. Chapter 2 introduces current models of

interaction in image retrieval. The emphasis is on relevance feedback techniques that have been

developed and refined over the past few years. This emphasis reflects the fact that relevance feedback

has become the standard approach to optimising retrieval systems, but also because we will introduce

our own relevance feedback technique in Chapter 4. The second half of the chapter is concerned with

browsing models in which interaction takes a simpler, operationally more prominent and functionally

more important role. We will see that the majority of these models can be reduced to iterated retrieval

and therefore fail to exploit the advantages that browsing structures can potentially offer, in particular

query-free interaction and fast response times.

Chapter 3 lays the foundation for the remainder of the thesis. Given some image q, we define the

set of lateral neighbours or NNk of q. These are images that satisfy certain distance properties with

respect to q. We will argue that they can be viewed as pictorial exemplifications of the set of possible
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semantic facets that lie within the representational scope of the chosen feature set. We describe how

this image set can be determined and develop various approximations that reduce the complexity of

NNk computation. We identify the set of NNk as a subset of the convex hull of a point set and thus

highlight its close relationship to the Skyline or Pareto operator in the context of relational databases.

The rest of the chapter is concerned with examining how the number of NNk scales with the collection

size and the size of the chosen feature set.

After this groundwork, Chapter 4 develops a first application of the NNk idea to relevance feedback

in automated image retrieval. The fundamental strength of NNk search stems from the ability to

associate every NNk with an optimal combination of visual features. The selection of one or more

NNk by the user thus yields a set of optimal metrics with which we can retrieve in the subsequent

step. A comparison with state-of-the-art relevance feedback techniques demonstrates its effectiveness

for collections of more than 30,000 images.

Whilst successfully addressing the problem of metric optimisation upon relevance feedback, NNk search

shares two major shortcomings with conventional interaction models. Unless the query is constrained

to come from the collection from which we retrieve, the time complexity of NNk search is linear in

the number of images in the collection resulting in prohibitive response times as the collection size

increases. NNk search is concerned with homing in on a set of target images and relies on users not only

having a fixed information need but also a pictorial representation thereof. These conditions are not

necessarily met in real situations. NNk search does not facilitate the development of information needs

and does not adjust flexibly if these should change. We shall therefore view NNk search primarily as a

motivation to propose a much broader framework of interactive image search that inherits much of its

rationale from NNk search but overcomes its principal limitations. The framework will be developed

in the ensuing four chapters beginning in Chapter 5 with a high-level introduction to NNk Networks.

In the first of the two central chapters on NNk Networks, Chapter 6 and Chapter 7, we analyse

their topological characteristics such as their degree of connectedness and the incidence of isolated

subgraphs, the average distance between images and the degree of local clustering. Each of these

properties are important determinants of the suitability of NNk Networks for image search. We

refer to these investigations as the formal part of the topological analysis as it ignores the semantics

associated with vertices and the relevance or non-relevance of associations. The second part of the

chapter turns to a semantic analysis that aims to disclose how sets of relevant images are distributed

across the network. We propose three measures of compactness and apply them to the subgraphs

formed by relevance classes. Our analysis reveals that relevance subgraphs are remarkably compact

suggesting that once a user has found one relevant image, more relevant images can be found by

following relevance paths through the network.

After these theoretical investigations of NNk Networks, Chapter 7 turns to important practical issues

that have arisen in the preceding chapters. These include the presence of disconnected components

and the need to update the networks efficiently in dynamic environments. The second part of the

chapter is devoted to a large-scale quantitative evaluation of NNk Networks for category search and

can be viewed as an empirical confirmation of the claims which the topological analysis of Chapter 6

has given rise to.

Chapter 8 consolidates the work on NNk Networks by suggesting ways to automatically extract the

structure that was analysed in Chapter 6 and exploited in Chapter 7. We propose to cluster the dual

of the network and provide visual and quantitative assessment of the quality of the clustering.
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Chapter 9 gives a summary of the thesis and highlights its principal achievements. The NNk frame-

work as developed in this thesis suggests multiple ways of expansion, refinement and broadening.

Preliminary investigations of these possible strands of future research are pursued in the second part

of that chapter.

The thesis is relatively self-contained and makes only the most modest assumptions regarding the

readers’ mathematical background. To make the thesis most widely accessible, many of the technical

terms readers may not be familiar with are collected and explained in a glossary at the end of the

thesis.

The content of the thesis has variously been published or is currently under review for publication:

the second chapter has been submitted as a chapter for a forthcoming book on semantics-based image

retrieval. Parts of the fourth chapter have appeared in CIVR 2004 while the six chapter provides

an extended treatment of two papers presented at ECIR 2004 and CIVR 2005, respectively. The

quantitative evaluation of Chapter 7 has been described in detail in the Proceedings of TRECVID

2003.
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Chapter 2

Interaction Models in Image

Retrieval

2.1 Introduction

This chapter sets the stage for the new framework which we will begin to develop in Chapter 3.

It is conveniently divided into two parts. In the first part, Section 2.2, we will examine existing

approaches to relevance feedback in the context of query by example. This is no doubt the prevailing

methodological setting in which content-based information retrieval is currently being investigated

and for which most of the relevance feedback techniques have been developed. In the second part

of the chapter, Section 2.3, we shift our focus to retrieval systems that make provision for more

exploratory search of image collections by engaging users in some form of browsing. We shall see that

some of the browsing techniques are functionally complementary to the relevance feedback techniques

introduced in the first part and that combining them should lead to a fruitful synergy. Since the NNk

framework provides alternative solutions to both automated retrieval and browsing, both parts are of

equal pertinence to our thesis.

2.2 Automated search

Relevance feedback methods vary along several dimensions which makes any linear exposition some-

what arbitrary. We shall take as our principal axis of distinction not the type of relevance feedback

elicited from the user, but how this feedback is exploited in response. Along this axis we can identify

three broad classes of relevance feedback methods: query adaptation, metric optimisation and classi-

fication. While the boundary between the first and the second class is relatively clear-cut, this cannot

be said of the second and the third classes but we believe the distinction is nonetheless helpful.

2.2.1 Query adaptation

Query adaptation describes the process whereby the representation of an initial query is modified

automatically based on relevance feedback. Query adaptation was among the first relevance feedback
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techniques developed for text retrieval (Rocchio, 1971; Salton and McGill, 1982) and has since been

adapted to image retrieval (Rui et al., 1997; Ishikawa et al., 1998; Porkaew et al., 1999; Zhang and Su,

2001; Aggarwal et al., 2002; Kim and Chung, 2003; Urban et al., 2003). Query adaptation subsumes

as the two most important classes query point moving and query expansion.

Query point moving

The idea of query point moving is illustrated in Figure 2.1 where relevant (+) and non-relevant objects

are displayed in a two-dimensional feature space with the query initially being in the bottom right

quadrant. The images marked by the user correspond to the bold circles. The goal of query adaptation

is to move the query point towards the relevant images and away from the non-relevant images. On

the not unreasonable assumption that relevant images form natural groups in feature space, query

point moving is expected to improve retrieval performance.

In Urban et al. (2003), images are represented in terms of a set of keywords and a colour histogram.

Likewise, a query is composed of a textual and a visual part. Given a set of images for which the

user has indicated some degree of relevance, the visual part of the query is computed as the weighted

average over the relevant images.
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Figure 2.1: Moving the query point towards positive examples.

In Rui et al. (1997) the representation of the query is altered by taking into account both relevant

and non-relevant images. The method is the direct analogue for image retrieval of Rocchio’s formula

(Rocchio, 1971). In particular, given sets R and N of feature vectors corresponding to relevant and

non-relevant images, respectively, the learned query vector at step t + 1 is computed as

qt+1 = αqt + β

(

1

|R|
∑

x∈R

x

)

− γ

(

1

|N |
∑

x∈N

x

)

,

where α, β and γ are parameters whose values need to be suitably chosen. If α and γ are both set to

zero, then the new query representation is merely the centroid of the relevant images. The goal of the

method is to move the query point closer towards relevant images and further away from non-relevant

images.

Ishikawa et al. (1998) and Rui and Huang (2000) develop optimisation frameworks that find the best

query point as the point that minimises the summed distances to all relevant images. The optimal

query representation turns out to be the weighted average of the representations of all relevant images.

The distinguishing characteristic of both works is that they optimise both the query point and the

distance function, a topic to which we shall return in a later section.
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Before moving on to query expansion, we shall mention an interesting variation of the idea of query

point moving. Instead of changing the feature representation of the query, Bang and Chen (2002)

propose to modify the representation of each of the images in the collection. In addition to moving

relevant images towards the query and non-relevant images away from the query, all images that have

not been marked receive a contribution from the movement of each labelled image. All images change

their position following the principal movement of the relevant and non-relevant images. The total

movement can be expressed in the form

x′ = x + α
∑

m∈M

vme−βd(x,m)(q − x),

where M is the set of feature vectors of those images on which relevance feedback has been given and

vm is a relevance score. The result cannot be expressed in terms of simple query point movement but

the methods clearly share a similar rationale. The reported experiments suggest superior performance

over the simple Rocchio formula when image classes are homogenous.

Query expansion

On the assumption that relevant images cluster, the method of query point moving has an intuitive

appeal. Its limitations become evident when considering the possibility of relevant images forming

visually distinct subsets that correspond to multiple clusters in feature space. Under this circumstance

the above approach may fail to move the query into the desired direction as relevant images may

suggest multiple and mutually conflicting directions. A simple modification of the above approach

confers a greater robustness. It involves replacing the original query point by multiple query points

each located near different subsets of the relevant images. This modification turns query adaptation

into what may more aptly be described as query expansion (Porkaew et al., 1999; Kim and Chung,

2003; Urban and Jose, 2004a). By treating each of the subqueries individually and merging the results,

query expansion can widen the catchment area of the similarity function by including regions where

the density of relevant images appears higher. For successful deployment of the technique one needs

to be careful about how to define similarity of an image to a multi-point query and, to a lesser extent,

how to choose the precise location of the query points (Urban and Jose, 2004b). In Porkaew et al.

(1999) relevant images are clustered and query points chosen to be cluster centroids. The overall

distance of an image to the multi-point query is computed as the weighted average over the distances

to each query point, i.e.

D(x, Q) =
∑

i:qi∈Q

wid(x, qi).

Such a scheme is simple to implement but retains the feature it seeks to overcome by linearly averaging

over individual distances. In fact, it can be shown that the overall result is equivalent to query point

moving where the new query point is given by

Q =
∑

i:qi∈Q

wiqi.

If d is taken to be the Euclidean distance, for example, then the iso-distance lines for a multi-point

query remain circles now centred at Q. This is shown on the left plot in Figure 2.2. The method

reduces therefore to the solution suggested by Ishikawa et al. (1998) and Rui and Huang (2000).

To properly account for and capitalise on the cluster structure, it seems more reasonable to treat the

multi-point query as a disjunctive query, an approach taken in more recent work (Wu et al., 2000;
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Kim and Chung, 2003; Urban and Jose, 2004a). Kim and Chung (2003) argue compellingly that the

convex aggregation method of (Porkaew et al., 1999) is inadequate to deal with disjunctive queries

and suggest a remedy in the form of

D(x, Q) =
∑

i:qi∈Q

d(x, qi)
α,

where qi is the representation of the ith cluster and α ∈]0, 1] is a parameter that confers the desired

non-convexity. The iso-distance lines of the model with α ranging from 1 to 1/4 are shown in Figure

2.2. For α = 1, the model reduces to that of Porkaew et al. (1999). For smaller α, the distance

function favours small distances over large distances with the result that an image close to at least

one cluster is assigned a small overall distance.

α = 1 α = 0.5 α = 0.33333 α = 0.25

Figure 2.2: Multi-point queries: From query point moving towards disjunctive queries.

All of the above methods have in common that they are concerned with combining distance scores.

An alternative approach to multi-point queries is taken in Urban and Jose (2004a) who adapt a rank-

based aggregation method, median-rank aggregation (Fagin et al., 2003), to multi-point image queries

and establish superior performance over the simple score-based method of Porkaew et al. (1999). The

rank of an image p is the number of images whose distance scores are smaller or equal to that of p.

This particular method involves computing the image ranks with respect to each of the different query

points. The median of those ranks becomes the final rank assigned to that image. The choice of the

median over the mean confers robustness against hugely deviating individual ranks. If an image has a

large distance to only a small minority of the query points, these will have no effect on the final rank

of that image. This is desirable as it provides support for more disjunctive queries, but the method is

equally robust against unusually small distances. If an image is close to one query point and very large

to all others, its high rank achieved in one comparison is unlikely to have an effect on the final rank

although the natural interpretation would arguably be that the image happens to fall into one of the

natural groups of which the query point is a representative. Median-rank aggregation should therefore

work particularly well when the relevant images are spread out in feature space without necessarily

forming distinct clusters so that relevant images might also be expected in the spaces between query-

points.

A general note of caution must be made regarding the conclusions that can be drawn from a comparison

of different aggregation methods. The weighted average of Ishikawa et al. (1998), Porkaew et al. (1999)

and Rui and Huang (2000) might result in similar performance as a disjunctive method if the relevant

images that are returned belong to only one of the clusters even if the relevant images as a whole may

exhibit a rich cluster structure. This, however, is not unlikely if the initial set of images tend to come

from the same region in feature space.
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2.2.2 Distance metric optimisation

Rationale

As we have noted in Chapter 1, one of the challenges of similarity search relates to the question of how

to combine features to arrive at an overall measure of similarity between two images. Given some set

of features, each represented as a real-valued vector, arguably the simplest distance method involves

fusing all individual feature vectors into one by concatenating them. The overall distance between

two images is then simply the distance between two feature vectors x and y. In hierarchical models,

distances are computed between individual features and the resulting distances are aggregated. In

both models, we have to compute the distance between two vectors. One natural distance metric in

a vector space is the cosine distance

D(x, y) = 1 − x · y
|x||y| ,

which is a measure of the angle between x and y and has proven effective for comparing term vectors

in text retrieval. In image retrieval, commonly used distance metrics are instances of the general

Minkowski metric,

D(x, y) =

[

∑

i

|xi − yi|α
]

1

α

, α > 0.

This reduces to the Euclidean metric for α = 2 and to the L1 metric for α = 1. The Minkowski metric

can readily be parametrised by adding a weight to each component-wise difference. For α = 2, we

obtain a weighted Euclidean distance

D(x, y) =

[

∑

i

wi(xi − yi)
2

]
1

2

, (2.1)

where the weights are commonly constrained to sum to one and to be non-negative. Relevance feedback

can now help to adjust these weights so that relevant images tend to be ranked higher in subsequent

rounds.

The general idea is illustrated in Figure 2.3 on the same synthetic data set used for Figure 2.1. Under
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Figure 2.3: Changing parameters of the metric.

the weighted Euclidean metric with equal weights, w1 = w2, the iso-distance lines in a two-dimensional

vector space are circles centred at the query vector. In this example, the one image marked relevant

is much closer to the query with respect to the second feature. On the assumption that a relevant

image has more relevant images in its proximity, we wish to discount distances along the dimension
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along which the relevant image differs most from the query. Here this is achieved by decreasing the

weight w1 with the effect that the iso-distance lines become ellipsoids with their long axes parallel to

that of the least important feature. In hierarchical models these distances need to be combined. By

far the most popular aggregation method is the weighted linear sum that we encountered earlier in

the context of multi-point queries,

D(x, q) =
k
∑

i=1

widi(x, q), (2.2)

where we now sum over k features rather than over query points. The great majority of relevance

feedback methods are concerned with adjusting weights of each individual feature component either

in a flat (Ishikawa et al., 1998) or in a hierarchical feature model (Sclaroff et al., 1997; Rui et al., 1998;

Schettini et al., 1999; Rui and Huang, 2000; Heesch and Rüger, 2003; Urban and Jose, 2004b). We

shall refer to the two types of weights as component weights and feature weights, respectively.

Early models

In the hierarchical model proposed by Rui et al. (1998) the weight of a component is taken to be

inversely proportional to the standard deviation of that component among relevant images. This

heuristic is based on the intuition that a feature component which shows great variation among the

relevant images does not help to discriminate between relevant and non-relevant images. Although any

function that monotonically decreases with the variance would appear to be a good candidate, it turns

out that dividing by the standard deviation agrees with the optimal solution that was later derived in

the optimisation framework of Ishikawa et al. (1998). The feature weights are adjusted by taking into

account both negative and positive examples. To illustrate how important simple heuristics were in

the methodology of early image retrieval systems, we shall describe the method in some more detail.

Relevance feedback takes the form of an integer number which the user assigns to each of the top N

images. This relevance score is used to update feature weights as follows: We begin by establishing

the N most similar images for each of the k features individually. For each feature we then determine

which of these N images is also among the N most similar images overall and set its weight to the

sum of the relevance scores of those images. The feature weight is thus the sum of relevance scores

of all those images in the intersection between two ranked lists. The technique is motivated by the

intuition that a feature that retrieves many of the images that have been labelled as relevant should

be assigned a higher weight. Although the experimental results suggest a substantial improvement in

retrieval performance on a database containing more than 70,000 images the figures should be treated

with great caution as the number of images on which relevance feedback is given lies in the somewhat

unrealistic range of 850 to 1100.

In the flat model of Peng et al. (1999) the distance between two feature vectors is computed according

to Equation 2.1. The weights wi are some monotonically increasing function of the ‘relevance’ of the

ith component, defined as

ri(q) = E[f |xi = qi],

where f : R → [0, 1] is a regression function trained on positive and negative examples provided by the

user. The relevance, therefore, is the average value of f (over all x) given that the ith component

is that of the query. Imagine as an extreme case that all positive examples share the same value in

one component as the query while the value of the same component varies freely among the negative
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examples. The component is quite evidently informative about the relevance of an image and the

expected value of f conditional on that value should be comparatively large and close to one.

Optimising generalised Euclidean distances

An elegant generalisation of the relevance feedback method of Rui et al. (1998) was developed by

Ishikawa et al. (1998). Motivated by the observation that relevant images may not necessarily be

aligned with one of the feature dimensions, the weighted Euclidean distance used in Rui et al. (1998)

cannot fully account for their distribution. This can be rectified by considering a generalisation of the

Euclidean distance, introduced by Chandra Mahalanobis under the name D-statistic in the study of

biometrical data and now simply known as the Mahalanobis distance. It is more conveniently written

in matrix notation as

D(x, q) = (x − q)T M(x − q),

where M is a square matrix. If M is a diagonal matrix, then the expression reduces to Equation 2.1

with the weights wi corresponding to the diagonal elements. If M is a full matrix, then the expression

contains products between the differences of any two components. In two dimensions with

M =

[

a b

c d

]

this writes as

D(x, q) = a(x1 − q1)
2 + (b + c)(x1 − q1)(x2 − q2) + d(x2 − q2)

2,

and similarly for higher dimensions. The iso-distance lines of the general Mahalanobis metric are

ellipsoids that do not need to align with the coordinate axes. The components of M are found

by minimising the sum of the distances between the images marked relevant and the query. The

interesting twist of the model is that the query itself is re-estimated at each step. The optimisation

thus determines not only M but also the query with respect to which the distances are minimised. The

method combines the two techniques of query point moving and metric update in one optimisation

framework. The objective function is

min
M,q

N
∑

i=1

vi(x
i − q)T M(xi − q), (2.3)

where N is the number of relevant images and vi a relevance score given by the user. Note that xi here

denotes the vector of the ith image, not the ith component of some vector x. Under the additional

constraints that det (M) = 1 and M is symmetric the solutions for q and M are

q =

∑N
i=1 vixi
∑N

i=1 vi

and

M = [det(C)]
1

n C−1,

where C is the covariance matrix of the positive examples. In order for C−1 to exist, relevance

feedback needs to be given on at least as many images as there are feature components. If this is not

the case, a pseudo-inverse can be used instead of C−1. The singular value decomposition (SVD) of C

is C = AΛBT , where Λ is a diagonal matrix: diag(λ1, . . . , λK). Each λ is either zero or positive. If
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there are L non-zero λs, the pseudo-inverse of C is

C+ = AΛ+BT

Λ+ = diag

(

1

λ1
, . . . ,

1

λL
, 0, . . . , 0

)

.

Although the method is being applied successfully (Urban and Jose, 2004a), when dealing with large,

sparse image features as they commonly occur in image retrieval, performances have been reported

to be rather unstable (Rui and Huang, 2000).

Based on our preceding discussion, some of the limitations of the approach taken by Ishikawa et al.

(1998) should be evident: First, the approach tackles the problem of query point moving but does

not support multi-point queries; secondly, it exploits only positive feedback which might be rather

scarce at the beginning of the search; thirdly, it assumes a flat image representation model with all

features for one image concatenated into one single vector. This inflates the number of parameters to

be learned with the effect of rendering parameter estimation less robust.

To address the last shortcoming, Rui and Huang (2000) extend the optimisation framework of Ishikawa

et al. (1998) by adding feature weights. For each feature, distances are computed using the generalised

Euclidean metric and the overall similarity is obtained according to Equation 2.2. As in Ishikawa

et al. (1998) the aim is to minimise the summed distances between relevant images and the query.

The objective function takes the form of Equation 2.3 except for an additional inner sum,

min
M,q,w

N
∑

i=1

vi

k
∑

j=1

wj(xij − qj)
T M(xij − qj),

where, as before, v are relevance scores, wj is the weight of the jth feature and xij is the jth feature

vector of the ith relevant image. The optimal solutions for q and M are the same as in Ishikawa et al.

(1998) while the feature weights are given by

wj ∝ 1
√

∑N
i=1 vid(xij , qj)

,

where the denominator is the sum of the weighted distances between the query and all relevant images

under feature j.

Optimisation with negative feedback

The choice of the objective function in Ishikawa et al. (1998) and Rui and Huang (2000) appears quite

reasonable: minimising the summed distances of the new query to all relevant images should indeed

improve retrieval performance somewhat if only because the same relevant images that were retrieved

in the first round are ranked higher. But it is clearly not a necessary choice. Note in particular that

the objective function does not take into account negative feedback which has been shown to prevent

the retrieval results from converging too quickly towards local optima (Vasconcelos and Lippman,

2000; Heesch and Rüger, 2002; Müller et al., 2002).

Depending on the choice of the objective function, making allowance for negative feedback might

prevent us from finding analytic solutions. Aggarwal et al. (2002), for example, adopt the general

framework of Ishikawa et al. (1998) and minimise Equation 2.3 subject to the additional constraint that

there are no non-relevant images within some ε-neighborhood of q. This is achieved by automatically

modifying the relevance scores vi. In particular, given some solution q and M of Equation 2.3 with
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an initially uniform set of relevance scores, the relevance score of the relevant image that is farthest

from the current query point q is set to zero and the scores of any other positive images are set to the

sum of their quadratic distances from the negative examples. Minimising the objective function again

with the thus altered scores yields a new solution q and M which is likely to contain more relevant

images. This scheme is iterated until the ε-neighborhood contains only relevant images.

Another example of metric optimisation involving negative feedback is Lim et al. (2001). Users are

asked to re-rank retrieved images and the system subsequently minimises the sum of the differences

between the user-given ranks and the computed ranks. Because of the integral nature of ranks, the

error function is not analytic and numerical optimisation is required to find the feature weights.

A method very similar to Lim et al. (2001) that admits to an analytic solution is proposed in Heesch

and Rüger (2003). Relevance feedback is given by positioning images closer to or further away from

the query situated at the centre. The user provides a real-valued vector of new distances and the

objective function is the sum of the squared errors between the distances computed by the system

and the new distances supplied by the user.

Multi-dimensional scaling

Ideas about navigating more flexibly through image collections find their first significant articulation

in Rubner et al. (1997). The starting point is the observation that current retrieval systems present

returned images according to their distances to the query and ignore altogether the information about

the mutual distances within the set of returned images. Returned images that are visually similar may

not necessarily be displayed close to each other. The proposed solution involves multi-dimensional

scaling (Kruskal, 1964). Given a set of objects and their mutual distances, we can place each object in

a high-dimensional metric space such that the distances are exactly preserved. For practical purposes,

the preferred dimensionality of the space is two for which distances can only be approximated. The

result is an approximate two-dimensional embedding that preserves, as far as possible, the distances

between objects. The technique can be applied to the set of retrieved images but can also be used as a

means of displaying the entirety of small collections in a perceptually meaningful way. Users navigate

through a collection by selecting one of the retrieved images as the new query, so that browsing

ultimately takes the form of iterated search.

Another attempt of a synthesis between automated search and browsing is described in Santini and

Jain (2000) and Santini et al. (2001). Similar to Rubner et al. (1997), the proposed system seeks a

distance-preserving projection of the images onto two dimensions. In addition to selecting an image

from the display as the new query, users may also alter the mutual distances between images. In Santini

and Jain (2000), the system then finds feature and component weights in a hierarchical feature model

that minimise the mismatch between the relations imposed by the user and the computed distances.

Manifolds and non-metric distances

All methods described in this section compute distances using a global metric. On the assumption

that images fall on some manifold in the feature space He et al. (2004) propose to approximate the

metric structure of the manifold at the location of the query. The approximation makes use of positive

examples, which are assumed to be close to the query under the geodesic distance. The algorithm

proceeds by computing the k-nearest neighbours of each of the positive examples. The union of these
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sets constitutes the set of candidates that may potentially be retrieved. The geodesic distance is

approximated by the topological distance on a graph whose vertices correspond to elements of the

candidate set along with the query and the positive examples. Edges are constructed between any two

images if their unweighted Euclidean distance does not exceed some threshold. The geodesic distance

is then approximated by the topological distance on the graph, that is, the length of the shortest

path between two images. Retrieval on the manifold returns the set of images with small topological

distances to the query.

Li et al. (2002) provide empirical evidence on a synthetic dataset for a simple and very reasonable

hypothesis: images that are relevant to some query may resemble the query with respect to different

features. The important conclusion they draw is that learning one set of weights, for example of

a weighted Minkowski metric, is insufficient for retrieval purposes. They suggest to rectify this by

introducing what they call dynamic partial distance functions. Given k-dimensional image vectors p

and q, they define

δi = |pi − qi|, i = 1, . . . , k,

and a set ∆m containing the m smallest δi, where 1 ≤ m ≤ k. The dynamic partial distance function

is then defined as

dm,r(p, q) =

(

∑

δi∈∆m

δr
i

)
1

r

.

For m = k, the distance reduces to the Minkowski metric. For m < k the technique dynamically selects

different features for different pairs of objects. As a result of not employing all features the triangle

inequality ceases to hold, i.e. one can conceive of situations where d(p, q) + d(q, r) < d(q, r). For

m < k the function thus ceases to be a metric. Qamra et al. (2005) apply these functions successfully

to the problem of detecting near-duplicates in large image collections.

2.2.3 Image search as classification

A third class of techniques treats the problem of similarity search as one of classification. Some of

these can be interpreted as estimating parameters of some similarity function and are thus similar to

the class of metric optimisation techniques described in the preceding section.

Probabilistic approaches

Methods that approach the classification problem from a Bayesian perspective explicitly model prob-

ability densities. The aim of these methods is to assign class probabilities to an image based on the

class-specific feature densities estimated from relevance feedback. Let p be an image, x its feature

representation and R and N be the sets of relevant and non-relevant images. By Bayes’ rule we have

P (p ∈ R|x) =
P (x|p ∈ R)P (p ∈ R)

P (x)
.

In Nastar et al. (1998) the feature density of relevant images P (x|p ∈ R) is assumed to be Gaussian

and features are assumed to be independent so that P (p ∈ R|x) is a product of Gaussians,

P (p ∈ R|x) ∝
k
∏

i=1

P (xi|p ∈ R).
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If we only consider relevant examples, the mean and standard deviation can readily be found using the

principle of maximum likelihood. Nastar et al. (1998) suggest an iterative technique that also takes

into account negative examples. It does this by determining the proportion of negative examples falling

into a 3σ confidence interval around the current mean and the proportion of positive examples falling

outside of it. The error is simply the sum of the two terms. To better account for multi-modality a

mixture of Gaussians can be used, an extension that has the slight disadvantage of requiring numerical

optimisation for parameter estimation (Vasconcelos and Lippman, 2000; Yoon and Jayant, 2001).

Meilhac and Nastar (1999) drop the strong assumption of Gaussianity of the feature densities and

use a Parzen window for non-parametric density estimation. Unlike in Nastar et al. (1998) feature

densities are now estimated for both relevant and non-relevant images and the decision rule is

I(xi) = − log[P (xi|p ∈ R)] + log[P (xi|p ∈ N)]

for each feature. Assuming independence of features we obtain

I(x) = −
k
∑

i=1

(log[P (xi|p ∈ R)] − log[P (xi|p ∈ N)]).

The additiveness of this density estimation method makes it incremental, i.e. at every feedback round

a fixed number of terms is added to the decision function.

The Bayesian framework developed by Cox et al. (1998, 2000) for target search is based on an explicit

model of what users would do given the target image they want. The system relies on Bayes’ rule

to predict the target given their action. This is achieved by updating a probability distribution

over possible image targets. An entropy minimising display algorithm is developed that attempts to

maximise the information obtained from a user at each iteration of the search. This is one of the first

studies of relevance feedback that breaks with the convention of displaying the most relevant images.

While substantially reducing the number of iterations required for target search in comparison with

the standard display method, it does not scale well to category search and does not support the

selection of more than one image per iteration.

Discriminant classifiers

An alternative approach to classification that does not require an explicit modelling of feature densities

involves finding a discriminant function that maps features to class labels using labelled training data.

An increasingly popular classifier is the support vector machine or SVM (Vapnik, 1995). SVMs

typically map the data to a higher-dimensional feature space using a possibly non-linear transform

associated to a reproducing kernel. Linear discrimination between classes is then attempted in this

feature space. SVMs have a number of advantages over other classifiers making them particularly

suitable for relevance feedback methods (Hong et al., 2000; Chen et al., 2001; Tong and Chang,

2001; Jing et al., 2003; Crucianu et al., 2004; He et al., 2004): (i) the decision function of an SVM

allows images to be ranked according to relevance; (ii) for most choices SVMs avoid too restrictive

distributional assumptions regarding the data; (iii) SVMs are flexible. For example, prior knowledge

about the problem can be used to choose and tune the kernel; (iv) SVMs allow fast learning on the

small number of examples provided through feedback and also fast classification for collections of

medium size.
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In the context of image retrieval the training data consist of the relevant and non-relevant images

marked by the user. Learning classifiers reliably on such small samples is a particular challenge. One

potential remedy is that of active learning (Cohn et al., 1994). The central idea of active learning is

that some training examples are more useful for training the classifier than others. It is guided by the

more specific intuition that points close to the hyperplane, that is, in regions of greater uncertainty

regarding class membership, are most informative and should be presented to the user for labelling

(instead of a random subset of unlabelled points). An application of active learning to image retrieval

is proposed in Tong and Chang (2001) where an SVM is trained over successive rounds of relevance

feedback. In each round the system displays the images closest to the current hyperplane. Once

the classifier has converged, the system returns the top k relevant images farthest from the final

hyperplane. Although the method involves the user in several rounds of potentially ungratifying

feedback, the performance of the trained classifier improves over that of alternative techniques such

as query point moving and query expansion.

A very similar method with improved retrieval performance is developed by He et al. (2004) based on

the observation that the expected misclassification of unseen images is minimised if we let the user

label the image that results in the greatest reduction of the margin, which is not generally the image

closest to the hyperplane.

2.2.4 An interlude

We do by no means contend that our exposition of relevance feedback methods is exhaustive. However,

the works we have decided to pass over do not introduce fundamentally new ideas. The interested

reader is referred to Zhou and Huang (2003) for a slightly more comprehensive, albeit less detailed

overview of earlier relevance feedback methods and Crucianu et al. (2004) for a more recent update

with an emphasis on classification approaches. A detailed survey of relevance feedback strategies in

the context of document retrieval is by Ruthven and Lalmas (2003). Much of what is said there applies

equally to image retrieval.

Let us now take a step back and evaluate the merit of relevance feedback techniques as described in the

preceding sections. The reported performance gains are often considerable and suggest that relevance

feedback has rightfully established itself as a core element of state-of-the-art retrieval methodology.

However, any claims regarding performance have to be judged carefully against the experimental

particulars, especially the collection size, the performance measures, and the difficulties of the queries.

Often collection sizes are relatively small and rarely exceed several thousand images with categories

being unrealistically uniform. Popular performance measures from information retrieval such as mean

average precision are sensitive to small changes in the position of top-ranked images and an increase

in performance under such measures need not translate into any tangible gain for the user.

It is also noteworthy that image retrieval has yet to find its way out of the research environment. That

it has not could be taken as circumstantial evidence that current methods may not sufficiently cater

for the requirements of real users. Below we describe what we believe are two major shortcomings of

current approaches.
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Parameter initialisation

The utilisation of relevance feedback for query expansion and multi-modal density estimation has

attracted much attention and appears justified on the ground that the feature distributions of most

relevance classes tend indeed to be multi-modal forming natural groups in feature space. But unless the

query itself consists of multiple images representing these different groups, we should not reasonably

expect images from different groups to be retrieved in response to the query. Rather, the retrieved

images will at best contain images from the cluster to which the query image is closest under the

current metric.

But not only do relevance classes tend to form visually distinct clusters, images often belong to

a number of relevance classes. This is an expression of the semantic ambiguity which pertains in

particular to images and which relevance feedback seeks to resolve. With queries consisting of single

images, the principal question is which class the query belongs to, not so much what the different

natural groups are into which the class decomposes. But while some systems cater for multi-modality,

none explicitly deals with polysemy. By fixing parameters for the first retrieval, systems effectively

impose a particular semantic interpretation of the query. We will argue that a more profitable approach

consists in exposing the various semantic interpretations an image may admit to prior to the first

retrieval.

Parameter initialisation is particularly important when the proportion of relevant images in the col-

lection is small. Users need to have assembled a suitably large set of relevant images in the first place

and if the first set of retrieved images is largely non-relevant, most systems do not generally allow

users to move to other areas in the image space. In fact, it is well known of metric optimisation

techniques that they tend to converge to local optima (Aggarwal et al., 2002; Heesch et al., 2003).

This problem can be alleviated by considering negative examples as they tend to have a major, albeit

somewhat haphazard, effect on the parameters thus ensuring a continuous influx of yet unseen images

(Müller et al., 2000; Vasconcelos and Lippman, 2000). Because the navigation thereby achieved is

difficult to control, negative examples on their own prove inadequate, however, for finding images in

large collections.

The problem of parameter initialisation has so far received insufficient attention. One notable excep-

tion is the work by Aggarwal et al. (2002) that we had mentioned earlier in a different context. The

system segments the query image, modifies each segment in various ways and asks users to mark out

those modified query images which they would continue to regard as relevant. The feature weights

are then computed as in Rui et al. (1997) by considering the variance among the relevant segments.

The primary motivation of the method is to reduce network load in client-server environments by

gathering relevance feedback before any images are retrieved. The side-effect is that the first set of

retrieved images is more likely to contain relevant images and that, therefore, subsequent rounds of

relevance feedback are more effective. The method provides a possible solution to the problem of pa-

rameter initialisation. Its downside is its dependence on good segmentation. This is not only difficult

to achieve on general image collections but also carries a non-negligible computational cost. Clearly

more work in this direction is required. The first application of our NNk idea, which we develop in

Chapter 3, will be to this problem of parameter initialisation.
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Exploratory search

With very few exceptions, the methods described above rely on the assumption that users know

what they are looking for. The methods are designed to allow users to home in on a set of relevant

items within a few iterations and do not support exploration of the image collection. Although some

of the methods described above, most notably Rubner et al. (1997) and Santini and Jain (2000),

aim to provide alternatives to the conventional relevance feedback methods, even these, upon closer

examination, amount to query by example. What distinguishes them from other approaches is chiefly

the utilisation of the mutual relationships between retrieved images as a source of feedback. They

do not make provision for more exploratory interaction of the collection and fail to satisfy users who

are less certain about their information needs. We shall see in the next section that more flexible

interaction models have been developed over the last couple of years that address this issue more

successfully.

2.3 Search through browsing

Browsing environments offer an alternative to the conventional method of query by example. That

browsing has not quite received the same attention as query by example may have several reasons:

Browsing appears to shift the burden of retrieval back to the user leaving to a large extent unexploited

the computational resources computers can offer. Also, browsing does not seem to require much

computer intelligence and thus invites being dismissed as being rather primitive, and less effective

than query by example methods when dealing with large volumes of data. We hope to show in

this section that these views are largely ill-founded and that browsing has a much underestimated

potential. Some of the immediate advantages of browsing over query by example are suggested below.

2.3.1 In defense of browsing

Mental image

The query in content-based image retrieval typically takes the form of an example image. Although

it could be argued that this is a reasonable way of articulating information needs, images may not be

at hand as easily as keywords. Often users may not have a suitable example query at their immediate

disposal and would need to access an image collection first to obtain an example image with which to

query. In order to browse image collections, a mental representation of the query is all that is needed

to guide the search process.

Recent progress in automated image annotation (Lavrenko et al., 2003; Feng et al., 2004; Yavlinsky

et al., 2005; Zhang et al., 2005) suggests that visual search may soon be reduced successfully to

traditional text retrieval. Note, however, that images, whether in our mind or not, are inordinately

more expressive and can capture what words can not. Thus, to find what words cannot express, a

visually guided search could still be the more promising route. Automated annotation, meanwhile,

could provide a method for identifying reasonable starting points from where to begin the browsing

process.
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Developing information need

Retrieval by example image presupposes that users can formulate their information needs pictorially,

and thus it assumes that users have an information need in the first place. This may often not

be the case. Rather than being well-defined from the beginning, the information need may instead

develop in the course of, and as a result of, the particular interaction which users engage in. In

such situations enabling users to gain an overview of the collection and to navigate quickly between

different regions of the image space becomes of much greater importance. Even sufficiently accurate

automated annotation cannot on its own provide such flexible interaction with a collection.

Responsiveness

Much of the research in content-based retrieval is concerned with improving retrieval performance. For

large collections, time complexity becomes as important an issue. The time complexity that governs

typical retrieval methods is linear in the number of images. Even when hierarchical indexing structures

are used, performance has been shown to degrade rapidly in high-dimensional feature spaces (Weber

et al., 1998). For particular relevance feedback techniques, approximative methods may be developed

that exploit correlations between successive nearest neighbour searches (Wu and Manjunath, 2001),

but there does not exist a universal cure.

Contrast this again to browsing. The structure into which a collection is cast for browsing may be

precomputed. Provided the structure can be stored in ways that support efficient access, interaction

can be very fast and, for all practical purposes, can be made independent of the size of the collection.

Exploiting the cognitive abilities of users

The ability of the human visual system to recognise patterns reliably and quickly is a marvel yet

to be fully comprehended. Endowing systems with similar capabilities has proven an exceedingly

difficult task. A similar observation can be made with respect to other areas that have traditionally

been marked out as the territory of artificial intelligence. Given our limitations in understanding

and emulating human cognition, the most promising way to leverage the potential of computers is to

combine their strengths with those of users and to achieve a synergy through interaction.

During browsing users are continuously asked to make decisions based on the relevance of items

in relation to their current information need. A substantial amount of time is spent, therefore, by

engaging users in what they are best at, while exploiting computational resources to render interaction

fast.

2.3.2 Hierarchical structures

The extent to which these advantages can be exploited in practice depends crucially on how we struc-

ture the collection for browsing. While the actual process of browsing may seem trivial operationally,

effective browsing requires intelligent organisation of the collection’s content.

A common method of structuring data is that of hierarchical clustering (Yeung and Liu, 1995; Zhang

and Zhong, 1995; Yeung and Yeo, 1997; Chen et al., 1998, 2000; Pečenović et al., 2000; Barnard and

Forsyth, 2001; Benitez and Chang, 2003). Navigation in the resulting tree structure takes the form of

30



moving up and down between different levels. An early application to image retrieval is by Yeung and

Liu (1995) and Yeung and Yeo (1997) who study clustering methods for organising video key frames.

Zhang and Zhong (1995) apply the self-organizing map (SOM) algorithm to arrange a collection of

images on a two-dimensional grid which is subsequently aggregated into a hierarchy.

A more efficient but otherwise similar method is proposed in Chen et al. (2000). Images are first

clustered into a binary tree based on pairwise similarities. The binary tree is subsequently transformed

into a quad tree. Users can view different levels of the quad tree in an optimised two-dimensional layout

with the content of any one cluster indicated by a representative image from that cluster. Browsing

takes place by selecting images from the display resulting in a close-up view of the corresponding

cluster. Since the structure is precomputed, the computational cost incurred at browsing time is

slight. A similar structure is proposed by Benitez and Chang (2003). Using both textual annotation

and visual features, a pyramid of concept networks is constructed using perceptual and semantic

knowledge extracted from the data. Browsing takes place between automatically identified concepts

rather than between the images themselves.

2.3.3 Networks

An alternative structure is that of image networks. Unlike trees, networks need not be acyclic. By

not restricting connections to particular strata of a hierarchy, networks can potentially support more

flexible navigation.

Pathfinder networks

An increasingly popular type of networks for both information visualisation and browsing are pathfinder

networks (Schvaneveldt, 1990). These are constructed by simplifying a potentially much more com-

plex network through the removal of particular edges. In Fowler et al. (1992) pathfinder networks

are used to structure the relationships between terms from document abstracts, between document

terms and between entire documents. The user interface supports access to the browsing structure

through prominently marked high-connectivity nodes. An application of pathfinder networks to image

retrieval is found in Chen et al. (2000), where pathfinder networks are constructed and compared with

three different classes of image features using the similarity between images as the edge weight.

Nearest neighbour networks

A major and relatively early work on interlinked information structures is that by Croft and Parenty

(1985). The paper is concerned with the question to what extent the representations and algorithms

of sophisticated document retrieval systems can be applied to database systems. For the purpose of

comparison, the authors propose one such document retrieval system. It involves the representation of

the documents as a network of document and term nodes with weighted connections between each type

of node: Document-term links indicate how important a term is in the representation of a document;

term-term links indicate how closely two terms are related; and document-document links indicate

the similarity of the content of the documents. The main advantage of the network structure is its

ability to capture a wealth of information about the document content and thus to support a greater

variety of search strategies than conventional representations. Instead of representing the similarity
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between any two documents, the authors suggest keeping only links between a document and the

document most similar to it, and similarly for terms. Term-term and document-document links thus

connect nearest neighbours. Each document can then be thought of as giving rise to what they call

star clusters comprising the document itself and those documents it is connected to through nearest

neighbour links. Croft and Parenty realise that the structure could support interactive search: “As

well as the probabilistic and cluster-based searches, the network organisation could allow the user to

follow any links in the network while searching for relevant documents. A special retrieval strategy,

called browsing, could be based on this ability.” (p. 380) An illustration of the resulting network

structure is given in Figure 2.4, reproduced from the original paper. Because each document usually

has only one nearest neighbour, the resulting network is relatively sparse. The number of document-

document edges does not exceed by much the number of documents and clusters are disconnected

rendering browsing along document-document nodes alone impractical.

 document
 term

Figure 2.4: Croft and Parenty’s nearest neighbour networks

The idea of nearest neighbour networks was taken up in an insightful paper by Cox (1992) and

developed more fully in Cox (1995). Cox challenges the prevailing view of the time that browsing

is merely an adjunct to query by example and proposes proximity or nearest neighbour networks as

a suitable data structures for efficient and effective browsing. Particularly relevant to our work is

his idea of multi-modal browsing as it is most akin to the rationale of NNk networks. Cox envisages

constructing individual proximity networks for different criteria and interlinking these. “For example

in a document browsing system, we would have networks of words, perhaps similar to WordNet. We

would have networks with similarities based on citations, similarities based on words and perhaps

similarities based on the history of retrieval. I see the user having many interlinked networks through

which to browse.” (Cox, 1995, p. 55–56). The idea is applied to a collection of simple drawings

that have associated attributes like the number, the shape, the size and the positions of the objects

contained in the drawing but it is clearly appreciated that the networks could be used for any objects

between which we can measure similarity.

Interconnected nearest neighbour networks were not pursued further in the image retrieval community.

For one because the system Cox developed was little more than a proof of concept. Secondly, the

paper falls in a time when content-based retrieval was still in its infancy. The first research programme

that would grow out of the initial phase of exploration was that of query by example leaving little

room for alternative approaches. It is no coincidence, therefore, that the first attempts to introduce

browsing into image retrieval were made within the context of query by example.
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2.3.4 Dynamic structures

The crucial question pertaining to precomputed graph structures in general is how to design them

such that they incorporate our uncertainty regarding the optimal combination of features. In all of

the above applications, the similarity metric used for graph construction is essentially fixed.

The ostensive model proposed by Campbell (2000) is conceptually similar to the model by Rubner

et al. (1997). The most obvious difference is that in the former images are represented as term vectors

and are retrieved by text. The model has since been extended to deal with visual features (Urban

et al., 2003). Instead of displaying the results of a query through multi-dimensional scaling, images

closest under the current feature set are displayed in a fan-like pattern to one side of the query image.

Users can select an image from the retrieved set which is placed in the centre with a new set of images

being retrieved in response. Since previous images are kept on the display the visual impression of the

user is that of establishing a browsing path through the collection. Its innovative part is the relevance

feedback method that guides the browsing process. When an image is selected during browsing, the

system attempts to determine the optimal query vector given that image and the sequence of past

images. The importance of an image for estimating the weight of a term depends monotonically on

its relative position along the browsing path. More recent images are more indicative of the current

information need. In Urban et al. (2003), for example, image content is described in the form of a

colour histogram vector c. Given a browsing history consisting of a sequence of images with feature

vectors r1, r2, . . . , rn (with r1 corresponding to the most recent image), the colour representation of

the new query is given by
∑n

i=1 wici with wi = 2−i: more recently selected images (small i) are thus

given a greater weight. The ostensive model, therefore, attempts to track changing information needs

and optimise the query accordingly. Operationally, and much like Rubner et al. (1997) and Santini

and Jain (2000), ostensive browsing is iterated query-based image retrieval. Which set of images are

retrieved depends on which path the user has traced out to arrive at the current point. Because the

number of such different paths grows quickly with the size of the image collection, it is impractical

to precompute a global structure along which to browse. It is only possible to establish and extend

through browsing a local structure that consists of the browsing path and for each node of the new

set of retrieved images. Nonetheless, for the user the impression is one of navigating in a relatively

unconstrained manner through the image space. Unlike other systems, users do not have to rank or

label images, or change their relative locations. The interaction is thus light and effective.

2.4 Conclusions

This chapter has provided a detailed overview of existing relevance feedback techniques in content-

based image retrieval as well as a description of different ways of organising image collections for the

purpose of browsing.

Query by example techniques assume a precise information need and incorporate relevance feedback

to automatically improve the query representation or the similarity metric so that users may home in

on the target category within a few iterations. A principal limitation that prevents these relevance

feedback techniques from scaling to larger collections is not only the linear time complexity of nearest

neighbour search but also their reliance on positive examples of which there may be none when the

target category is small. It becomes of pivotal importance, therefore, that search parameters are

initialised intelligently prior to the first retrieval, a problem that has so far received scant attention.
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Browsing structures support more exploratory interaction and have the advantage that they may

be precomputed so that user interaction can potentially be very fast. The structures can typically

be expressed as graphs which may take the form of unrooted directed or undirected networks such

as pathfinder networks, nearest neighbour networks or NNk networks, or simply trees obtained, for

example, through hierarchical clustering. Browsing takes place by moving between vertices of the

graph, which in the case of hierarchical structures involves movement between different levels. The

problem with most of these precomputed structures is their failure to take seriously the fact that

image meaning is user-dependent. By assuming a particular form of the distance metric, the set

of relationships between images as captured in the browsing structure become immutable and the

structure semantically biased. The advantage of fast navigation therefore comes at a price: users are

no longer in a position to alter the criterion under which similarity is judged. The structures thus

deride the principal tenet that provides relevance feedback techniques with their raison d’être. Zhou

and Huang (2003) arrive at a similar conclusion when they observe that “the rationale of relevance

feedback contradicts that of pre-clustering.”

The next chapter will develop the foundation on which we shall first develop a novel technique for rele-

vance feedback in Chapter 4, and then a browsing framework from Chapter 5 onwards that overcomes

the limitations of pre-computed structures.
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Chapter 3

Introducing NNk

3.1 Introduction

A fundamental question that has to be addressed in content-based multimedia retrieval is how to

infer semantic similarity between objects from their feature representations. The problem arises

from the observation that features are generally not equally suited to pick up semantically pertinent

commonalities and that the evidence from different features needs to be combined in ways that depend

on the query object. The problem is compounded when objects are semantically rich and admit to

a number of different interpretations, such as images. As an illustration of this polysemy in images

consider Figure 1. Leftmost is a query image depicting an autumnal forest scene. The three images on

the right are those closest to the query image under three different features representing, respectively,

image texture (left), local colour distribution (middle), global colour content (right). By ignoring

colour content altogether the texture feature does not pick up the autumnal character of the query

but captures well the distinct texture of leafy vegetation. The global colour feature is insensitive to

how colours are distributed locally and ranks an image high if the overall proportions are similar as

in a close-up view of fallen leaves. We may view the three images as representing different semantic

facets of the query: “tree-like vegetation”, “trees with autumn foliage”, and “autumn colours”. Which

of these a user is interested in, and thus which feature is to be given greater weight, cannot be decided

on the basis of the query image alone. In information retrieval, the user is the ultimate arbiter of

similarity. Since in the context of heterogenous image collections and a varied user community, there

are generally no reasons to give priority to any particular features, the most reasonable approach is to

Figure 3.1: Example of an image and its most similar images under different features.
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extract and expose the multitude of different semantic facets that can be captured by these features.

This chapter formalises the idea: we introduce the idea of an image’s NNk as the set of all images

that are most similar to that image under some feature or combination of features. The NNk provide

us with a pictorial representation of the set of image meanings which a user may be interested in. In

Section 3.2 we define the set of NNk and describe a method for determining it. In the course of that

section we prove a number of important properties of this set and develop a geometric interpretation

of the NNk in terms of the convex hull of a point set. In Section 3.3 we propose several ways to reduce

the computational complexity of NNk computation.

The idea of NNk will remain central to all following chapters. It will be used to develop a method of

feature weight estimation in Chapter 4 and of image browsing from Chapter 5 onwards.

3.2 NNk and their determination

3.2.1 Definition and rationale

Definition: An image p is defined to be an NNk of image q if and only if there exist at least one

convex combination of feature-specific distance functions df (·, q) for which p has minimal distance to

q. Formally, p is an NNk of q iff

argmin
i





k
∑

f=1

wf df (i, q)



 = p, (3.1)

for some w = (w1, w2, . . . , wk) where wf ≥ 0 and
∑

wf = 1.

For the purpose of future chapters it is useful to give a name to the image whose NNk we determine.

We shall subsequently refer to such an image as the focal image, and as being focal with respect to its

NNk. We use the term NNk both for singular and plural but shall often write “set of NNk” to denote

plurality.

Because the set of NNk comprises all images which are closest to a focal image under some feature

combination, it can be thought of as a representation of the different semantic facets of the focal

image. Not all features will be equally well suited for capturing these, and some NNk will be seman-

tically unrelated to the focal image. Likewise, we expect some semantic facets to lie outside of the

representational scope of the features and thus not to be exemplified by any of the NNk . The quality

of the NNk clearly depends on the choice of features. Importantly however, if the focal image has a

semantic facet that can be captured by any of the features, it is likely to be distilled by computing the

focal image’s NNk. We shall see in subsequent chapters that this property of NNk can be exploited

for both image search and efficient image browsing.

3.2.2 Regular discretisation of WkWkWk

Note that in this and the following chapters, we will be using the familiar identification of points and

k-dimensional vectors applied to the origin, write w for the point with coordinates (w1, w2 . . . , wk),

and use the concepts of a vector space and of a point set interchangeably, whichever is more convenient.
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Because of the condition that all weights are non-negative, the set of all distances generated by the

above combination is convex, and it is infinite because weights are allowed to vary continuously.

We cannot therefore compute the NNk for every possible weight combination and need to resort to

sampling methods.

Let us denote with Wk the space of all w that satisfy the convexity constraint. The approximation that

naturally suggests itself involves a discretisation of Wk, and the evaluation of the distance function D

at a finite number of points in Wk. Computationally most tractable are regular discretisations with

a fixed separation between grid points along each axis. Let n be the number of intervals along each

of the k axes and let this be the resolution of the grid. The number of grid points along each axis is

n + 1 with the set of grid points given by

G =

{

w =

(

1

n

)

π

∣

∣

∣

∣

π ∈ Nk,

k
∑

i=1

πi = n

}

.

The problem of discretising Wk thus amounts to the problem of finding all vectors in Nk whose

components sum to the resolution of the grid.

In practice, we do not want to enumerate all grid points in Nk and check for each whether the

convexity condition is satisfied. Rather, we wish to enumerate explicitly only permissible vertices.

The pseudocode that achieves this is straightforward and given below.

1 void enumeratePi(int mass, int dim) {

2 for( int i=0; i<=mass; i++ ) {

3 pi[dim] = i;

4 if( dim>2 ) {

5 enumeratePi(mass-i, dim-1);

6 } else {

7 pi[1] = mass-i;

8 getNearestNeighbour(pi);

9 }

10 }

11 }

The function enumeratePi is initiated with the resolution n and the number of features k. We can think

of n as a mass that needs to be distributed in integer portions across k objects or dimensions. This is

accomplished in lines 2 and 3 starting with the dimension indexed by dim. The remaining mass mass-i

is recursively allocated to the remaining dimensions in line 5. When reaching the last dimension (dim

=1), we allocate the remaining mass to it (line 7) and with the newly established vector pi compute

the nearest neighbour (line 8). The function getNearestNeighbour() determines the value of the LHS

of Equation 3.1 for the particular weight vector specified by pi. Note that the pseudo-code is valid

only for dim≥1. Experimentally we find that the number of vertices for which getNearestNeighbour()

is called is precisely the magnitude of the set G (which we can find analytically as will be shown

shortly).

One would expect the number of permissible vertices to increase rapidly with the dimensionality of

Wk and with the resolution of the grid. Because the vectors π need to satisfy a convexity constraint,

however, the cardinality of G turns out to be much less than would be the case for a k-dimensional

hypercube, i.e. less than (n + 1)k. Table 3.1 shows the exact numbers for varying n and k.
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n

0 1 2 3 4 5 · 9

1 1 1 1 1 1 1 · 1

2 1 2 3 4 5 6 · 10

3 1 3 6 10 15 21 · 55

k 4 1 4 10 20 35 56 · 220

5 1 5 15 35 70 126 · 715

· · · · · · · · ·
10 1 10 55 220 715 2002 · 48620

Table 3.1: Number of vertices as a function of the resolution n and dimensionality k of the grid.

Finding an explicit formula for the number of vertices is a problem of enumerative combinatorics

and can be rephrased as follows: Given an integer n, find the number of compositions of n into

k parts. Note that we are interested in compositions rather than partitions since the order of the

segmentation is important. For example, for n = 3 and k = 2, the set of all possible compositions

is {(0, 3), (1, 2), (2, 1), (3, 0)} and thus of cardinality 4 (as given in Table 3.1). If each part of a

composition is constrained to be non-zero, the solution is just
(

n−1
k−1

)

. The truth of this formula can

be seen by interpreting it as the number of distinct ways of choosing k − 1 of the first n − 1 integers

as end points for the k segments dividing [0, n] (Andrews, 2004). In our case, a composition may also

contain segments of size zero with the important consequence that n does not constitute an upper

bound for k. If k > n at least one of the parts is simply zero. Notice from Table 3.1 the symmetry of

c(n, k) about the diagonal k = n + 1, i.e. c(n, k) = c(k − 1, n + 1). In fact, upon closer inspection, we

find that the numbers along the diagonals n + k − 1 = i, i ≥ 1, correspond to the columns in Pascal’s

triangle of binomial coefficients. This leads us to conjecture that the solution is given by
(

n+k−1
n

)

since n + k is the length of the diagonal that includes (n, k). This would account for the symmetry

since c(n, k) =
(

n+k−1
n

)

=
(

n+k−1
k−1

)

=
(

(k−1)+(n+1)−1
k−1

)

= c(k − 1, n + 1).

Theorem 1. The number of vectors π ∈ Nk for which
∑k

i=1 πi = n is equal to

c(n, k) =

(

n + k − 1

n

)

.

Proof. We rephrase the problem in terms of paths on a two-dimensional grid. In particular, consider

the k × (n + 1) grid in Figure 3.2 where the rows are labelled from 1 to k, and the columns from 0 to

n.

Each path can be associated uniquely with a k-dimensional vector π ∈ N k as follows: let the ith

component of the vector be the step size of the binomial path along the row with label i. For example,

the binomial path in Figure 3.2 would correspond to a vector with respective components 1,1,0,1,0.

The sum of the vector components is just the width of the rectangle n, as assumed by the theorem.

Clearly, any binomial path can in this way be associated uniquely with a vector, and vice versa. Since

the relationship is bijective, c(n, k) is just the number of binomial paths from (0, 1) to (n, k).

To find the number of binomial paths, note from Figure 3.2 that

c(n, k) = c(n − 1, k) + c(n, k − 1), (3.2)
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Figure 3.2: c(n, k) equals the number of binomial paths from (0,1) to (n,k).

since every path through (n, k) has to go through either (n, k − 1) or (n − 1, k) from where there is

only one possible path to (n, k). The boundary conditions are c(n, 1) = 1 (as there is only one one-

dimensional vector whose components add to n) and c(0, k) = 1 (as there is only one k-dimensional

vector whose components add to zero). Equation 3.2 is a recurrence equation that can readily be solved

using the powerful technique of generating functions. Define Ak(x) =
∑∞

n=0 c(n, k)xn. Multiplying

each side of Equation 3.2 by xn and summing over n, we obtain

∞
∑

n=0

c(n, k)xn =

∞
∑

n=1

c(n − 1, k)xn +

∞
∑

n=0

c(n, k − 1)xn,

which in terms of our generating function Ak(x) can be written as

Ak(x) = xAk(x) + Ak−1(x)

=
1

1 − x
Ak−1(x)

=

(

1

1 − x

)k−1

A1(x).

Using the fact that c(n, 1) = 1, this is just

Ak(x) =

(

1

1 − x

)k

. (3.3)

By definition of Ak(x), c(n, k) is the coefficient of xn in the Taylor series expansion of Ak(x) about

zero. The Taylor series of the RHS of Equation 3.3 can be found using the very definition of a Taylor

series. In particular,

c(n, k) =
∂n

∂xn

[

(

1

1− x

)k
]∣

∣

∣

∣

∣

x=0

× 1

n!

= k × (k + 1) . . . (k + n − 1)
1

n!

=
(k + n − 1)!

(k − 1)! n!

=

(

n + k − 1

n

)

.

Having at our disposal an explicit formula for the number of permissible vertices allows us to control

the computational complexity of NNk determination. Given k, the number of features, we can adjust

n such that the number of vertices does not exceed a certain upper bound U , that is, we choose the

largest n such that c(n, k) ≤ U . This guards against the exponential increase that would otherwise

ensue from increasing the number of features.
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3.2.3 Graphical representation of NNk

In the case of k = 3, the set of permissible vertices lie in the two-dimensional subspace of R3, the

2-simplex. Since each point of the subspace is associated with exactly one NNk, the set of NNk form

a partition of the weight space. With the approximation method described above, the boundaries of

the partitions can in principle be determined arbitrarily close by increasing the resolution n. Figure

3.3 shows the partitioning for a particular query from the Corel collection, three features and varying

resolution.

 HDS Convolution

 HSV

 HDS Convolution

 HSV

 HDS Convolution

 HSV

Figure 3.3: Partitioning of the weight space for n = 5, 10 and 100.

3.2.4 Iso-NNk regions and their properties

The partitioning of the weight space into regions possesses some interesting properties which we shall

analyse in this section. It is convenient for our subsequent analysis, and indeed for the remainder of

the thesis, to make the following definitions:

Definition: An iso-NNk region is the region in Rk that contains all the weight vectors for which the

image with smallest distance to a particular focal image is the same.

Note that iso-NNk regions are only open sets if they lie completely within the interior of the set of

permissible weight vectors. If they share a boundary with Wk then they are neither closed nor open.

Definition: The support of an NNk is the relative volume of its iso-NNk region.

In practice, we approximate the support as the number of weight combinations for which an NNk is

most similar to the focal image divided by the total number of weight combinations for which NNk

have been determined, i.e.

S(p, q) =
|P|

c(n, k)
,

where P contains all the weight vectors for which the image is the NNk of the focal image, and c(n, k)

is given by Theorem 1.

Looking back at Figure 3.3 and in particular at the approximation for n = 100, one is tempted to

conjecture that the boundaries between iso-NNk regions are linear. This is indeed the case: The

boundaries between iso-NNk regions are points for two dimensions, straight lines for three dimensions

and planes for four dimensions. The following theorem generalises this to any dimension.
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Theorem 2. Iso-NNk regions are bounded by (k − 2)-dimensional hyperplanes.

Proof. At the boundary of two adjacent iso-NNk regions, the distances of the corresponding NNk, say

p1 and p2, are the same, i.e.

k
∑

i=1

widi(p1, q) =

k
∑

i=1

widi(p2, q)

k−1
∑

i=1

widi(p1, q) +

(

1 −
k−1
∑

i=1

wi

)

dk(p1, q) =

k−1
∑

i=1

widi(p2, q) +

(

1 −
k−1
∑

i=1

wi

)

dk(p2, q)

dk(p1, q) +

k−1
∑

i=1

wi(di(p1, q) − dk(p1, q)) = dk(p2, q) +

k−1
∑

i=1

wi(di(p2, q) − dk(p2, q)).

Each side of the equation defines a (k− 1)-dimensional hyperplane and so, unless the hyperplanes are

parallel, their intersection will in turn be a (k − 2)-dimensional hyperplane.

Note that it is theoretically possible for the two hyperplanes to be the same and therefore for the

intersection to be a (k−1)-dimensional hyperplane. This would be the case if p1 and p2 had the same

distance to the query under each feature, a possibility that can be excluded in practice.

Figure 3.3 also provides anecdotal evidence that the approximations of the iso-NNk regions converge

towards a convex set as the resolution of the grid increases. That is, it appears that iso-NNk regions

are convex.

Theorem 3. Iso-NNk regions are convex.

Proof. Let us denote with R ∈ Wk one of the iso-NNk region of some focal image q and let us denote

the corresponding NNk as p. To show that R forms a convex region, we need to establish that for any

two points a, b ∈ R, any convex combination of a and b is also in R. The set of convex combinations

defines a line with standard parametrisation

Γ : w(u) = (1 − u)a + ub, u ∈ [0, 1]

= a + u(b − a).

Let d denote the vector of feature distances between p and q and consider the image of Γ under the

function F : w 7→ w · d. The image is a segment of the real line and has parametrisation in terms of u

F (Γ) : zp(u) =

k
∑

i=1

(ai + u(bi − ai))di

=

k
∑

i=1

(aidi) + u

k
∑

i=1

((bi − ai)di).

zp(u) represents the overall distance between p and q and it varies linearly with u. For u = 0 and

u = 1, the NNk of q is p. Hence, by definition of an NNk, zp(0) < zr(0) and zp(1) < zr(1) for all other

images r, r 6= p. Because z(u) is linear in u, zp(u) < zr(u) for all 0 ≤ u ≤ 1 and hence p is the NNk

of q for all convex combinations of a and b.

An immediate corollary of Theorem 3 is that all regions are simply-connected: they have no holes.

Another consequence which will be of importance later is that if there exist two regions with the same

NNk, then the two regions cannot be disjoint.

We can summarise the above by noting that for k features, iso-NNk regions are convex (k − 1)-

dimensional polytopes.
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3.2.5 Support as an a priori measure of relevance

We have seen how each NNk p can be associated with a scalar S(p, q) that measures the number of

weight vectors for which that image is the NNk of a given focal image q. Because the NNk relation

is not symmetric, neither is S(p, q). In general S(p, q) 6= S(q, p). In the absence of other sources of

evidence it seems reasonable to consider a semantic facet, represented by a particular image, the more

relevant the greater the number of weight sets for which the image has a smaller distance to q than

any other image. S(p, q) therefore affords us with an intuitive measure of relevance of the semantic

facet q represented by p. The relevance measure can be used to rank images. Clearly, this ranking is

only partial since it excludes non-NNk. It is also likely to exclude many, if not most, of the images

a user would consider relevant. It is strictly a ranking of different interpretations of the focal image

each represented by a particular NNk.

In somewhat loose analogy to Bayesian inference, the distribution of relevance may be considered a

posterior distribution given the query. Further conditioning is achieved by letting the user interact with

the system. The final distribution of relevance can be likened to a posterior distribution conditioned

on both a query and a user.

3.2.6 Characteristic weight sets

We shall see in the next chapter that once we have computed the NNk for a focal image, it is desirable

to associate each NNk with a single weight set that acts as a representative of its iso-NNk region.

The grid search method affords us with a number of ways to do this. Recall that each NNk is

assigned a volume of the weight space that measures its relevance to the focal image in the absence

of other information. This volume is an open and continuous set of k-dimensional points which

can be summarised in various ways. A representation that is particularly attractive because of its

compactness is that of a characteristic weight set which summarises the set by a k-dimensional point.

Centre of mass

The centre of mass of an iso-NNk region can be approximated by the arithmetic average of all the

weight vectors sampled from that region, i.e.

w =
1

|P|
∑

w∈P

w,

where P denotes the finite set of weight vectors sampled. An interesting and important question is

whether the centre of mass is guaranteed to fall inside the region it is supposed to represent. Note

therefore that the centroid of any point set lies inside the convex hull of that point set (Benson, 1966).

Since the region from which we sample forms, by Theorem 3, a convex set, the centroid is contained

in the region. Hence, representing iso-NNk regions by the centre of mass of its discrete approximation

is a method that can be employed in all cases.

Minimum distance weight

By encoding a set of vectors by their arithmetic average, we ignore the additional information that is

associated with each weight vector, namely the distance under that weight vector between the query
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and the corresponding NNk. This distance is by definition smaller than that of any other image, but

it is still expected to vary. Another representative weight vector, therefore, is that w which causes the

distance of the NNk to the query to be smaller than for any other weight vector from that iso-NNk

region. If we chose to retrieve with this weight vector, the image would have the smallest possible

Figure 3.4: Distances across the weight simplex between a query and its NNk.

distance to the query for all weight sets for which it is also the NNk. The latter specification is

necessary since it may well be the case that the image attains an even smaller distance to the query

for other weight sets for which it ceases to be the NNk. Because the overall distance function is linear

in the weights, its extrema are found at the boundaries of the iso-NNk regions. Figure 3.4 helps

to illustrate this. For each weight set of the two-dimensional simplex, we have plotted as the third

dimension the distance between a particular query and the NNk for that weight set. The resulting

surface is continuous and consists of a set of intersecting hyperplanes.

3.2.7 Convexity reconsidered

We have until now assumed that the overall distance D(p, q) between two images is obtained as

a convex combination of feature-specific distances df (p, q). In other words, all components of the

weight vector w are non-negative. It is instructive to consider the case where this assumption is

relaxed. In particular, we may instead assume

D(p, q) =

k
∑

f=1

wf df (p, q), wf ∈ R,

k
∑

f=1

wf = 1.

The resulting set of distances is an affine set and D becomes an affine combination of df . This

generalisation to affine sets would allow us to assign negative weights to features with the effect of

penalising images with high similarity to the query under that feature. An immediate consequence of

what appears to be but a trivial generalisation of the convex setting is that there now always exists a

weight set under which any conceivable image turns out to be the NNk of any other. The truth of this

observation becomes evident when considering the geometric interpretation of distance computation.

D is the length of the vector resulting from the orthogonal projection of d onto w. Hence, D is zero if

and only if w and d are orthogonal to each other and takes its maximum value when they are parallel.

Now, given any d we can always find a w ∈ Rk such that w ⊥ d. In fact, there exist an infinite number

of w, all lying in the k − 1 dimensional hyperplane H that includes the origin and is orthogonal to

d. If the distance vectors of the N images, d1, d2, . . . dN are not affinely independent, i.e. the N − 1

vectors d2 − d1, d3 − d1, . . . , dN − d1 are not linearly independent, then the orthogonal projections
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onto H of at least two of them are the same, and thus there does not exist a unique NNk . The fact

that all computations are carried out with finite precision reduces the chances of affine independence

somewhat. Since two vectors are dependent only if there exists a particular relationship between each

two of their components, the improbability increases with dimensionality, and we can safely assume,

that affine independence does indeed hold in practice.

Upon abandoning the convexity constraint, therefore, the set of NNk ceases to be a privileged subset

of the data. For the method to work, convexity appears to be indispensable. This is not quite so,

however. If we allowed feature weights to take negative values, every image would be an NNk, but

in the great majority of cases the corresponding weight space would be very small and would contain

the trivial solution, i.e. the weight vector that is orthogonal to the distance vector of the image. Only

a subset of the images also have non-trivial solutions where the projection of the distance vector is

minimal but non-zero. These are exactly those images that are also the NNk under convexity. Thus,

even if we do not stipulate convexity, we can identify a proper subset of the images as being meaningful

NNk. Convexity is not essential but a convenient assumption as it precludes trivial solutions from the

outset.

Convexity therefore does not matter, but this is only the case because all distances are non-negative.

If they were not, negative weights would allow us to find non-trivial NNk that are not also NNk under

the tighter constraint of convexity.

One way to see that a restriction of w to Wk ensures that not every image is, generally, an NNk of

a query is by considering two images p and q with feature-specific distances dp and dq , respectively,

to another image r. If dp
i ≥ dq

i for all features i, dq is said to dominate dp (Preparata and Shamos,

1985). In this case, w · dp > w · dq for any weight set w. Hence, image p cannot be the NNk for that

particular query.

3.2.8 NNk as the extreme points of a convex hull

The best upper bound on the number of potential NNk is the number of images in the collection, and

is independent of the number of features. We can hence conceive of situations in which every image

qualifies as the NNk of the query, but the chances are negligible since the set of NNk have to satisfy

a tight constraint: any k-dimensional point whose k coordinates maximise, or minimise, a convex

function must lie on the convex hull of the point set. Because NNk minimise the convex function

w · d, they lie on the convex hull of the set of points d. Let Pj be the distance vector with smallest j

component. The NNk are then the vertices of the convex hull contained in the k-dimensional, convex

subspace defined by the set P1, P2, . . . Pk.

In Figure 3.5 (left) we plot the distances of a few thousand images to a query with respect to two

features. Each point corresponds to a vector of feature-specific distances d. The set of NNk are the

seven points of the bottom left part of the convex hull contained in the rectangle defined by the two

points P1 and P2 (both of which are themselves NNk). A close-up view of the region containing the

NNk is given on the right of Figure 3.5 . It illustrates how we can geometrically find the set of weights

w for which a particular image of the convex hull is the NNk: we extend the boundary lines of the

convex hull connecting d to its neighbours r and t and determine vectors u by projecting d onto lines

orthogonal to these boundary lines. If w is a unit vector in the direction of u, then |u| = w · d. It is

clear from the figure that the highlighted point identifies the NNk for any weight having a direction

somewhere between u1 and u2. Outside of this range, the neighbours of d will lead to a smaller
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Figure 3.5: Plot of distances between images and a query, the seven NNk on the bottom left are part

of the convex hull (left). Weights w lying between u1 and u2 will lead to a projection of d which is

minimised for that NNk (right).

projection: for ∠(w) > ∠(u1), w · s < w · d, for ∠(w) < ∠(u2), w · r < w · d (here ∠(x) denotes the

angle between the horizontal axis and the vector x).

In two dimensions the set of permissible weights satisfying the convexity constraint form a line and

can be represented on the same figure. This is done in Figure 3.6. Each NNk is associated with such

a set of w which is the two-dimensional equivalent of the three-dimensional weight space partitions of

Figure 3.3.
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Figure 3.6: In two dimensions, the weights associated with each NNk form a line segment in R2.

Note that the set of NNk of Figure 3.6 is a subset of the NNk of Figure 3.3. In particular, the

seven line segments that divide the edge of the triangle along which the HSV feature weight is zero

correspond exactly to the seven NNk found in two dimensions. This is generally the case. If we

denote with F1 and F2 two sets of features and with R1 and R2 the two corresponding set of NNk,
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then F1 ⊆ F2 =⇒ R1 ⊆ R2. Thus, the problem of finding the NNk of an image is equivalent to

finding a subset of the extreme points of the convex hull. The problem of determining the convex hull

is a classic problem of computational geometry and central to many applications ranging from pattern

recognition to image processing. With N being the number of points, the task can be accomplished

in O(N log N) time in two dimensions. Unfortunately, the complexity shoots up to O(N bk/2c+1) for

k > 3 (Preparata and Shamos, 1985). The identification of NNk with extreme points of the convex

hull, while certainly being instructive in its own right, cannot easily be exploited for more efficient

NNk determination.

In Figure 3.5 the two features exhibit some degree of positive correlation and the number of extreme

points in the bottom left part of the convex hull is correspondingly small. Figure 3.7 shows a synthetic

data set with the same number of points as in Figure 3.5 but with the two feature-specific distances

being negatively correlated. It illustrates the fact that the relationship is, contrary perhaps to intuition,

rather weak. In this particular case there are only four extreme points in the orthant of interest.

Figure 3.7: The extreme points of the convex hull for a synthetic data set with negative correlation

between features.

3.2.9 The Skyline operator

The interpretation of NNk as extreme points highlights its close connection to the Skyline operator

with which Börzsöny et al. (2000) have proposed to extend the set of standard SQL operations. The

Skyline is defined as the set of points that are not dominated by any other points. Such points are

those for which there does not exist any other point that is better under some criterion for each of

the considered attributes. When searching for accommodation as a university student, attributes of

interest may be proximity to the university as well as the amount of rent to pay. In this context, a

place dominates another if it is both cheaper and closer to the university than some other place, and

the Skyline contains all those places for which there does not exist any place that is both cheaper and

closer.

The Skyline is thus the solution of the well-studied maximum vector problem (Preparata and Shamos,

1985). It turns out that the convex hull of the data is a subset of the solution set, both of which

can be thought of as representations of the boundary of the data set. Although very similar to

the convex hull, the Skyline is easier to compute. In fact, algorithms can be devised that run in

O(N(log N)(k−2))+O(N log N) time. For any function which maps attribute values monotonically to

some overall score, the solution maximising that scoring function will be part of the Skyline. It does,

in other words, not contain any points that are nobody’s favourite.
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3.2.10 Scaling with k and the size of the image collection

It is interesting to investigate the relationship between the number of NNk and the number of features.

While the number of vertices visited in a systematic grid scan increase both with the number of features

and with the resolution of the grid, the actual number of NNk evidently depends only on the number of

features and their nature. As we have argued in Section 3.2.8, adding more features can only increase

the number of NNk but the precise relationship is difficult to divine. An idea of the relationship can in

principle be obtained by computing for a set of queries the number of NNk as we increase the number

of features. If the set of features is augmented in the same way for each query, the result will reflect

not only the general scaling property we seek to elucidate, but also the independence relationships, or

the lack thereof, between features. For example, if the first group of features by which we augment

our feature set are only very weakly independent of each other, we expect the number of NNk to

increase only mildly. As we begin to add features that are independent of those already in the set, we

expect the number of NNk to increase more markedly. The converse would result if we began with a

set of highly independent features. This sensitivity to the order in which features are added suggest

a different method whereby we do not prescribe any particular order of features but randomise the

order for each query. Once the order is fixed, we compute the number of NNk for a particular query

and an increasing set of features. The result is shown in the left graph of Figure 3.8 for a particular

collection. For each query we vary the number of features between one and eleven. Although the

number of NNk is clearly bounded above by the size of the collection, at least for the first eleven

features their numbers increase in a roughly linear manner.
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Figure 3.8: Scaling of the number of NNk with the number of features for one particular collection

(left), and with the size of the image collection. The dotted lines mark one standard deviation.

To see how the number of NNk scale with the collection size, note that the larger the collection, the

lower the probability that a new data point may extend the existing convex hull. Again, we expect

the number of NNk to level off although the precise nature of the relationship is hard to divine. The

actual relationship is depicted on the right graph of Figure 3.8.
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3.3 Optimisation

As we have seen in Section 3.2.2, a simplicial mesh with fixed resolution n and k features requires the

evaluation of N distances at
(

n+k−1
n

)

vertices. In this section we will consider a number of techniques

that can be used to help render the search for NNk more efficient. First of all note that since NNk

determination must be understood as an approximation, the computational effort spent depends to

a large extent on how certain we want to be that all NNk have indeed been identified. We shall

subsequently refer to the proportion of NNk found as the coverage under a particular resolution.

There are two strands along which we can optimise. First, we can adjust the resolution of a fixed grid

such that we achieve an acceptable trade-off between computational cost and coverage. Secondly, we

can exploit geometric properties and ignore some areas of the weight space altogether.

3.3.1 Selection of grid size

Since the distance vectors of the NNk form a subset of the convex hull of the entire point set, their

number can generally be assumed to be considerably smaller than the number of images in the collec-

tion. Further, since the NNk partition the (k−1)-dimensional subspace of permissible weight vectors,

it appears reasonable to assume that it should be relatively easy to find a large proportion of them

even with a grid of low resolution. This is indeed the case. To evaluate the coverage under different

resolutions, we need to know the true number of NNk , or a sufficiently good lower bound thereof. The

former can be obtained by finding those extreme points of the convex hull of the set of distance vectors

that lie in the orthant containing the origin, while the latter can be obtained simply by determining

the number of NNk under a very fine grid. For any other resolution we may then determine the

coverage as the ratio of the number of NNk at that resolution to our lower bound. We have computed

the coverage for 100 randomly selected images and a fixed number of features.
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Figure 3.9: Convergence of the number of NNk as the grid resolution increases. The dotted lines mark

one standard deviation.

Figure 3.9 displays a summary of the results for seven features and 6192 images. Coverage increases

rapidly for low resolutions and converges relatively quickly towards one. We can be reasonably con-

fident, therefore, that in spite of its approximate nature, the simplicial mesh approach captures most

of the neighbours of an image. Also note that the probability of an NNk escaping the simplicial mesh
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is inversely proportional to the relative weight space that the NNk occupies. Images that are missed

by the grid are therefore those that have the lowest support.

Theorem 1 tells us that the number of vertices in the grid depends in a simple, and nearly symmetrical

way on the resolution n and the number of features k. Knowledge of this precise relationship allows us

to control the computational cost of the grid search. Given an upper bound U on the computational

cost and a fixed set of features k, we can choose the largest n such that

c(n, k) =
(n + k − 1)!

(k − 1)! n!
≤ U . (3.4)

We can approximate the factorials using Stirling’s formula: x! = xxe−x
√

2πx + O(1/N), where the

final term indicates that x times the magnitude of the error is bounded in the limit as x → ∞. In

particular, one can show that the condition is well approximated by

(n + k − 1)n+k−1

nn
≤ ξ, (3.5)

where ξ = U(k−1)!ek−1. Figure 3.10 shows the relationship between n, k and U as given by Equation

3.5 for the special case of equality.
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Figure 3.10: Relationship between the number of features and the resolution of the grid when fixing

the total number of grid points (109, 107 and 105).

3.3.2 Difference computation

In addition to controlling the number of vertices in the grid at which to determine the nearest neigh-

bour, we may also simplify the computation involved at each such vertex. Recall that each vertex

corresponds to a particular weight vector w. The nearest neighbour of the focal image for that weight

vector is the image that minimises the weighted sum of distance scores,

D =

k
∑

f=1

wfdf .

As we recurse through the grid, most pairs of consecutive vertices differ in only two components of the

weight vector. Instead of computing D according to the above equation involving k multiplications

and k − 1 additions, we can exploit the fact that in most cases k − 2 of the terms of the product have
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already been computed at the previous vertex. In such cases we can obtain the distance at the new

vertex by subtracting a correction term from the distance at the previous vertex. Let F be the set of

indices whose weights differ between the two vertices then the update is

Dj = Dj−1 +
∑

f :wf∈F

(wj
f − wj−1

f ) · df ,

where j indexes the step at which the vertex is visited during the recursion. With the recursion

code from Section 3.2, we have wj
i − wj−1

i = ± 1
n where n is the resolution of the grid. Imagine, for

example, that we have wj = (w1, w2, w3, w4, w5)
T and wj+1 = (w1, w2, w3, w4 + 1

n , w5 − 1
n )T . Instead

of computing Dj+1 = w1d1 + w2d2 + w3d3 + w4d4 + w5d5 we compute Dj+1 = Dj + 1
n (d4 − d5). To

be able to apply the method, we need to store the previously computed distance and have a way of

detecting the weights that have changed and by which amount. It turns out that a necessary and

sufficient condition for the update method to be applicable to a grid point is that i > 1 and dim = 0

in the inner for loop of the enumeratePi method. The modification required is a branch condition after

line 11 that causes the execution of the update method if i > 1. For a collection of 8000 images we

have plotted the percentage gain in CPU time that can be achieved with this method (Figure 3.11).

The performance benefits are quite appreciable and become greater as we increase the resolution of

the grid. With eight features and a grid size of six the update method speeds up performance by

almost 40%.
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Figure 3.11: Speed-up achieved through difference computation.

3.3.3 Exploiting convexity

As we have seen in Section 3.2.4, each of the NNk regions are convex. If the NNk under two different

weight vectors are the same, we can therefore deduce that the same NNk must be produced for all

intermediate weight vectors. This provides a way to reduce the number of function evaluations.

3.4 Conclusions

This chapter has introduced the notion of the set of NNk of some focal image. These are defined as all

those images that are closest to the focal image under at least one of the infinitely many instantiations
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of a parametrised distance metric. We have argued that the NNk may be viewed as a pictorial

exemplification of all those semantic facets of the focal image that lie within the representational

scope of the features. Because no single feature is systematically favoured over others, the NNk offer

a maximally unbiased interpretation of the focal image.

We have described a method for approximating the set of NNk by discretising the space of permissible

weight sets. A recursive scan of the finite grid thus constructed achieves a high coverage even for low

grid resolutions and a large number of features. We prove a number of important theorems some of

which can be used for reducing the computational complexity of NNk computation.

The number of NNk increases logarithmically with the number of images in a collection and has

empirically been found to lie around 30 for 10, 000 images and eight features, a number that can

comfortably be accommodated on a screen. The relationship between the number of NNk and the

number of features appears nearly linear up to 11 features. For a large number of features, we expect

the number of NNk to level off.

We have sketched the relationship between the NNk idea and the Skyline or Pareto operator from

relational databases. The latter extracts all those tuples for which there does not exist any other

tuple that is better for all attributes. If we view the distance scores between an image and a focal

image under k features as a k dimensional vector, the NNk lie on the convex hull of the point set. The

Skyline, meanwhile, corresponds to points from the convex hull and an additional number of points

from the contour.

This chapter has introduced a number of terms describing properties of an NNk , such as its support

and its iso-NNk region. These terms will resurface throughout the rest of the thesis and for quick

reference are collectively described in the glossary.

As a first significant application of the ideas presented here we will in the next chapter develop a

powerful method of relevance feedback in the context of image retrieval.
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Chapter 4

NNk Search

4.1 Introduction

Recall from Chapter 2 that the overall distance between a query q and an image p from the collection

is commonly taken to be the weighted sum over the feature-specific distances

D(p, q) =

k
∑

i=1

widi(p, q), (4.1)

and that it is the goal of many a relevance feedback technique to iteratively fine-tune the weight

vector w. As we noted in the same chapter, a widely overlooked problem in this context is that of

parameter initialisation. The limitation of resorting to default parameters does not become apparent

when the collection size is small and queries are kept simple as a sufficient number of relevant images

are retrieved even with crude initialisation. As collections continue to grow, however, this ceases to

be the case and default parameters will generally not be good enough to supply users with positive

examples for effective relevance feedback. Existing relevance feedback techniques successfully address

the problem of fine-tuning weights when the initial retrieval result is already of reasonable quality but

fare badly if it is not and thus are inadequate on their own in more realistic settings.

A simple method for initialising parameters prior to any relevance feedback is based on the observation

that some features are generally better suited for most queries than others, so that one can learn feature

weights that maximise average performance on a set of training queries (Yavlinsky et al., 2004). The

method assumes that the distribution of queries is somewhat similar to that of the training set which

might not always hold. More importantly, by not taking into account that the optimal w may vary

considerably with the query it leaves unexploited much of the potential performance gain. How the

optimal w can vary between different query images is illustrated in Figure 4.1 with three images

from the Corel collection. As in Chapter 3 each point within the simplex is associated with a three-

dimensional weight vector w whose components are proportional to the distance between that point

and the respective side of the triangle. For a set of such points we have measured the average precision

that is obtained when retrieving with the corresponding weight set from a collection of 10,000 images.

The lines shown are lines of equal performance intrapolated from the finite sample, the weight set for

which performance is maximised is marked by a white dot. It is clear that the performance surfaces

exhibit notable differences.
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Figure 4.1: Performance landscapes for three different queries.

If it were true that similar images share similar optimal weights, it would be conceivable to learn a

mapping between the feature representation of an image and the set of optimal weights on a training

collection of queries. Given a new query image, we could then estimate its optimal weight set based

on its visual characteristics. The problem of learning such a mapping is greatly compounded by the

observation that images admit to multiple, equally valid interpretations and that the optimal weight

sets may vary considerably not only between queries but between different interpretations of the same

query. The extent to which this is the case is illustrated in Figure 4.2. The query is a photograph of

an open landscape and is annotated with the words ‘evergreen tree’, ‘moss’ and ‘rain’. We consider an

image relevant, if it contains the respective term in its annotation and, as before, measure performance

in terms of average precision. Even for terms which we might associate with visually similar image

classes, such as ‘moss’ and ‘evergreen tree’, the optimal w can be quite different. Both Figure 4.1 and

Figure 4.2 vindicate our earlier claim that a uniform w, corresponding to the centre of the simplex,

can only be expected to produce suboptimal results. In large collections, the optimal weights is likely

to remain unattainable with the scantiness of positive examples from the first retrieval.
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Figure 4.2: Performance landscapes for one image with three possible meanings.

The only notable attempt to achieve parameter initialisation prior to the first retrieval is due to

Aggarwal et al. (2002), which we referred to in Chapter 2. Relevance feedback is given on a set

of images that are created on the fly by modifying segments of the query image in various ways.

Modifications include changes in shape, size and colour. Each modification can be thought of as a
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particular parameter setting under which the modified query is close to the original query. After

providing positive relevance feedback, the optimal feature weights are learned similar to Rui et al.

(1998). The problem of parameter initialisation is thus solved by not initialising parameters in the

first place but by showing the user a set of images representing different parameter settings. The

major limitation of the method stems from its dependence on good segmentation results and the

arbitrariness of the modifications applied to the segments. In many cases, and in particular when the

images cannot meaningfully be segmented, it may be a difficult task for the user to judge relevance.

Also, the first set of images with which the user interacts do not come from the collection and are by

themselves of no interest to the user.

The NNk idea developed in the previous chapter suggests an interesting alternative. The method,

which we shall call NNk search, offers a principled way of optimising feature weights for individual

queries. It involves little user interaction and its initial step allows the user a first glimpse on the

content of the collection. In spirit it is very similar to the method of Aggarwal et al. (2002) but it

manages to stay clear of its major shortcomings. The method involves two steps and works as follows:

we take an agnostic position in the first step and avoid any parameter initialisation by determining

the set of images which have minimal distance to the query under at least one of the infinitely many

possible combinations of feature weights, in other words, the set of NNk of the query. Each NNk can

be associated with a characteristic weight set (see Section 3.2.6 in Chapter 3) for which it is closer

to the query than any other image. In the second step we gather relevance information on the set of

NNk and choose the characteristic weight sets of the selected images for subsequent retrieval.

We will describe the two steps in greater detail in Section 4.2 and illustrate the method with three

particular example queries in Section 4.3. Section 4.4 is the longest section of this chapter. It presents

a large-scale evaluation of the proposed method by comparing it with another well-known relevance

feedback technique (Rui and Huang, 2000).

4.2 NNk search

4.2.1 Rationale

By showing the set of NNk, i.e. the union of top-ranked images over all combinations of feature weights,

the first step aims to expose the multitude of possible image meanings that can be represented with

the given feature set. If a semantic facet lies within the representational scope of the features, we

expect representative images to appear among the NNk.

Once the NNk have been determined and characteristic weight sets have been associated with them,

users provide relevance feedback by selecting relevant images from among the NNk . For each selected

image we recover its characteristic weight set and compute the overall distances of all images to the

original query under that weight set before aggregating these to form a final ranked list. The second

step is motivated by the intuition that weight sets under which the selected images are ranked top are

likely to retrieve other such images at lower ranks. Each weight set which the user implicitly selects

can be thought of as providing access into different semantic territories of the collection with the NNk

from the first step being the signposts.

Although we should be interested in how many of the semantic facets the set of NNk actually cover,

this figure is not easily obtainable experimentally. The total number of interpretations an image may
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admit to is only bounded by the number of users interpreting the image. Moreover, it should often

not be clear whether two facets are sufficiently distinct to warrant their separate existence rendering

any such figure somewhat arbitrary. To describe the semantic facet of the focal image a particular

NNk exemplifies means to put a singular interpretation on the NNk. This again should not always

be possible as the image may share several aspects with the focal image at once. The term semantic

facet therefore proves rather elusive once we attempt to capture it quantitatively. But it should be

clear from, for example, Figure 3.1 in Chapter 3 that it is more than merely a metaphorical aid.

NNk search takes seriously the observation that the meaning of an image is contextual and that in

many cases it can only be revealed by grouping the image with others. The semantic atoms in the

NNk framework cease to be individual images and become image pairs consisting of a focal image (the

query) and one of its NNk. By choosing one of the NNk we fix the semantics of the focal image, a

process which we shall refer to as the semantic collapse. The idea of adding meaning by letting the

user form explicit associations between images ultimately underpins all relevance feedback techniques.

What distinguishes NNk search from other such approaches is its semantic unbiasedness in the first

step and the particular way of associating optimal weight sets with the set of images on which relevance

feedback is given.

4.2.2 Merging of ranked lists

If users select only one image from among the NNk, the one ranked list induced by the corresponding

weight set constitutes our final ranked list. If more than one image is selected, we need to merge the

ranked lists obtained from each of the weight sets. Merging ranked lists is a problem that has received

considerable attention and to which we already alluded to in chapter 2, where it presented itself in

the context of multi-point queries. Merging ranked lists intelligently is also of critical importance in

distributed information retrieval where search results from multiple collections are to be integrated

in one final ranked list and where the choice of the merging method can have a profound effect on

performance (Si and Callan, 2002, 2003). Depending on whether only ranks are considered or the

individual scores, we can distinguish two broad classes of merging methods.

Score-based merging

Arguably the most basic method of score-based merging is to rank the images according to the highest

score they achieve in any of the individual lists. A simple algorithm for achieving this is the l-way

merge (Knuth, 1973). It involves a pointer for each of the l lists that initially point at the top-

ranked object. The object with the smallest distance is added to the final list and the pointer of

the corresponding list is advanced by one entry. Information about the other scores is discarded

which might not always be reasonable. If an image is consistently ranked high, this could be taken as

additional evidence that it is indeed relevant to a query.

Another shortcoming of this merging method is the need for the scores to have similar distributions.

To see why this should be so, consider two features with mean-normalised Gaussian distributions

D1 and D2 with the same mean and different standard deviations, σ2 > σ1. The initial ranks will

predominantly be occupied by images from the distribution with larger variance, D2, while the final

ranks are more likely to be from D1. This is shown in Figure 4.3 for which we have chosen σ2 = 1.5σ1.
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Such distributional differences do indeed exist among feature distances and they clearly do not vanish

upon mean-normalising the data. An example is given in Figure 4.4 which depicts the distance scores

for the 8, 201 most similar images to a query under four different features (using the Getty collection

described shortly).

Instead of ranking according to the smallest distance, we may consider only the largest distance

or the average of the scores. The three methods are respectively called CombMin, CombMax and

CombSum (e.g. Fox and Shaw, 1994; Lee, 1997), with the last method being arguably most tolerant

to distributional differences.
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Figure 4.3: Problem with score-based data fusion.

Slightly more sophisticated approaches formulate the problem as a supervised learning task. Given

that we know the ideal ranking for a set of queries, we can estimate parameters of a general linear

model to find monotonically increasing functions that optimally map the raw scores for each list to a

new set of scores that can then be combined in a final rank list (Lin and Hauptmann, 2004).

0 1 2 3 4
0

500

1000

1500

2000

Convolution
0 1 2 3 4

0

500

1000

1500

2000

Tamura
0 1 2 3 4

0

500

1000

1500

2000

HDS
0 1 2 3 4

0

500

1000

1500

2000

Thumbnail

Figure 4.4: Histogram of normalised distance scores for four features.

Rank-based merging

A second class of merging methods ignore scores and work with the ranks instead. Rank-based methods

can be implemented very efficiently and easily outperform score-based methods when different lists

have widely differing distributions. The simplest such method interleaves the ranked lists according

to a Round Robin scheme. Advancing downwards starting from the first rank, we add all of the l

entries at the current rank to the final list that have not yet been added. The rank of an image in the

final list thus depends only on the highest individual rank of itself and of all the other images.
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A popular rank-based merging method is Borda-Fuse (Aslam and Montague, 2001). It assigns points

to each entry in each of the lists as follows: given c objects to be ranked (only a subset of which need

to appear in individual lists), we assign c points to the top-ranked object in each list, c − 1 points

to the second-ranked object and so forth. Any candidates not appearing in a list are given an equal

share of the remaining points. The final ranking is obtained by summing for each object the points it

has been assigned in the individual lists. If we have reason to assume that the ranks in some lists are

more informative, it is natural to aggregate the scores in a weighted sum. The weights then capture

our prior knowledge about the usefulness of different features, or in the context of meta-search, of

different retrieval systems.

Although the search for optimal merging methods is not at the heart of our evaluation of NNk search

in Section 4.4, the literature clearly suggest that merging offers substantial scope for performance

optimisation and it should therefore not be ignored. Moreover, merging has been studied largely in

the somewhat different context of meta-search in distributed environments where systems typically

access different collections with the result that the returned lists exhibit only partial overlap. When

objects are returned and ranked only by a subset of search systems, one should reasonably assume

that discarding scores altogether might be disadvantageous since the rank an object has been assigned

in one list may critically depend on what other objects are also present in that particular list. Score-

based merging methods offer some immunity against the biassing effect of partial evidence and should

prove more adequate. The present context is different: each feature-specific ranking comprises the

same, complete set of images thus removing one of the principal weaknesses of rank-based approaches.

We shall see that it is indeed a rank-based method that turns out optimal for our purpose.

4.3 Three examples

Before presenting a quantitative evaluation of the proposed technique, we shall demonstrate its effec-

tiveness anecdotically with example queries from the Corel image collection. Both the collection and

the choice of features will be described in greater detail in Section 4.4. In all three query scenarios,

we show the results of the first step (the set of NNk of the query) and the second step (ranked list of

images obtained by retrieving with the selected weight sets and merging individual lists). We include

the query image at the top left of each group and present images such that their ranks decrease from

left to right and from top to bottom. The set of NNk are ranked according to their support, i.e. the

top ranked image to the right of the query is closest to the query under most feature combinations.

For presentation purposes we have truncated the results at 19 and we should note that in many cases

the number of NNk on the left from which the user may select relevant images exceeds this number

(the average number of NNk is 46).

The first query image is a photograph of a mountain peak. The set of its NNk are rather diverse

differing widely in colour although blue is predominant and a large proportion in all photographs is

coloured fairly uniformly. The images selected for relevance feedback are those at positions (4,4) and

(3,2) of the 4 × 5 grid. The characteristic weight sets of the two images favour a subset of the colour

features with weights for all other features being negligible. Merging the two lists induced by the

two weight sets yields the ranked list on the right. By definition, the selected images turn up at the

top (position 2 and 3) since we retrieve with their characteristic weight sets. These are followed by a

number of more mountain pictures. It is evident from the right group that retrieval with a limited set

of weights produces images that are visually considerably more uniform than the original set of NNk.
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The second query is a photograph of a road sign which once again produces a set of visually distinct

and semantically unrelated NNk of which only a few may be considered relevant. The selected images

include the two road signs from the left group plus one other image from the remaining NNk. The

three images are retrieved top in the right group with five more road signs appearing in the top 19.

The third query image depicts a glass with a transparent liquid and the search is for examples of the

‘beverage’ class. Selecting the two relevant images found in the left group at positions (1,5) and (4,5)

produces five more relevant images after the second step.

4.4 Evaluation

This section investigates the effects of NNk search on retrieval performance. As is customary for this

purpose, we employ manually annotated image collections and automate the feedback process so that

an evaluation can be carried out on a large scale.

The standard measure of retrieval performance in information retrieval continues to be mean average

precision (Clough et al., 2005; Vorhees and Buckland, 2005). When evaluating relevance feedback

techniques, however, arguments based solely on mean average precision must be taken with caution.

When the set of relevant images is low, even a small shift of relevant images in the ranked list may

result in substantial gains in average precision without necessarily leading to an increase in the number

of relevant images displayed to the user. To take an extreme example, consider there being only two

images relevant to a query. If these are ranked at positions 3 and 4 by one system and at positions

2 and 3 by another, the average precisions of the two systems are 50% and 67%, and thus, on the

face of it, we would have a relative gain of 34%. This figure is clearly a hugely inflated estimate

of the difference between the systems. In fact, for the user the difference is unlikely to be of any

practical significance. This effect is known as the ranking effect (as opposed to the feedback effect)

and in document retrieval a number of techniques such as residual ranking and rank freezing have

been proposed to control for it (Chang et al., 1971; Ruthven and Lalmas, 2003). We address the

problem by employing precision at rank 50 as an additional performance measure. We denote this by

Pr-50 and, to avoid confusion, should emphasise that this is not precision at 50% recall. Assuming

that a screen can comfortably accommodate 50 images, changes in Pr-50 give us an estimate of how

the number of relevant images changes among the set with which the user interacts. We focus on

precision rather than recall as we believe that for large image collections, users are more interested in

the former than the latter. In the context of Web document retrieval, for example, this is a commonly

made assumption (Hawking et al., 1999).

4.4.1 Image collections and queries

Corel

Our evaluation is based on two collections. The first one is a subset of the Corel 380,000 Photo

Gallery comprising 31,997 images. The Corel collection enjoys great popularity among researchers

not only because of the good quality of the photographs. The pre-assignment of images to categories

by means of their position in the directory hierarchy greatly facilitates automatic evaluation: an image

is considered relevant to a query if it is from the same directory (Heesch and Rüger, 2003; Urban and

Jose, 2004a). By not allowing membership to more than one class, however, the Corel classification
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Figure 4.5: Results for the first (left) and second step (right) of NNk search for three queries.
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fails to model image polysemy. To overcome this limitation we make use of the textual annotation that

accompanies each image as this can form the basis of an alternative classification with overlapping

classes. The joint vocabulary of the 31,997 images comprises 20,250 terms of which we only keep those

that are associated with at least 20 and at most 100 images. Of the resulting 530 classes, we discard

those with too little visual coherence leaving us with a final set of 191 classes with an average of 49

images and ranging in size from 20 to 99. Example classes beginning with ‘S’ include ‘Sandstone’,

‘Santorini’, ‘Sculptures’, ‘Seals’, ‘Seashore’, ‘Sepals’, ‘Shells’, ‘Ship’, ‘Shrimp’, ‘Skyscraper’.

Getty

We built a second collection of a more diverse kind with richer and more consistent annotation than

Corel. We downloaded medium-resolution thumbnails of photographs from the Getty Image Archive

website (http://www.gettyimages.com) along with the annotations assigned by the Getty staff. The

selection of photographs was obtained by submitting the following query to the Getty website: “pho-

tography, image, not composite, not enhancement, not ‘studio setting’, not people”, with the additional

search option to exclude illustrations. With this query we hoped to obtain a random selection of pho-

tographs that would exclude pictures with no photographic content, digitally composed or enhanced

photos and any photos taken in a studio setting. Because the resulting dataset contains pictures from

a number of different photo vendors we hope to reduce the chance of unrealistic correlations between

images.

Our Getty collection contains 8,202 images from which we construct classes as before. The joint

vocabulary of 8,551 terms is reduced by retaining only those terms that are associated with at least 20

and at most 100 images. We again discard terms that we consider either too difficult for visual retrieval

such as ‘freshness’ or too easy such as ‘blue’. After these pruning steps the vocabulary has shrunk

to 100 terms which we regard as class labels. Examples of classes for the Getty collection beginning

with ‘S’ are: ‘Salad’, ‘Sand Dune’, ‘Sea Life’, ‘Seascape’, ‘Skyline’, ‘Snowcapped’, ‘Spotted’, ‘Steam’,

‘Storm’ and ‘Sunrise’.

With images belonging to several relevance classes, a query consists of an (image id, image class) pair.

The same image can participate in more than one query. Because of the extensive reduction of the

vocabulary, only a subset of the images will be annotated with one of the remaining class labels and

it is only these that we can employ as queries. Of the 3533 queries for Corel and the 4479 queries for

Getty, we choose a random subset of 500 for evaluation purposes. A summary of various collection

parameters is shown in Table 4.1.

Corel Getty

Size 31,997 8,202

Number of classes 191 100

Class size (avg) 49 44

Class size (range) 20–99 20–99

Avg polysemy 1.1 1.4

Max polysemy 5 7

Table 4.1: Summary of properties for the two collections used in the evaluation
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4.4.2 Visual features

We have chosen a set of eight colour and texture features that we believe provide a good coverage of

visually relevant image aspects. Some have proven successful individually in other retrieval experi-

ments or form part of the MPEG-7 standard. In some cases we divide images into tiles and compute

features for each tile.

HSV global colour histogram:

HSV is a cylindrical colour space with H (hue) being the angular, S (saturation) the radial and V

(brightness) the height component. We choose a linear subdivision into 10 hues, 5 saturation values

and 5 brightness values yielding a 205-dimensional feature vector: Since hue is singular along the

achromatic axis we merge all pie-shaped three-dimensional HSV bins touching the achromatic axis.

The HSV colour histogram is normalised so that the components add up to 1.

HSV focal colour histogram:

This is the same as the global colour histogram except that it is applied only to the central 25% of

the image.

Colour structure descriptor:

This feature is defined in the HMMD (hue, min, max, diff) colour space and is part of the MPEG-7

standard (Manjunath et al., 2001). The HMMD space is derived from the HSV and RGB spaces. The

hue component is the same as in the HSV space, max and min denote, respectively, the maximum

and minimum among the R, G, and B values, and the diff component is the difference between max

and min. The colour space is quantised non-uniformly into 184 bins with the three dimensions being

hue, sum (defined as (max + min)/2) and diff.

The colour structure descriptor is obtained by sliding a 8 × 8 structuring window and count for each

HMMD bin the number of positions for which the window contains at least one pixel from that

bin. This descriptor is capable of discriminating between images that have the same global colour

distribution but different local colour structures (see the example at the beginning of Chapter 3). The

184 bin values are normalised by dividing by the number of locations of the structuring window so

that each of the bin values falls in the range [0, 1] but the sum of the bin values can take any value

up to 64.

Thumbnail feature:

This feature is obtained by scaling down the original image to 44 × 27 pixels and then recording the

gray value of each of the pixels leaving us with a feature vector of size 1,188. It is suited to identify

groups of near-identical images.
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Tieu’s convolution features

These features have been proposed by Tieu and Viola (2000) in conjunction with their boosting

method. It is a set of highly selective features generated by applying 25 primitive convolution filters

first to the initial gray-level image and then to the outcome of the filtering process. After applying

the convolution three times, we obtain 253 = 15625 feature maps each of which is then represented

by the sum of its pixel values. The features take large values typically only for a small fraction of the

image collection.

Tamura features

We compute the three Tamura features coarseness, contrast and directionality as proposed in Tamura

et al. (1978) for each of 9×9 non-overlapping tiles. For each pixel we compute the values of each of

the three features and compute for each tile a three-dimensional histogram. More details regarding

this feature can be found in Howarth and Rüger (2004).

Co-occurrence feature

The co-occurrence feature is based on the notion of a grey-level co-occurrence matrix P . Given a

quantisation of the pixel intensity into k grey-levels and some vector d, each entry pij gives the number

of times that two pixels separated by d belong to respective grey-level bins i and j. By varying d

the resulting k × k co-occurrence matrices can capture different texture characteristics. Based on the

evaluation in Howarth and Rüger (2004) we choose to split the images into 9×9 non-overlapping tiles.

We quantise the colour space into 32 grey levels and determine 16 co-occurrence matrices for each tile

by considering four different lengths (1-4) and four different orientations (0-3π/2 in steps of π/2) of

d. For each co-occurrence matrix P we calculate a homogeneity feature H as

H =
∑

i

∑

j

pij

1 + |i − j| .

Gabor feature

Gabor filters are amongst the most popular methods for texture extraction. Our implementation of

the Gabor filter is based on Manjunath and Ma (1996) and Howarth and Rüger (2004). Each image

is passed through a bank of four orientation-sensitive filters and two scale-sensitive filters according

to

W (x, y) =

∫

I(k, s)g∗(x − k, y − s) dk ds.

where g∗ is the complex conjugate of a normalised Gabor wavelet. The feature vector consists of

the mean and standard deviation of the modulus of W for 7 × 4 tiles. Since different filters produce

outputs in different ranges, we normalise both the mean and the standard deviation for each filter.

4.4.3 Reference performance

Retrieval performance is exceedingly sensitive to experimental conditions and thus absolute perfor-

mance figures need to be interpreted with great care. The size and nature of the image collection,
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Figure 4.6: Variation in retrieval performance as we vary one feature weight.

the set of query images and the choice of visual features all have a potentially profound effect on per-

formance. Any system evaluation ought to be carried out, therefore, in direct comparison with other

systems. We compare NNk search with three other methods. The first method weighs all features

equally and provides us with a baseline. The second method, an oracle, weighs features according to

an optimal weight set that has been determined empirically for each individual query. No system that

retrieves with only one weight set can do better than this. The third method is an implementation

of the well-known weight update technique proposed by Rui and Huang (2000), a relevance feedback

technique that aims to optimises such a single weight set. We describe each method in turn.

Baseline performance

The baseline performance for our experiments is that achieved by giving all features an equal weight.

Without any information about the relative performance of different features, such a default set is

our best guess and it is almost universally used as initialisation strategy when evaluating relevance

feedback techniques. The third method, the weight update technique by Rui and Huang (2000), will

use the results from a baseline run as the first set on which relevance feedback is performed.

Oracle performance

We are not only interested by how much the technique improves retrieval performance beyond the

baseline, but also to what extent we are able to approach the performance that could be attained if we

knew for each query the best single weight set. This is an important benchmark since a large number

of relevance feedback techniques are concerned with finding such a single weight set (e.g. Rui et al.,

1998; Rui and Huang, 2000; Heesch and Rüger, 2003). Should it turn out that NNk search surpasses

this optimal performance, we may legitimately claim, therefore, that the method does better than all

these relevance feedback techniques without having to test them one by one.

In our endeavour to determine the best set of weights for individual queries, we first observe that

owing to the discrete nature of ranks, an infinitesimal change in the weights may bring about a finite

change in performance. As a result the scalar field which maps weights to average precision or Pr(50)

is discontinuous and not differentiable. One way to optimise performance under such conditions is to

provide a stochastic formulation of the objective function thereby rendering it differentiable, see for
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example Goldberger et al. (2005). Alternatively, we can carry out a grid search of the weight space as

proposed in Chapter 3 for the purpose of NNk determination. The performance value thus found is

unlikely to be a local let alone a global maximum but the grid search can be coupled with a subsequent

gradient ascent search which should at least lift us to a local maximum. This is the strategy adopted

here.

Figure 4.6 depicts how retrieval performance for a particular query varies as we change the weight of

a single feature. The discontinuity is evident when performance is measured in terms of Pr(50) but

much less so when measured in terms of average precision. The reason for the difference is that average

precision takes into account the entirety of the ranked list and any small change in the distribution

of relevant images is likely to have a correspondingly small impact on performance. We can also see

from the average precision graph that we should be able to obtain an approximation of the slope for

the purpose of our gradient ascent step. Let j index the feature whose weight we vary by a small

amount h, then an estimate of the jth component of the gradient is

P (w) − P (w + ∆w)

h
,

where ∆w is a vector whose jth element is h. Because the weights are sum-normalised, any increase in

one feature weight must be accompanied by a corresponding decrease in the sum of all other weights.

Strictly speaking, therefore, increasing the jth weight by h requires us to multiply all others by some

common factor that ensures that they again sum to 1. We find that the other components of ∆w are

given by

∆wi =

(

h

wj − 1

)

wi.

After identifying the weight and the direction (the sign of h) along which performance increases most,

we perform a search along the line given by the set

{

w

∣

∣

∣

∣

wi = 1 − tw0
i

1 − w0
j

, wj = w0
j + t, t ∈ [−w0

j , 1 − w0
j ]

}

,

where j indicates the weight we vary, and w0 denotes the starting weight. With three features, the

line corresponds to the straight line on the two-dimensional weight simplex that crosses the point

corresponding to w0 and the vertex opposite the side that corresponds to the feature whose weight

we vary.

The w that maximises performance locally is found by moving along the line in small intervals ∆w

starting at w0 until performance begins to decrease. In Figure 4.6 the line search begins at w0
j = 0

and moves at intervals of 0.01 to the right. As expected the line search terminates no later then

the first peak at (0.05, 0.121), which happens to be the global maximum in that direction. The next

iteration finds the new direction along which performance can be increased further, and so on until

performance decreases in every feature direction. In the above example, performance can be increased

to above 0.14 using this method. Although the method is not guaranteed to find the global optimum,

it generally comes very close to it as suggested by grid searches with very high resolution.

At the risk of belabouring the point, we wish to stress once more that the performance thus obtained

does not place a limit on the performance of the NNk method as the latter allows retrieval with

multiple weight sets whenever more than one NNk has been chosen. The oracle provides an upper

performance bound for any relevance feedback method that attempts to optimise and retrieve with a

single weight set.
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In case that NNk search does not exceed the performance of the oracle, it is important to have a

direct comparison with alternative relevance feedback methods. Below we remind ourselves of one of

the most popular methods that was introduced earlier in Chapter 2 and which has been taken up by

other groups (Urban and Jose, 2004a).

Weight update according to Rui and Huang (2000)

Recall from Chapter 2 that Rui and Huang (2000) derive an optimal solution for the feature weights

w when the objective is to minimise the summed distances between relevant images and the query

with the distance of each relevant image being weighted by its relevance score vi. Given N positive

examples, they find that the optimal w satisfies

wj ∝ 1
√

∑N
i=1 vid(pij , qj)

, (4.2)

where the denominator is the sum of the weighted distances between the query and all relevant images

under feature j. In our experiments we choose at random a maximum of ten relevant images and set

their relevance scores to one. Note that since the aggregation formula for the feature-specific distances

is linear in the feature weights, the proportionality constant in Equation 4.2 can be chosen arbitrarily.

The first retrieval is with a default weight set after which we allow three rounds of relevance feedback

before measuring average precision and Pr-50.

4.4.4 Performance after the first step of NNk search

It is one of our hopes that by covering all possible feature combinations in the first step, the NNk

are more likely to contain at least one relevant image than were we to retrieve with only one default

weight set. Because we do not impose a particular interpretation on the query image, we should be

more likely to gather at least one representative of the initially unknown semantic facet the user is

interested in, although, and for the same reason, we might not gather many of them. This would

place a definite advantage on NNk search as it increases the scope for positive relevance feedback.

The results for the entire set of 3,533 queries built from the Corel collection provides circumstantial

evidence that this is indeed the case. Let nNNk (nbase) be the number of times that we find at least

one relevant image among the NNk (baseline) but not among the baseline (NNk). We find that indeed

nNNk > nbase although with nNNk = 755 and nbase = 734 the difference is not statistically significant

as suggested by a χ2-test with one degree of freedom. We also find that while the set of NNk is more

likely to contain at least one relevant image, the average number of relevant images is greater for the

baseline search (albeit only by 0.29).

4.4.5 Performance after the second step of NNk search

Although the total number of relevant images returned from the first step of NNk search is smaller

than that for a baseline search, we hope that the few relevant images are nonetheless sufficient to

outperform the baseline search in the second step, and possibly to exceed the performance that can be

attained when retrieving with the best possible weight set. The latter could be achieved for individual

queries whenever there are at least two relevant images among the set of NNk so that the second step

has more than one weight set at its disposal. We also hope to beat if not the optimal performance so
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Corel Getty

MAP (%) Pr-50(%) MAP (%) Pr-50 (%)

Baseline 2.29 1.58 2.95 1.64

Oracle 5.26 2.81 6.41 2.92

RUI 2.49 1.66 3.17 1.71

NNk Round Robin 4.45 2.12 5.76 2.28

NNk Borda Fuse 3.43 1.83 4.55 2.02

NNk CombSum 3.79 1.95 4.91 2.14

Table 4.2: Performance comparison between NNk search with three different fusion techniques.

at least the alternative update method by Rui and Huang (2000). The main results are compiled in

Table 4.2. It displays the absolute performance averaged over 500 queries for the baseline search, the

optimised search, Rui’s method, and NNk search with three of the merging methods introduced in

Section 4.2.2. It seems that all our claims are borne out by the experiments. We can make a number

of specific observations:

1. Performance figures are strikingly similar for the two collections. This should at first surprise

as the Corel collection contains more than three times as many images with relevance classes

that are only marginally larger than for Getty. This alone should render the retrieval task more

difficult. It appears, therefore, that the greater variability of images within the relevance classes

of the Getty collection makes up for its smaller size and that it does indeed constitute a more

challenging collection for retrieval.

2. From among the three merging techniques, the Round Robin method consistently achieves the

greatest performance gains. The reason for the superior performance of Round Robin can be

seen in the fact that, unlike Borda Fuse and CombSum, the final rank assigned by Round Robin

to an object is only very weakly correlated with the average rank it occupies in the different

lists to be merged. Averaging ranks or scores, which is the effect of CombSum and Borda

Fuse, appears sensible in situations where we do not want extreme individual ranks to dominate

the final ranking. That they are less helpful in the context of image retrieval may result from

the observation that relevance classes are composed of several groups of visually similar images

with little visual coherence between groups (e.g. Kim and Chung, 2003). If the selected NNk

happen to come from different groups, we expect the different weight sets to be particularly

good at retrieving more relevant images from the respective group. Relevant images, therefore,

are expected to be ranked high for some weight sets and low for others. The Round Robin

scheme ensures that such images still receive a high overall rank. Its good performance may be

construed as circumstantial evidence in favour of our assumption about the visual structure of

relevance classes.

3. Irrespective of the fusion technique, the performance of NNk search lies markedly above the

baseline and reaches close to the optimal performance for the best fusion technique. The differ-

ences to the baseline is statistically significant, but so is its difference to the optimal performance

(for both we find p < 0.001 under a paired t-test). That NNk search does not succeed in closing

the gap fully might result from the fact that for many queries the set of NNk includes but one

relevant image so that the best single weight set performance is indeed the best we can do.
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Figure 4.7: Precision-recall graphs averaged over 500 queries for Getty (left) and Corel (right).

Nevertheless, the difference is rather small and the scope for single weight set relevance feedback

techniques to outperform NNk search is negligible. This is therefore strong evidence in favour

of the NNk search methodology.

4. As further confirmation of the previous observation, we note that the performance figures for

the well-known method by Rui and Huang (2000) are dwarfed by those of NNk search. In fact,

the weight update according to Equation 4.2 does not seem to lift performance much above the

baseline and, indeed, with p = 0.066 the difference in Pr-50 is not significant under a paired

t-test.

Visual confirmation of these claims comes from the precision against recall curves in Figure 4.7 ob-

tained by averaging over the 500 queries. Again, the two collections afford the same picture. In both

cases the performance of NNk search comes tantalisingly close to the optimal performance and leaves

little room for further improvement by alternative weight update methods.

4.4.6 The computational cost of NNk search

The above measures of retrieval performance, mean average precision and Pr-50, give little indication

on their own of the rate at which relevant images are encountered during the search process. Depending

on the application, users may not be willing to wait longer unless the results are considerably better.

The rate depends on retrieval performance as well as the computational cost. The latter, therefore,

becomes an important additional axis along which performance ought to be measured. We have kept

the two separate because computational cost is much less fixed and can be reduced by optimisation,

approximation, parallelisation and advances in hardware technology.

If we assume that all features and distances have been precomputed (i.e. the query image is part of

the collection), the first step of NNk search is computationally the most expensive part. If we apply

the optimisation techniques proposed in Chapter 3, NNk determination takes slightly more than five

seconds for 31, 997 images), a grid resolution of four and eight features (in which case there are 715
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grid points that need to be visited). Given the substantial gain in performance, we believe that this

cost is acceptable. Note also that the way the NNk are computed offers the possibility of returning

them to the user whilst the grid search is being performed. Contrast this to k-nearest neighbour

search where the final list can be determined only after the entire collection has been scanned.

For each grid point, NNk determination involves applying Equation 4.1 to each of the N images in the

collection and sorting the resulting set of distances. The complexity is therefore of order O(N log N).

We will see in Chapter 7, that the great majority of an image’s NNk are ranked high by at least

one feature. This means that we can greatly reduce the complexity by only considering the union of

highly-ranked images. This requires us to sort the feature-specific distances for each feature once prior

to the grid search. Since the union of highly-ranked images has a size that is virtually independent of

the size of the image collection, grid search acquires constant-time complexity.

If we want to cater for queries from outside the collection, we will have to perform feature extraction

and distance computation on the fly. For large collections and many high-dimensional features, dis-

tance computation incurs a serious overhead but one which relevance feedback techniques in general

are affected by equally. These observations are summarised in Table 4.3 for a 3GHz processor.

Step Time (sec) Notes

Feature computation 1.45

Distance computation 1,601 L1 metric between 4,457 floats per image

NNk determination 5.52 715 grid points

Ranked lists computation 0.016 per positive example

Ranked lists merging 0.153 per positive example

Table 4.3: Computational cost of NNk search for 31,997 images and eight features.

4.5 Conclusions

This chapter has seen the first application of the NNk idea to content-based image search. The

proposed method provides an effective solution to the problem of combining distance scores from

different features. The standard approach involves some form of relevance feedback given on a set of

images that have been retrieved with a default weight set. Effective relevance feedback relies on the

presence of relevant examples among the first retrieval result. With crude initialisation, however, this

is only the case as long as the collections are sufficiently small and queries sufficiently simple.

NNk search addresses the problem by essentially avoiding parameter initialisation altogether. Instead

of retrieving with one default weight set, the user is shown all the images that are most similar to the

query under some combination of features. These are just the NNk introduced in Chapter 3. The set

of NNk of an image provide an overview of the possible semantic facets that a user may wish to search

for. In addition to covering a wider range of possible image interpretations, and thus being more

likely to capture the semantic facet that is important to the user, the first step of NNk search makes

it possible to associate each of the NNk with a characteristic weight set, which is the average weight

set under which that NNk is closest to the query. Therein lies the principal strength of the method:

by selecting relevant images from among the set of NNk , users implicitly select weight sets which can

subsequently be used for retrieval. Since the weight sets have retrieved the selected images at the top,
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we should hope that it retrieves more images of the same kind further down the list. This intuition

is amply vindicated by our experiments on two large image collections. For both collections retrieval

performance gets close to the best single weight set performance and consistently outperforms the

well-known method for updating feature weights proposed in Rui and Huang (2000).

The computational cost of the first step of NNk search is significant but certainly an acceptable price

to pay for the enhanced performance. One problem with the proposed method is that it does not

offer much help when the first retrieval result does not include relevant images; the best we can do in

those circumstances is to provide the user with a ranked list induced by a default weight set. In the

chapters to come we will therefore advance beyond the framework of search by example in general and

NNk search in particular, and construct image networks that can be browsed. The structure that we

will propose and begin to explore in the next chapter is firmly rooted in the NNk idea and naturally

suggests itself as a powerful continuation of NNk search.
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Chapter 5

NNk Networks

5.1 Introduction

The previous chapter introduced NNk search as a two-step relevance feedback method for learning

feature weights given a query image. The key idea was not to impose a single metric when retrieving

the first set of images but to display instead the NNk of the query as introduced in Chapter 3. These

can be thought as the nearest neighbours to the query image in different feature directions and thus

provide a concise pictorial representation of the different semantic facets that users may be interested

in and that the chosen feature set can represent. The additional advantage of computing neighbours

in this manner is that we can associate each NNk with an optimal metric, which is the average metric

for which that image is the NNk . Selecting relevant images in the second step thus yields a set of

weights that can subsequently be used for retrieval. The first step provides an overview of the possible

semantic facets of the query image while the second step precipitates what we called a semantic

collapse.

The method proves effective whenever there is at least one relevant image turning up in the first

step. But for very large collections or difficult queries with no relevant image being among the NNk,

the method provides little scope for improving search results. Another limitation, which the method

shares with most relevance feedback methods, results from its objective to find a global metric. When

a relevance class forms a complex distribution in feature space, any such metric will often be locally

suboptimal and will not model the metric structure of the class as a whole. NNk search is an exciting

first application of our NNk idea but in clear need of extension.

In this chapter we will propose a structure that addresses the principal limitations of NNk search. It

is motivated by the observation that if the set of NNk of a query image does not include any relevant

objects, it will contain images that are at least visually closer to the target. Instead of triggering a

semantic collapse by selecting a particular NNk, we may instead compute a new set of NNk for the

selected image and repeat this process as often as the user wishes. Although there is no methodological

difference between computing the NNk for a query image and computing them for an image from the

collection, the latter can be precomputed so that we avoid the computational burden of NNk search

at run-time. By determining the set of NNk for every image from a collection we effectively generate

a hyperlinked network in which all images are connected to their NNk. Image search then takes the

form of navigating through a static network structure. We call these structures NNk Networks and
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shall in this chapter begin to examine some of their properties. We will delve more deeply into network

analysis in the four ensuing chapters.

This chapter is organised as follows. In Section 5.2 we describe the process of computing NNk Networks

given an image collection and a set of image features. Section 5.3 sets the structure apart from the other

browsing structures that we encountered in Chapter 2. Section 5.4 begins a first characterisation of

NNk Networks in terms of global properties. In Section 5.5 we describe the basic mode of interaction

with NNk Networks and illustrate with one example how quickly NNk Networks allow navigation

across a collection.

5.2 NNk Network construction

Given a collection of images and a set of image features, we construct an NNk Network by identifying

vertices of the graph with individual images and by establishing arcs between every image and all

their NNk. NNk Network construction thus involves image-wise NNk computation as the central,

computationally most expensive step. Recall from Chapter 3 that an image p is an NNk of q if and

only if there exists at least one convex combination of feature-specific distances d(p, q) for which p has

minimal distance to q. We refer to the image whose NNk we have computed as the focal image and

write q → p to indicate that q is a focal image of p. The NNk relationship is not generally reflexive so

that q → p does not imply p → q. The resulting graph is therefore directed.

The connectedness of individual vertices is only part of the information we obtain from NNk compu-

tation. For each NNk we also determine the fraction of weight combinations for which it is closer to

the focal image than is any other image from the collection. We call this the support of the respective

NNk. The support may be viewed as a measure of similarity between the focal image and its neigh-

bours: The more feature combinations support the NNk relationship, the more similar is the NNk to

the focal image. The support can be incorporated into the NNk Network structure by letting it play

the role of arc weights. NNk Networks are thus completely specified by storing for each image the

indices of all its NNk, and for each of the latter its support. By storing the NNk in decreasing order

of support we are able to quickly retrieve the set of most similar NNk.

The storage requirements are moderate. As an example consider a collection of 100,000 images with

an average of 100 NNk per image. The corresponding NNk Network requires 105 × 50× 8 bytes, that

is 40 MB of storage. By limiting the number of NNk that are stored for each image, storage costs

increase linearly with the number of images, otherwise the relationship would be log-linear according

to Figure 3.8 in Chapter 3.

We will find it useful for Chapter 8 to also store for each arc the characteristic weight set of the

respective NNk. Recall that this weight centroid was the key to finding feature weights in the second

step of NNk search. This adds another 4 bytes for every feature so that for ten features our example

collection now claims 105 × 50× (8 + 4 × 10) bytes or 240 MB.

The time complexity of NNk Network construction is O(N 2) where N is the number of images in

the collection. The quadratic relationship is imposed by the requirement to compute the pair-wise

distances between any two images. The largest collection we have indexed comprises 100,000 images.

This can be achieved in around a week for 8 features on a single 3 GHz processor. Both distance com-

putation and NNk computation can readily be parallelised which should provide a practical solution

for collections of a few million images. For much larger collections, however, the quadratic complexity
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will need to be tamed. For low dimensional spaces, k-nearest neighbour search can be accelerated

through the use of hierarchical index structures such as R trees (Guttman, 1984) but for the dimen-

sionality typically encountered in image retrieval applications, performance of such space partitioning

methods degrade rapidly (Weber et al., 1998). An alternative approach that is currently attracting

much attention is to approximate the k-nearest neighbours. The Vector Approximation File (VAFile)

by Müller and Henrich (2004), for example, each feature dimension is quantised thus allowing a fast

initial filter step. In a second step, the complete feature vectors of the filtered set are used to refine

the answer. The similar BOND system of de Vries et al. (2002) employs a branch-and-bound algo-

rithm so that data in later dimensions can be discarded. The iGrid of Aggarwal and Yu (2000), the

bitmap index of (Cha, 2003) and the local similarity function method by Howarth and Rüger (2005)

all work with vertically decomposed features where only those parts of each dimension are considered

that are close to the query point. This brief survey only serves to illustrate that notable progress is

currently being made to speed up k-nearest neighbour search so that the complexity of NNk Network

construction may be reduced to O(N log N) or even O(log N) if k-nearest neighbour search could be

achieved in constant time.

5.3 NNk Networks in context

In this section we shall consider some of the browsing structures that we first encountered in Chapter

1 and work out precisely how these differ from NNk Networks.

The closest in structure are arguably Cox’s nearest neighbour networks (Cox, 1992, 1995). Cox

defines a nearest neighbour network of order k as a directed graph such that each object is linked

to its k most similar objects under some fixed distance metric. Note that for k > 2 most of the

connections are between objects that are only near to each other, not nearest. Similarity is measured

by applying the cosine similarity measure to a vectorial representation of objects. Browsing takes place

by users choosing any of the k neighbours of a node which retrieves the set of neighbours of the newly

selected object. NNk Networks differ significantly from Cox’s nearest neighbour networks by explicitly

addressing the problem that motivates relevance feedback techniques, in general, and the NNk idea

in particular, namely the dependence of the optimal distance metric on both the user and the query

task. Interestingly, Cox notes in his final chapter that “there is no reason why the measures used

to find nearest neighbours need be exactly the same in different parts of the network.” and suggests

that “when we are inserting an object we use the measures associated with the objects that are in the

database, but we allow the person doing the insertion to disregard the computer suggestions.” (Cox,

1995, pp. 140). Allowing the metric to vary with the object does, however, not solve the problem

arising from the empirical fact that even for the same object the metric may vary considerably between

different users (see Figure 4.2 of Chapter 4). Moreover, locally optimising metrics through explicit user

input becomes impractical for large collections. NNk Networks address both issues by determining for

each image nearest neighbours for a large set of metrics. If we assume the metric to be fixed, the lines

of equal distance are the same for every image and, unless we intentionally introduce a bias, they have

the same extension in every feature direction. The neighbourhoods of k-nearest neighbour networks are

therefore locally more confined than those covered in NNk Networks. By looking at different feature

combinations, NNk Networks can draw on points that may be quite far by unweighted Euclidean

standards. In addition to being unbiased with respect to the underlying features, NNk Networks thus

offer a greater chance to quickly traverse an image collection.
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Rubner et al. (1997)’s browsing model displays the neighbourhood of an image by applying multi-

dimensional scaling to a distance matrix derived from colour information. While providing a well-

motivated principle for displaying image neighbourhoods, the approach does not address the problem

of finding object- and user-specific metrics, but nor does it claim to do so. It assumes that colour is

generally the best feature for retrieval purposes and places its emphasis instead on image layout and

distance computation. Another notable difference of Rubner’s model to both Cox’s nearest neighbour

networks and NNk Networks is the computational cost of navigating through the structure. Browsing

takes the form of iterated query by example. Selecting an image from the retrieved set initiates a new

query involving the computation of a new set of k-nearest neighbours followed by layout optimisation.

The application of MDS to entire collections might only be meaningfully employed to browse small

collections of a few hundred images.

Santini et al. (2001)’s model supports sophisticated techniques for adjusting feature weights so that the

distances computed by the system match better those communicated by the user. The process is one of

continuous refinement and appears ill-suited to quickly navigate through a large collection of images.

Despite appearance the model is in fact more akin to traditional relevance feedback techniques and

does not concern itself with the question of how to initialise the distance metric in the first place. Its

computationally expensive optimisation step after each feedback iteration might lead to unacceptable

response times for large collections. We shall see that NNk Networks support both fast undirected

browsing without a well-defined information need as well as directed target search without paying the

price of increased computational complexity.

The ostensive browsing model as conceived by Campbell (2000) and adapted to content-based image

retrieval by Urban et al. (2003) lets the user follow paths in a dynamically growing tree structure.

The objective is to establish the best query vector given the history of past images on the browsing

path. This makes for a more robust method than were we to use only the selected image as the query.

More recent evidence is assigned greater weight so that the model is flexible enough to track changing

information needs. By incorporating information about the user’s immediate browsing history, the

model exhibits the interesting property that the same image may lead to different search results. Like

the models of Rubner et al. (1997) and Santini et al. (2001), the ostensive browsing model involves

the execution of a new query at each step and does not aim to extract different semantic facets

of the current image. Although NNk Networks are precomputed and inherently static, an analysis

of the browsing history could help to arrive at more robust estimates of the information need of

a user. This in turn could be exploited for automated query formulation and weight estimation,

providing a possible synergy between NNk Network browsing and query by example. This touches

on the general question how to exploit implicit relevance feedback provided through browsing in an

integrated retrieval framework, an issue that is of great interest but that lies outside the scope of the

present thesis.

A number of hierarchical browsing models have been proposed for image retrieval (Krishnamachari

and Abdel-Mottaleb, 1999; Swets and Weng, 1999; Chen et al., 2000; Pečenović et al., 2000; Barnard

and Forsyth, 2001). Characteristically, the distance metric employed for hierarchical clustering is

fixed so that once again the problem of image polysemy is left unaddressed. Browsing takes place not

across networks but along tree structures, which are arguably less suited for undirected exploration

of information spaces.

NNk Networks are similar to conventional nearest neighbour graphs, which consist of only those edges

that connect a point to its nearest neighbour. Because there is typically exactly one nearest neighbour,
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these graphs are extremely sparse. NNk Networks connect each point to all points nearest under any

one feature or a linear combination thereof, so NNk Networks can be viewed as a superposition

of k-nearest-neighbour graphs to which a few edges are added by also taking into account feature

combinations. We note from Figure 3.8 of Chapter 3 that most of the NNk are in fact induced by

feature combinations. For k = 8 and 10, 000 images the number of NNk is around 30, meanwhile the

maximum number of nearest neighbours that would result from a superposition of nearest neighbour

graphs is eight and may be less since an image can be the nearest neighbour to another under more

than one feature. The individual nearest neighbour graphs therefore contribute only a minority of

edges to the rich connectivity structure of NNk Networks.

5.4 A global view of NNk Networks

This section is concerned with contrasting NNk Networks in terms of global properties with random

networks on the one hand, and k-NN networks on the other hand. These investigations will provide

us with first insights regarding the structural characteristics of NNk Networks.

5.4.1 Layout optimisation

NNk Networks represent the local neighbourhood of an image and we therefore expect the graphs to

be in some sense structured. For example, if two images p and q share the same neighbour, they are

more likely to be connected themselves than in a random network because p and q occupy a similar

region in feature space. As argued above, we expect the equivalent k-NN networks to exhibit more

structure still because the neighbourhood is spatially even more confined.

We seek to validate this hypothesis by simply visualising the networks. Gaining a visual impression of

the structure of NNk Networks is possible for all but very small collections. Even if every vertex has

only a small number of neighbours, the graphs quickly become unwieldy to display. For the purpose of

illustration, we have constructed the NNk Network for 100 images from the Corel collection described

in Chapter 4. For each vertex we only record the two NNk with the largest support. In addition, we

construct a random network where every image is connected to two randomly chosen images. A 2-NN

network is constructed by finding for each image the two nearest neighbours under an unweighted

Euclidean metric.

The graphs are displayed by randomly assigning vertices to regularly spaced positions along the

circumference of a circle. To keep the plot simple we omit any indication of the direction of the edges.

The results are shown in the top row of Figure 5.1 (left: random network, middle: NNk Network,

right: k-NN network).

The three graphs look essentially the same with any differences in detail easily attributable to chance.

But it should readily be seen that the random arrangement of vertices to positions introduces a

considerable amount of noise that would certainly help to hide any significant differences if they existed.

We can control for this effect by subsequently repositioning vertices with the goal of optimising the

layout. If networks preserved neighbourhood structure than we ought to be able to flatten the network

in a manner analogous to that of unwrapping a manifold in a vector space. We can attempt such

linearisation by repeatedly excising a segment of variable size from the circumference and inserting

it at another position. If the total edge length is thereby reduced, we keep the new configuration
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and continue. The results are shown in the second row of Figure 5.1 in the same order as before.

With the noise thus reduced, notable differences have now surfaced. Both the NNk Network and the

k-NN network tend to concentrate a substantial proportion of edges very close to the circumference

resulting in a much smaller outer shell than for the random network. Also, the number of long-

distance edges is visibly larger in the latter. We also find confirmation of what we have repeatedly

been emphasising, namely that the neighbourhood represented in k-NN networks is somewhat tighter

than that of NNk Networks. The latter appear to lie structurally somewhere between random graphs

and highly structured k-NN networks.
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Figure 5.1: Optimised layout for a random network (left), an NNk Network (centre) and a k-NN

network (right).

5.4.2 Bandwidth minimisation

A network with n vertices is completely specified by its n × n adjacency matrix where aij = 1 if

there is an arc from vertex i to vertex j and aij = 0 otherwise. In general, we expect to be able

to represent more structured graphs by adjacency matrices with a larger number of non-zeros entries

near the diagonal. In the extreme case of a cycle graph, for example, we can order the vertices

such that the adjacency matrix is zero except for the sub- and superdiagonal. In Figure 5.1 ordering

vertices according to their positions along the circle in the optimised layout would give a similar
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effect. Changing positions of vertices on the circle corresponds to permuting rows and columns of the

adjacency matrix. Such permutations can be achieved in a more systematic way than described above.

The reverse Cuthill-McKee algorithm (Cuthill and McKee, 1969; George and Liu, 1981) is an iterative,

greedy procedure that reduces the profile or bandwidth of a matrix. The bandwidth is defined as the

maximum number of entries in any row that separate the first from the last non-zero entry where the

diagonal entries are by convention treated as non-zero. The algorithm is not guaranteed to find the

smallest possible bandwidth but it usually does. The result is a matrix in which adjacent vertices of the

graph tend to correspond to nearby rows. We have applied this technique of bandwidth minimisation

to the three types of networks considered in the previous section. Each one now contains 1,000 images

from the Corel collection and the networks are generated such that each image is connected to at most

five vertices with the number of arcs for a particular image being the same across all three networks.

The results are shown in Figure 5.2. The top row shows the original adjacency matrices of a random

network (left), the NNk Network (centre) and the k-NN network (right). The bottom row shows the

optimised adjacency matrices after application of the reverse Cuthill McKee algorithm.

Figure 5.2: Bandwidth minimisation for a random network (left), an NNk Network (centre) and a

k-NN network (right).

Despite appearance, the matrices are exceedingly sparse with only 5,000 of the 1,000 × 1,000 entries

being non-zero, that is 0.005 %. That this does not show in the plot results from the fact that the

resolution of the plot is lower than what the size of the matrix demands (if this were not so, little

could be discerned). The respective bandwidths for the three graphs are 940, 768 and 591. Even

without knowledge of the precise figures, it is evident from the plots that the random network lends

itself much less to bandwidth reduction than the other two. It confirms our observation from Figure

5.1 that NNk Networks are somewhat less structured than their close counterpart.

Incidentally, we also note that compressing the byte representation of the adjacency matrices using the

popular Lempel-Ziv encoding algorithm as implemented in gzip further underlines this observation.

The three matrices can be compressed from 1MB to 11,489 (k-NN), 12,498 (NNk) and 13,694 (random)

bytes, respectively.
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5.5 Interaction with NNk Networks

Variation in conjunction with non-random selection is indispensable for progress. It forms a corner-

stone of Darwin’s theory of natural selection taking up the full first two chapters of his book. It

provides cultural evolution with its building blocks and provides the key to understanding the ef-

fectiveness of the mammalian immune system. Unsurprisingly, variation plays a pivotal role in the

theory of genetic algorithms where a solution is progressively improved on by examining and possibly

selecting variations thereof. It should therefore appear natural to formulate the problem of image

retrieval in terms that are more amenable to the operation of variation and selection.

NNk Networks can be viewed as one possible solution. We can think of them as structure on which the

principles of variation and selection are continuously operative. Variation is inherent in the network

while selection takes place by users choosing neighbours. The fact that variation is always with

respect to the current focal image is what makes cumulative improvement possible. Unlike genetic

algorithms where a well-defined objective function allows automating the selection step, search across

NNk Networks relies critically on user interaction. The criterion by which users are expected to select

neighbours is their degree of visual similarity to the target image. This may be an image that either

forms part of the collection or exists merely in the user’s mind. We believe that this selection criterion

comes natural to most users in spite of the fact that it may not customarily be applied in other

contexts.

We will take a closer look in Chapter 7 at the effectiveness of NNk Networks for directed search. In

the same chapter, we will also consider the question of how to provide initial access to the networks.

For now we shall content ourselves with illustrating with one example how quickly users may navigate

through NNk Networks on the basis of visual cues starting at some initial image. The network from

which the paths in Figure 5.3 were obtained is based on 1,000 images from the Corel collection

indexed with 8 features. The initial image displayed topmost is the photograph of a wading bird.

From it radiate a number of different paths, any one of which is a realisation of a possible browsing

sequence. The first five images around the top-most image are a subset of the latter’s NNk . Each of

the displayed images are nearest to the initial picture under some weighted combination of features-

specific distances. The four images on the right contain some element of water and a fair proportion

of blue but they differ markedly in composition and the relative frequencies of colours. The leftmost

image is very different in colour from the initial picture and is likely to be among the NNk on account

of its textural resemblance. We note that the first-degree neighbours of the initial image already form

a rather diverse set. The second-degree neighbours lead us even further into the network. Each of

the images is one of the NNk of the image to which it is connected above. Thus, selecting the sandy

beach would produce the skyline among the next set of images. For the central three images we allow

the browsing path to continue one more step.

Three observations can be made. First, we observe that successive images along any one browsing

path differ only relatively little. They form a natural sequence and we can imagine how users may

home in on their target through a sequence of small and relatively intuitive steps. Secondly, the images

at which we arrive after only two to three steps along the different browsing paths could hardly be

more different. In fact, in this particular example five steps are sufficient to reach any image in the

collection. Three steps cover 92% of the collection. Thirdly, as we move along a particular browsing

path, the importance of different features may change. As an example, the sunset scene on the leftmost

path owes its NNk status to texture similarity, meanwhile the rose one step further into the network
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Figure 5.3: A subset of the first, second and third degree neighbours of an image (top)

is connected by virtue of its similar distribution of hues. Almost the opposite can be observed along

the rightmost path. The first-degree neighbour is very similar in many respects to the initial picture

while the second-degree neighbour has little colour in common with its predecessor but all the more

texture. This is of course the defining characteristics of NNk : they aim to cover the feature space

in all directions and ensure that users can always move quickly between different regions in feature

space.

5.6 Conclusions

Building on many of the ideas developed in chapter 4, this chapter has introduced NNk Networks as a

novel browsing structure for interactive image retrieval. We have emphasised how NNk browsing can

be viewed as a natural extension of NNk search. By not imposing a particular metric NNk Networks

capture in a very compact way the multitude of possible meanings a user may want to associate with

the images. We have distinguished our work from other recent approaches to image browsing, most

notably the work by Cox (1995), Santini and Jain (2000), Rubner et al. (1998), Campbell (2000) and

Urban et al. (2003). We believe that there are at least three major advantages of NNk Networks. (i)

Unlike other browsing solutions (Cox (1995) being a notable exception), NNk Networks are entirely

precomputed. NNk Network browsing is not iterated search in disguise and can therefore be carried

out very fast irrespective of the collection size. (ii) With NNk Networks we adopt the same agnostic

view that underpins NNk search. The networks provide an unbiased view of an image by connecting

it to all images that are most similar to it under any fixed set of features. If the features are any

good, some of the images it is connected to will correspond, or correspond more closely, to the image
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the user has in mind. NNk Networks therefore increase the chance that a particular semantic facet is

found among the neighbours of an image. (iii) Because of the diverse nature of the set of NNk, NNk

Networks allow users with no particular information need to quickly navigate through the collection.

We have taken a brief look at toy networks generated for small collections and examined simple global

properties using layout optimisation and bandwidth minimisation. Both measures suggest that NNk

Networks lie structurally between random graphs and k-NN networks. The chapter has given rise to a

number of questions: How well connected are NNk Networks? How many edges separate two images

on average? How are images from the same class distributed across the network? By answering these

questions in the next chapter, we shall hope to substantiate many of the claims this chapter has made.
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Chapter 6

NNk Network Analysis

6.1 Introduction

Networks can exhibit a wide variety of structure. Sometimes their structural peculiarities offer us

deep insights into some of the causal aspects involved in their genesis and can help us understand the

behaviour of the physical systems which they represent. Indeed, notable success has been achieved in

recent years in modelling seemingly complex networks in terms of relatively simple generative rules

(Bornholdt and Schuster, 2003; Newman, 2003; Wolfram, 2004) with the promise of being able to

predict the effects of perturbations on network structure and function. NNk Networks provide us with

a structure where the basic rules are already known prior to the analysis: the construction principle

of NNk Networks is encapsulated in Equation 3.1 of Chapter 3 and it is therefore not the rules of

growth we seek to understand but the structural characteristics of the resulting networks insofar as

these are of functional significance.

We take two complementary approaches in our dissection of NNk Networks. We call these, respectively,

the formal and the semantic analysis. The formal analysis abstracts from the meaning that we attach

to vertices and edges. It is blind to the relevance relationships that a user would see between images

and exposes the topological characteristics of the networks. The semantic analysis incorporates the

notion of relevance as an important additional axis of analysis. It studies how semantically related

images are distributed across the network and to what extent the distribution differs from that of

a random subset of images. Both types of analysis provide important evidence in support of our

conviction that NNk networks organise images in ways that lend themselves well to image browsing

and directed search. In particular, we set out to test the following three hypotheses:

1. NNk Networks are highly connected so that from any vertex users can browse to all others.

2. NNk Networks have a small diameter so that any two vertices are separated only by a few edges.

3. NNk Networks arrange relevant images in connected subgraphs so that users easily find more

relevant items if they have found one.

As our analysis makes extensive use of terminology from graph theory, it is convenient to begin the

chapter by reviewing some elementary graph-theoretic concepts and notations.
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6.2 Preliminaries

A graph G is a set of vertices V = V (G) and a set of edges E = E(G) connecting any two elements in

V . An edge joining vertices x and y is denoted by xy if it is undirected, and by x → y if it is directed.

Directed edges are also referred to as arcs. If xy ∈ E(G) then x and y are adjacent or neighbouring

vertices of G. We assume that a graph does not contain multiple edges or loops. The order of G is

the number of vertices and is denoted by |G|. The size of G is the number of edges and is denoted

by e(G). G(n, m) denotes an arbitrary graph of order n and size m. The set of vertices adjacent to

some vertex v ∈ G is denoted by Γ(v). The degree of x is d(x) = |Γ(x)|. The density of a graph is

the proportion of edges relative to the maximum number of possible edges, i.e. m/
(

n
2

)

. G′ = (V ′, E′)

is a subgraph of G = (V, E) if V ′ ⊂ V and E′ ⊂ E. In this case, we write G′ ⊂ G. If G′ contains all

edges of G that join two vertices in V ′ then G′ is said to be the subgraph induced or spanned by V ′

and is denoted by G[V ′]. A tree spans a graph Gand is referred to as a spanning graph if it includes

all the vertices of G.

A path is a graph P of the form

V (P ) = x0, x1, . . . , xl, E(P ) = x0x1, x1x2, . . . , xl−1xl

and is usually denoted by x0x1 . . . xl where x0 and xl are the end vertices of P and l = e(P ) is the

length of P . We say that P is a path from x0 to xl. Given vertices x and y, their distance d(x, y) is

the minimum length of an x, y path. If there is no such path then d(x, y) = ∞. For undirected graphs

we have d(x, y) = d(y, x). This does not generally hold for directed graphs. The diameter of a graph

is the largest distance between any two vertices.

A graph is connected if there exists a path between every pair of vertices. Components of a graph are

maximal connected subgraphs, that is, they cannot be augmented by any additional vertex without

disconnecting the subgraph. A graph that does not contain any cycles is an acyclic graph. Acyclic

graphs that are connected are trees, and forests if they are not.

Strongly connected components in a directed graph can be thought of as a partitioning of V into

equivalence classes Vi, 1 ≤ i ≤ r such that vertices v and w are equivalent if and only if there is a path

from v to w. Let Ei, 1 ≤ i ≤ r be the set of arcs with head and tail in Vi. The graphs Gi = (Vi, Ei)

are called the strongly connected components of G.

Random graphs can be defined in terms of two closely related probabilistic models. Starting with

a fixed set of distinguished vertices n, we can choose every edge with some probability 0 < p < 1,

independently of the choices of other edges, or else we take all graphs of order n and size M and

consider them as points of a probability space having equal probability. We shall only make use of

the first definition and write G(n, P (edge) = p) for the corresponding probability space. We shall also

use the idea of random subgraphs. Given a graph G = (V, E), a random subgraph of G is a graph

induced by a random subset of V .

6.3 Formal analysis

Graphs are conceptually simple and yet they can differ widely in their structure. In this section

we are principally interested in the general connectivity properties of the network and confine our

investigations to a select few that we deem to be of particular functional significance in the context

of interactive browsing.
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6.3.1 Connectivity

Undirected graphs have a simple topological structure. They are either connected or they are not. In

the former case every vertex can be reached from any other, in the latter some vertices are separated

from others. The directionality of the arcs in directed graphs like NNk Networks or the World Wide

Web (subsequently referred to as simply the Web) allows for a much richer structure.

The five continents of directed graphs

It is instructive to think of a directed graph as being made up of five distinct regions or subgraphs.

• Central core: Unless the graph is very sparse, it is likely to have what has somewhat tautolog-

ically been called a central core, a large set of vertices such that each vertex is reachable from

any other. The central core is the largest strongly connected component of the graph and is also

referred to as the giant component if it is significantly larger than the others. Vertices that do

not belong to the central core belong to either of four regions depending on the extent to which

they are connected with the central core.

• In-continent: a subgraph containing all vertices from which one can reach the central core

through one or more arcs but which cannot be reached from the central core

• Out-continent: a subgraph containing vertices that are reachable from the central core through

one or more arcs but do not lead back to the central core.

• Tendrils: a subgraph containing vertices that may either be reached from the in-continent or

reach into the out-continent but not both

• Islands: a subgraph containing all the remaining vertices

Within each of the four peripheral classes, vertices may themselves form other strongly connected

components. This division is motivated by Barabási (2004) and illustrated in Figure 6.1.

The navigability of a directed graph depends on the relative size of these regions. Evidently of greatest

importance is the relative size of the central core. Ideally, we would like to be able to reach any vertex

of the graph irrespective of the starting location and would therefore wish the central core to encompass

the entire graph. In practice, the central core can be remarkably small. In the Web, for example,

it accommodates a mere quarter of all the sites (Broder et al., 2000). It is still the largest strongly

connected component and thus qualifies as the central core. The remaining 75% are fairly equally

distributed across the four peripheral classes. A staggering 25% of all the sites are estimated to exist

as small islands disconnected from the rest of the Web and invisible to search engines. The Web is

highly fragmented and we should certainly hope that NNk Networks fare better. The high degree of

fragmentation is ultimately a result of the heterogeneity of the community that is weaving the Web

and, in particular, the presence of closed communities where links are placed highly non-randomly.

No such fragmentation would be observed in a random graph of the same size and order as the Web.

In search for the central core

Let G = (V, E) be the directed graph corresponding to an NNk Network. For reasons of navigability

we consider it a premium that G is strongly connected, or at least contains a strongly connected
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Figure 6.1: The five components of directed graphs.

component that comprises a large proportion of V (the central core). A number of efficient algorithms

have been devised to find strongly connected components. The algorithm reported by Aho et al.

(1983) involves two depth-first searches of the graph and the determination of the transpose of the

adjacency matrix of G. The depth-first search may be written in terms of the following pseudocode

1 function dfs(int v) {

2 visited[v] = true;

3 foreach w in NNk[v] {

4 if( visited[v] = false ) {

5 dfs(w)

6 }

7 }

8 }

In practice, for large graphs involving several thousand vertices, an iterative version of depth-first

search is preferable to the recursive version to avoid stack overflows. The algorithm for finding

strongly connected components is rather quite elegant and involves the following steps:

1. Perform a depth-first search on G and number the vertices in order of completion of the recursive

calls (after line 5 of the pseudocode)

2. Construct a new directed graph Gr by reversing the direction of every arc in G.

3. Perform a depth-first search on Gr starting the search from the highest-numbered vertex accord-

ing to the numbering assigned at step (1). If the depth-first search does not reach all vertices,

start the next depth-first search from the highest-numbered remaining vertex.

4. Each tree in the resulting spanning forest is a strongly connected component of G.
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The central core in NNk Networks

We have identified the size of the central core for a variety of NNk Networks. Without exception,

the central core contains the vast majority of vertices (Table 6.1). NNk Networks hence appear to be

highly navigable. This is in striking contrast to the equivalent figures obtained for the Web. There are

Collection Size Coverage of Core Number of SCC Order of 2nd largest SCC

Corel 500 1 1 0

Corel 1,000 0.999 2 2

Corel 5,000 0.999 2 2

Corel 10,000 0.998 13 2

Corel 20,000 0.997 11 2

Corel 31,997 0.996 76 2

TVID2004 31,019 0.959 204 62

Getty 8,202 0.999 7 2

Table 6.1: Strongly connected components in NNk Networks.

two reasons for the difference. First, by construction of the network, every image must be connected

to at least one other. This condition eliminates many fragmented networks from the outset. For

example, the directed graphs displayed in the bottom row of Figure 6.2 are ruled out by construction.

Of the 16 topologically distinct networks that can be generated with three vertices, only the top five

networks in Figure 6.2 satisfy the connectivity constraint imposed by NNk Networks. It turns out that

it is only these five that are also strongly connected. The fact that every image connects to some other

ensures that in NNk Networks there are no dead ends, even though eternal cycles there may be. The

second reason lies in the very simplicity of NNk Network construction. Links are established based

solely on low-level feature similarity and do not depend on the social structure of a Web community

with their natural fragmentation into interest groups. The good connectivity properties give us an

indication that NNk Networks may be somewhat less structured than the Web.
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Figure 6.2: Permissible (top) and non-permissible (bottom) NNk Networks of order three.

We note from Table 6.1 that all strongly connected components that are not part of the central core

are typically very small for most collections. Often they are made up of two or more near-identical
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images that link to each other and to no other vertex. The video collection is unique in exhibiting

a comparatively high degree of fragmentation with 204 components in addition to the central core.

The reason lies in the large number of repeated sequences (e.g. adverts, news). In addition to small

clusters of highly similar images, a component may also consist of only one image. Because each

image has outlinks, the reason for forming a component on its own is that no other image links to it.

These are images that deviate markedly and singularly from the rest of the images. For a user these

disconnected islands are invisible since they are unreachable. The islands made up of two images

present themselves differently however: they can be reached but allow no escape. In Chapter 7 we

will suggest possible ways to modify the network to avoid these islands altogether.

The birth of the giant component

When edges are added at random to n initially disconnected points, a remarkable transition occurs

when the number of edges becomes approximately n
2 . Erdös and Rényi (1960) studied random graphs

with n vertices and n
2 (1 + µ) edges as n → ∞ and discovered that such graphs almost surely have the

following properties: if µ < 0, only small trees and unicyclic components are present, where a unicyclic

component is a tree with one additional edge. Moreover, the size of the largest tree component is

[µ − ln(1 + µ)]−1 ln n + O(ln ln n). If µ = 0, however, the largest component has size of order n2/3.

And if µ > 0, there is a unique giant component whose size is of order n. To simulate the evolution of

a random graph, we simply vary the probability p in G(n, P (edge) = p) and thus the average degree

of a vertex. In NNk Networks we can control the average vertex degree by varying the number of

features k: as more features are added, the average vertex degree goes up (see Figure 3.8 of Chapter

3). For a collection of 20,000 images, we have constructed different NNk Networks with k varying

from two to eight and determined for each network the relative size of the largest component and the

average vertex degree. The relationship is depicted in Figure 6.3 where we have indicated the number

of features next to each data point. As we discovered in the previous section, for eight features the

relative size of the giant component is comfortably close to one. But even for much fewer features this

holds true. For k ≥ 3 the largest component comprises more than 90% of the network. This assures

us that the good connectivity properties of NNk Networks do not rely on a large number of features.

In the light of these findings, our first hypothesis seems amply vindicated.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 1

k = 2

k = 3
k = 4 k = 5 k = 6 k = 7 k = 8

Average vertex degree

R
el

at
iv

e 
si

ze
 o

f l
ar

ge
st

 S
C

C

Figure 6.3: The giant component forms at a connectivity somewhere between 2 and 3.
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6.3.2 Small-world properties

Watts and Strogatz (1998) explored how the connection topology of an initially highly regular graph

changes as more and more of its edges get rewired at random. An example of such a regular graph can

be constructed by arranging vertices in a circle and connecting each vertex with each of its k-nearest

neighbours. The procedure of rewiring the original graph involves taking each vertex in turn and for

each of its edges choosing a different end-vertex with probability p. As p varies between one and zero,

the graph topology changes from regularity to randomness.

The authors were particularly interested in two properties: the average distance between two vertices

and the average clustering coefficient. The latter property was first motivated in that same paper. It

quantifies the extent to which neighbours of a vertex are themselves neighbours and thus provides a

measure of what me may intuitively recognise as the cliquishness of a graph. Formally, given a graph

G without loops and multiple edges and a vertex v, the local clustering coefficient at v is given by

the ratio of the number of actual edges between neighbours of v and the maximum number of such

edges. The maximum number is given by [Γ(v)(Γ(v) − 1)]/2 which is attained if every neighbour of v

is linked to every other of v’s neighbours. The average clustering coefficient is obtained by averaging

the local clustering coefficient over all vertices.

Both the average distance L and the average clustering coefficient C take highest values for very regular

graphs and are minimised in random graphs. The particular way in which these properties change

as we vary the probability p of rewiring an edge is significant and depicted in Figure 6.4. The graph

corresponds to 1,000 vertices arranged in a circle each being connected to its ten nearest neighbours

(as in the original paper). Measurements of C and L are averaged over ten random realisations

of the rewiring process. As we increase p, the average distance drops relatively suddenly while the

clustering coefficient remains high for an appreciable range of p values. There exists, therefore, a range

of p values for which the resulting graphs are highly clustered like regular lattices, yet have a small

average distance similar to that of random graphs.
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Figure 6.4: Change of clustering coefficient C and average distance L as a regular graph is randomly

rewired according to parameter p. C and L are normalised by the maximum values they take (p = 0).

Note from Figure 6.4 that the range of p values for which the clustering coefficient remains high is

actually very small. It appears inflated only as a result of the logarithmic scaling. The combination of
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a high clustering coefficient and a small average distance emerges therefore as characteristic topological

properties of graphs in a narrow regime between the two extremes of complete order and complete

randomness. These properties are now commonly referred to as small-world properties. They have

subsequently been found in many biological, social and physical networks (Bornholdt and Schuster,

2003).

For a random graph G(n, P (edge)) we can obtain estimates of these properties. The expected clus-

tering coefficient is given by Cran = z/n = p where z is the average vertex degree. The average

distance in a random graph can be approximated by Lran = log(n)/ log(z) (Bollobás, 1985). Table

6.2 shows the corresponding figures for three different collections and the expected values for random

graphs having the same number of vertices and the same average vertex degree. We observe that the

average distance between vertices in the networks is remarkably low and close to that found in the

corresponding random graphs. Moreover, the values do not vary much with the size of the collection.

Even for collections comprising more than 30,000 images the average number of edges that need to be

traversed to reach a given vertex from any other vertex is just above three. The low average distance

between vertices is mathematically expressed by the logarithmic increase of the average diameter

of the network with the total number of vertices (Song et al., 2005). This scaling property is very

desirable. Even for collections comprising several million images, the small-world topology ensures

that any one vertex is never more than a few edges away. This is just what our second hypothesis

claims. The analysis cannot reveal, of course, whether the shortest path between two vertices is also

a plausible path to users in the sense that they would follow it to solve a search task. But an average

distance that comes very close to that of random graphs is as good a lower bound on the length of

such plausible paths as we could wish for.

Collection (size) Cnnk Cran Lnnk Lran

Corel (7,000) 0.047 0.0040 3.22 2.73

Video (31,284) 0.140 0.0012 3.33 2.83

Getty (8,202) 0.049 0.0060 3.15 2.29

Table 6.2: Small-world properties in NNk Networks.

A more detailed view on the distribution of distances is given in Figure 6.5. The left histogram shows

the distribution of distances between any two vertices in the Corel 5,000 collection. The distribution

is roughly Gaussian with a large proportion of images being separated by three edges. Note, as an

aside, that the number of image pairs with distance one is just the number of edges in the graph.

By definition, the distance between a focal image and its NNk is one. Since the NNk relationship is

not reflexive, the length of the minimum path from the NNk back to its focal image may be larger.

The exact distribution for Corel 5,000 collection is decidedly non-Gaussian and shown on the right in

Figure 6.5. We find in particular that in about one third of the cases, the NNk relationship is actually

reciprocated, that is, if q is the NNk of p, p is likely to be the NNk of q. This observation will assume

particular significance in Chapter 7 where it will help us to approximate the set of images that are

likely to link to a new image. Very similar histograms are obtained for other collections.

Returning to Table 6.2, let us compare these figures with those found in other small-world networks.

The network representing interactions of 488 proteins in Drosophila has an average distance of 3.3

(Stanyon et al., 2004). The distance (or degree of separation) between any two people on the planet
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Figure 6.5: Distribution of distances between all images (left), and between NNk and their focal

images (right).

has been estimated to be around 6. Note that unlike NNk Networks the last two are undirected

networks. One of the networks with a rather large average distance is the Web, a directed network of

sites and hyperlinks, with an estimated degree of separation between sites of 18.59 in a collection of

10× 108 sites (Albert et al., 1999).

Figure 6.6 shows how the small-world properties change with the order of the graph in the case of

ten features. The figures are obtained by computing the average distance and the average clustering

coefficient for a number of subsets of the Corel collection. The left plot shows the logarithmic scaling of

the distance with the order of the graph, the right plot shows how the clustering coefficient decreases as

the collection grows in size (with the standard deviation indicated by dotted lines). This is a result of

the rapid increase in the number of potential edges between a vertex v’s neighbours, [Γ(v)(Γ(v)−1)]/2,

as the vertex degree, Γ(v), increases.
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Figure 6.6: Effect of collection size on average distance (left) and clustering coefficient (right)

6.3.3 Degree distribution

Another property that has received considerable attention is the distribution of the vertex degrees (or

simply the degree distribution). It has been found that in a number of real-world networks the degree

distribution, P (k), can be represented by a power-law P (k) ∝ k−γ with a degree exponent γ that

is usually in the range 2 < γ < 3 (Albert et al., 1999; Albert and Barabási, 2002; Dorogovtsev and
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Mendes, 2003; Newman, 2003; Song et al., 2005). The power-law implies that the network contains few

vertices with a large number of links (commonly referred to as hubs) and a large number of vertices

with a small number of links. Such a power-law arises quite naturally if the networks are allowed to

grow such that a vertex is more likely to acquire new links the more links it already has (Barabási

et al., 2003). In NNk Networks no such preferential attachment takes place and we may expect to

find a degree distribution that is not scale-free and characterised by the presence of a distinct mode.

Since NNk Networks are directed, we need to distinguish between indegrees and outdegrees. The

outdegree of an image is just the number of its NNk, the indegree is the number of images for which

that image is itself an NNk. Figure 6.7 shows the in- and outdegree distributions for a number of

different networks. The difference between the two distributions is quite remarkable. The outdegrees

follow a normal distribution with a comparatively narrow range (1-76) and a mode at around 40.

Most of the probability mass is concentrated between 20 and 60. The distribution of the indegrees is

distinctly non-normal with a long tail extending to the right and without a distinct mode. Some of
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Figure 6.7: In and outdegree distribution for the Corel 32,000 collection.

the images have almost 600 incoming links, a 50th of the number of vertices in the collection and 150

times greater than the average number of outlinks. Both an exponential distribution, P (k) = λe−λk,

and a power-law distribution, P (k) = ak−γ , provide reasonable approximations of the data although

an exponential distribution does not account particularly well for the probability mass in the right

tail. The fitted power-law distribution is shown in Figure 6.7 with γ = 2.55.
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Figure 6.8: Log-log plot of indegree distribution.
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Such distributions have the convenient property of appearing as a line with slope −γ when plotted

on a log-log scale as shown in Figure 6.8. The value of 2.55 for γ is remarkably close to the values

found in other networks: 2.6 for the Web, 2.2 and 2.1 for the protein interaction networks of E. coli

and H. Sapiens, respectively (Song et al., 2005). This difference is noteworthy for it is in marked

contrast to what would be expected from a random graph with e edges and v vertices where an edge

links to a particular vertex with a probability 1/(v − 1) independently of other edges. The resulting

distribution is binomial with mean e/v in the limit of large e and large v. The distribution for an

equivalent random graph is shown in the inset of Figure 6.7.

It is instructive to take a look at the images with high indegree and high outdegree, that is, at the hubs

and authorities of the NNk Network. Figure 6.9 shows from top to bottom the five vertices with the

highest outdegree, lowest outdegree, highest indegree, and lowest indegree. Some of the groups have

quite distinct visual characteristics which may in parts account for the their connectivity properties.

Vertices that are most highly linked to (third row) are remarkably homogenous in terms of texture and

colour with very little depth while vertices that are only poorly linked to (fourth row) tend to display

strong colour and brightness contrast. Based on this one example, it is tempting to conclude that

low indegree images have strong visual characteristics while high indegree images have intermediate

feature characteristics.

High outdegree

Low outdegree

High indegree

Low indegree

Figure 6.9: Images from Corel 32,000 with extreme in- and outdegrees.

A synthetic data set confirms this conclusion (Figure 6.10, left). The data set consists of 5,000 two-

dimensional data points drawn randomly from a multi-variate normal distribution. Each axis can be

thought of as corresponding to a different image feature. For each data point we determine its set of

NNk and record the number of in and outlinks. The left plot shows the high and low indegree points.

A clear pattern can be observed: low-indegree points are fairly uniformly distributed across the data

cloud while high-indegree points tend to concentrate in the centre of the cloud.

The latter observation should not come as a surprise for data points in the centre can be linked to from

all directions in the feature space while peripheral points can only be linked to from some directions

because of the lack of data in others. In fact virtually all of the points of the convex hull of the data set

turn out to be low-indegree points. The uniform distribution of low-indegree points in feature space

implies a greater likelihood for such points to lie in the periphery as the underlying data distribution

is normal. That we observe such points not only in the periphery is likely to be a result of the fact

that as we move away from regions of high density, inter-point distances increase. As a consequence,

a point is more likely to have a nearest neighbour in the direction of the centre and is less likely to
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link to points further out in the periphery. These observations go some way towards explaining the

non-normality of the indegree distribution.

A plot of high and low outdegree points is, by comparison, rather uninformative (Figure 6.10, right).

Their distribution seems normal with points of both groups extending far into the periphery of the

data set. And indeed, the first two rows in Figure 6.9 are visually remarkably similar. The number

of outdegrees of an image seems to be governed chiefly by the local distribution of nearby images.

 high indegree

 low indegree

 high outdegree

 low outdegree

Figure 6.10: Points with extreme in- and outdegrees for synthetic data.

6.4 Semantic analysis

In the preceding sections, we have enquired into the topological structure of NNk Networks without

any reference to the meaning or relevance of images. We called this the formal analysis. It has

brought to light a few interesting properties, namely small average distance between any two images,

high clustering coefficient and the presence of a giant component even for a small number of features.

What has been missing up to now is what may be called a semantic analysis of the browsing structure

as has been carried out in Heesch and Rüger (2005). By this we mean an analysis of the structure in

terms of the distribution of particular subsets of images. This is clearly essential to test the last of

our three hypotheses. The subsets we are interested in are the relevance classes that associate with

a particular information need. Our hope is that two images that belong to the same relevance class

are likely to be close to each other. We shall denote by Vc the set of all those vertices in the network

G that belong to the same relevance class c. G[Vc] is the subgraph induced by Vc. We call this the

relevance subgraph. We can view semantic analysis as the topological analysis of relevance subgraphs.

Our hope is that these subgraphs are in some sense compact.

6.4.1 Compactness of subgraphs

In our endeavour to complement our formal analysis with a semantic analysis, the first problem we face

is the question of how to measure compactness of subgraphs. Intuitively, a subgraph that is complete

should be classified as highly compact, and as least compact a graph where no two vertices are

connected. We will in the following motivate and describe three properties which we think capture
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this intuitive notion well. For each of the properties, we compare the observed values with those

obtained on random subgraphs obtained by forming the graph induced by a random set of vertices of

the network. Such comparison is necessary since the absolute compactness values depend not only on

the structure of the relevance subgraph but crucially on the structure of the whole network.

6.4.2 Average distance

Perhaps the most intuitive property we would like relevance subgraphs to possess is that its constituent

vertices have a small average distance (defined as the length of the shortest path between two vertices)

in the original graph. It is important to note that we are not interested in the distance within the

subgraph but within the original graph since the user is not confined to the subgraphs when navigating

through the network. The lowest possible average distance that can be attained is one and requires

the subgraph to be a complete graph where each vertex is connected to every other. As we have

shown as part of our formal analysis, the average distance between any two vertices in NNk Networks

lies between three and four across a range of different collections. Given the lower bound of one we

therefore do not expect any further reduction to be very substantial.

The average distance between any two vertices of the relevance subgraph turns out to be very similar

to that for a random subgraph. The results are best displayed in the form of a boxplot (Figure

6.11). The upper and lower boundary of the box mark the 25th and 75th percentile of the data.

The notches in the box are graphic confidence intervals about the medians. The average distance in

the relevance subgraphs hovers around 2.8 for both collections, compared to 3 and 3.6 for random

subgraphs. Although the magnitude of the difference is small, it is significant under a paired t-test

(p < 0.01). The result tells us that the other members of one’s class are on average only 2.8 vertices

away. If we display during the browsing process the focal image and its nearest neighbours, as in

Heesch and Rüger (2004), this means that after only two clicks the relevant image comes within sight.
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6.4.3 Average vertex degree

The average vertex degree of a vertex of Gc tells us what proportion of images within the same

relevance class are directly adjacent. If vertices of one relevance class tend to be closer together, a

larger proportion of these will be directly adjacent. If we let Gc = (Vc, Ec) be the subgraph induced

by Vc, then the average vertex degree of Gc should be larger than for a random subgraph. To take

extremes, the average vertex degree of a complete subgraph of order |Gc| is |Gc|− 1, since each vertex

is connected to every other. For a graph induced by a randomly chosen vertex set of G the average

vertex degree is to a good approximation equal to |Gc| × d̄/|G| where d̄ is the average vertex degree

of G. This is typically much smaller than |Gc| − 1.

We have just seen that vertices of a relevance subgraph tend to be closer than vertices in a random

subgraph. It seems likely, therefore, that in a relevance subgraph a larger proportion of vertices are

directly adjacent, and hence that the average vertex degree is higher. This is indeed the case. Figure

6.12 plots the average vertex degree against the size of the relevance class (i.e. the order of the

subgraph). Because there are typically many classes having the same number of images (there are,

for example, 42 classes of Corel of size 100), we only plot their average such that for each class size

there is at most one point. Note that the vertex degree increases with the order of the subgraph, both

for the relevance subgraphs and, less conspicuously, for the random subgraphs. Indeed, if we were to

increase the class size further, the average degree would converge towards the average vertex degree of

G. More importantly, note that the average degree of the relevance subgraphs is considerably larger

than that for random subgraphs. For a random subgraph every vertex is connected on average to

less than one other vertex: most vertices have no neighbours. In relevance subgraphs, each vertex is

linked to at least one other vertex (1.4 and 5.6 for Getty and Corel, respectively), suggesting that the

structures do form connected wholes.
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Figure 6.12: Average vertex degree for Corel (left) and Getty (right).
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6.4.4 Connectivity

The last property which we shall consider is the order of the largest strongly connected component

of the subgraphs. We hope that a relevance subgraph has the tendency to be strongly connected, or

at least, that its largest strongly connected component comprises a large proportion of the vertex set.

This property may seem at first to be the least obvious. Upon reflection, however, it turns out to be

perhaps the most desirable. If relevance subgraphs had the tendency to be strongly connected, users

who found a relevant vertex would be able to navigate to all other relevant images by following what

might be called relevance paths, sequences of vertices each of which is relevant to their information

needs. Connectivity is more important than average distance, for even if relevant vertices were only

separated by a few clicks, the path connecting them would potentially lead through non-relevant

territory.
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Figure 6.13: Order of largest strongly connected component for Corel (left) and Getty (right).

The results so far give us some indication of whether the subgraphs tend to be strongly connected. The

high average vertex degree of 5 for the Corel relevance subgraphs is particularly suggestive. Figure

6.13 plots the order of the largest strongly connected component against the size of the relevance class.

As before, we average over all classes of the same size. Unlike random subgraphs, relevance subgraphs

have remarkably large strongly connected components. The relative proportion of images of a class

contained in its largest component lies around 85% for Corel and 26% for Getty.

Even if a network is not strongly connected, some images that do not belong to the largest component

can nevertheless be reached from it. Thus, the actual number of images that are accessible from any

one image of the component typically exceeds the order of the component. Figure 6.14 illustrates this.

The subgraph corresponds to the ‘Flowers’ class of Getty. Images that belong to the same strongly

connected component are linked by black lines. Images without such lines form a component on their

own. Gray lines are connections between components. The largest component is on the left with 14

of the 28 images. Of the remaining images, two can be reached from it via the gray lines.

Note that these three properties are only partly correlated. We can for example think of subgraphs

with average distance of 2 with no path between any two vertices, or a subgraph with only one strongly
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connected component but with very low average vertex degree and large distance. A summary of the

results is found in Table 6.3. The differences are significant in all cases with p < 0.001.

Figure 6.14: The subgraph corresponding to the ‘Flowers’ class of the Getty collection.

Avg Dist Avg Out Max SCC

Getty 8,202 2.79 (3.02) 1.44 (0.27) 0.26 (0.05)

Corel 6,192 2.85 (3.62) 5.64 (0.39) 0.84 (0.025)

Table 6.3: Compactness figures on relevance subgraph and random subgraphs (brackets).

Our semantic analysis suggests that NNk Networks do capture a considerable degree of the semantic

structure of a collection. This might be expected if visual similarities are at all informative about

semantic relationships. Note, however, that NNk Networks connect images to a wide variety of

neighbours that are only ever the top-ranked images under some feature combination. Semantic

structure is preserved in spite of this diversity. Interestingly, the diversity of NNk leaves its mark on

the particular way semantic structure is represented: as suggested by the large average distance of

images within relevance subgraphs, images of the same relevance class tend to be strung out along

relevance trails and do not form tight, sphere-like clusters as one would expect if images were organised

according to one particular metric. Thus, in accord with our third hypothesis, relevant images hang

together and they do so in a peculiar way that reflects the construction principle of NNk Networks.
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6.5 Conclusions

We began this chapter by inspecting more closely the structural properties of NNk networks. The

analysis was motivated by the intuition that navigability of these networks depends crucially on their

connectivity properties. For a number of different collections varying in size between 50 and 32,000,

we found that vertices are on average separated by only 2-3 edges and that the average distance scales

logarithmically with the size of the collection. In addition, vertices that share a third vertex are more

likely to be themselves connected than would be expected for random graphs. The joint occurrence

of these two properties, small average distance and high clustering, suggests that NNk networks may

be classified as small-world networks and thus are similar in structure to social networks, protein

interaction networks and the Web. Unlike the latter, however, the NNk networks we considered

invariably exhibit the tendency to form giant components that typically encompass more than 90%

of the vertices.

Analysing the networks from a semantic viewpoint reveals that the structural idiosyncrasies extend

beyond those unravelled in our formal analysis. The distribution of images belonging to the same

semantic class is highly non-random and remarkably compact as judged by three compactness measures

that we propose: average distance, average vertex degree and degree of connectivity. Although the

distance in the network between any two images of the same class is on average not much smaller than

between any two randomly chosen images, the structure of the graph differs nonetheless substantially

from random subgraphs. In particular, images of the same class tend to establish large strongly

connected components that in the case of Corel contain an average of 85% of all class members.

Hence, even though an image does not tend to be directly adjacent to a vast number of others of its

class, most of these can be reached by following paths within the strongly connected component. The

distribution of relevant images is thus best pictured not as a dense region with small diameter but as

a reticular substructure that extends deep into the network whilst remaining largely connected.

It is natural to ask to what extent the structure which we have begun to lay bare in this chapter can

be captured and leveraged to facilitate image search. Before turning our attention to this question in

Chapter 8, we will first have to address fundamental practical issues pertaining to the basic browsing

framework as described in this and the preceding chapter.

‘
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Chapter 7

NNk Networks in Practice

7.1 Introduction

Chapter 6 has provided a formal and a semantic analysis of NNk Networks. The formal analysis

led to the discovery of small-world properties: images are separated by only a few links and they

tend to cluster. The semantic analysis has revealed that the local structure captures the semantic

relationships between images: relevant images tend to occur in compact subgraphs so that users who

find one relevant image are likely to find more by following relevance trails through the network.

Chapter 6 has also helped to identify a number of issues of practical significance that need to be

resolved to add value to NNk Networks and to which we shall turn our attention in this chapter.

We have seen that in spite of their great sparsity the degree of connectedness of NNk Networks is

remarkably high with all networks examined having a giant component that comprises more than 90%

of the vertices. For the purpose of interactive search, the presence of a large giant component is a

very encouraging structural property. Nevertheless, there exist a fair proportion of images not part

of the giant component. Many of these vertices correspond to groups of near-identical images that

are strongly interlinked but form no links with the giant component. Other images are not connected

to at all and form unreachable islands. Both types of fragmentation have an adverse effect on the

navigability of the networks. Clearly, we want every vertex to be reachable from any other which

requires NNk Networks to be strongly connected. In Section 7.2 we suggest modifications of the initial

structure to ensure that this is indeed the case.

In Section 7.3 we consider the problem of updating NNk Networks in dynamic environments where

images are continuously added to or removed from a collection. We develop an approximative method

that circumvents the need for recomputing the entire network structure and analyse the effect this

approximation has on the topology of the resulting network.

Users search for images by choosing paths through the NNk Network. Every such path has to start

somewhere and for large collections the starting point may be an important determinant of success.

The chance of finding what one is looking for should increase if we were to begin the browsing path in

a region that is topologically not too distant from our target. One way to achieve this is by showing

the results of an automated search given some initial query. This is the method of choice in a number

of other browsing frameworks for both images and documents. The most notable example, of course,

is the Web, where keyword searches place the user in areas of interest which can then be explored
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further through browsing. In image retrieval, queries are more difficult to formulate and to process,

and it is indeed one of the strengths of browsing frameworks that queries need only exist in the user’s

mind. In Section 7.4 we try to leverage this advantage and propose an alternative query-free way of

providing initial access to NNk Networks.

When retrieval techniques rely heavily on user interaction, their automatic evaluation becomes a

daunting task. That experiments with real users seem indispensable when gauging the value of NNk

Networks for image search results from the difficulty of formalising and thus automating the way users

navigate through the network. The annually held video retrieval conference (TRECVID) provides an

ideal opportunity for such experiments. Our participation in the search task of TRECVID will be

described in Section 7.5.

7.2 Connecting SCC

Fragmentation of NNk Networks into multiple strongly connected components has two causes. It

may result from the presence of images that deviate so radically from all other images in their visual

attributes that they are not the NNk of any other image. These images have no inlinks, but like every

image in NNk Networks they have at least one outlink. Each such image forms a strongly connected

component on its own.

Another cause of fragmentation is the presence of groups of very similar images. Each image in such

a group then monopolises all outlinks of the other group members thus creating strongly connected

components of two or more images. We shall refer to the first type of component as a source and to

the second type as a sink. The terms are borrowed from the theory of network flow where they denote

privileged vertices that represent the origin or destination of a flow of some commodity.

This fragmentation of NNk Networks into a giant component, sources and sinks reveals potentially

interesting structure about the image collection. For a collection of news video keyframes, for example,

the number of sinks is astonishingly high. It turns out that the great majority of these sinks consist

of near-identical keyframes from commercials. The fragmentation could thus be exploited to clear

the network from unwanted images. If sinks and sources were retained in the network, however, they

would limit the navigability of the networks. From the definition of a strongly connected component

follows that if we were to leave one, we would be unable to return to it. Equivalently, if it were possible

to return to it from a vertex outside of the strongly connected component, it would be impossible

to reach that vertex in the first place. For example, users may reach strongly connected components

consisting of near-identical images, i.e. sinks, but will be unable to leave them again as all links are

within the strongly connected component itself. Similarly, visual outliers forming sources may link to

the rest of the network but cannot be reached from anywhere else. They can only be visited if they

are the source of a browsing path.

Sources are vertices with zero inlinks and correspond, therefore, to the anti-authorities which we met in

Section 6.3.3 of Chapter 6. Indeed, each of the five images in the last row of Figure 6.9 forms a source in

the corresponding NNk Network. Their unusual visual characteristics provide immediate confirmation

of our conjecture that sources are outliers with respect to their low-level feature representations. Figure

7.1 shows two examples of sinks found in the Corel collection. Each of the images points to at least

one other from the same group and none of them links to an image outside the group. It is interesting
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to note that these sinks are nevertheless linked to quite extensively. The first sink receives a total of

20 links, the second sink 119.

Figure 7.1: Two examples of sinks in NNk Networks.

The degree of fragmentation depends on the collection as well as on the type and the number of

features used. Figure 7.2 gives an indication of how the degree of fragmentation depends on the

number of features for a collection of size 20,000. In the extreme case with only one feature being

used to construct the network, each image links only to the image that is closest under that one

feature.
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Figure 7.2: Fragmentation can be reduced by increasing the number of features.

The network, therefore, has as many edges as vertices and is as a result highly fragmented. In fact,

each image forms a strongly connected component on its own unless it is linked to by its one and only

NNk, either directly or through a sequence of intermediate vertices forming a cycle. The number of

strongly connected components for k = 1 is around 17,000. If the largest sink were of order two, we

would have exactly 2 × 17, 000 − 20, 000 = 14, 000 sinks of order one. Because sinks may also be of

order greater than two, there are at least 14, 000 images forming strongly connected component by

themselves. As we increase the number of features, more and more of these get inter-linked before

finally being swallowed up by the giant component. The situation for sinks is different. Because images
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belonging to sinks are near-identical, they will remain nearest neighbours of one another irrespective

of the underlying feature. As we increase the number of features, near-identical images will tend to

remain inseparably tied together. As a result, the relative contribution of sinks to the overall degree

of fragmentation increases with the number of features.

In Table 7.1 we have collected for a number of collections the proportion of images not in the giant

component that form part of sinks and sources, respectively. For eight features (i.e. k = 8), the

proportion of images forming sources lies in the range 0 − 0.1%, while that of sinks varies between

0.1%−0.32%. Even for the large and very diverse Web collection, which was compiled by downloading

1.14 million images from selected Canadian, American and UK universities, the proportion of images

forming sources is remarkably small despite employing only five features. The contribution of sinks,

meanwhile, is rather high. An interesting comparison is that between Getty (8,202) and Corel (10,000)

as these are of similar size but differ in the number of features. The eleven features used for the Getty

collection account for the better connectedness and the much lower incidence of sources (0.012 versus

0.06), but the proportion of sinks remains at the same level as for the Corel collection, providing some

evidence for the claim we made at the end of the preceding paragraph.

Collection Size Number of Features (k) Avg Degree Sinks (%) Sources (%)

Corel 100 8 13.1 0.00 0.000

Corel 500 8 19.5 0.00 0.000

Corel 1,000 8 22.3 0.00 0.100

Corel 5,000 8 28.9 0.20 0.100

Corel 10,000 8 31.8 0.15 0.060

Corel 20,000 8 35.4 0.26 0.095

Corel 31,997 8 37.4 0.32 0.075

Getty 8,202 11 51.4 0.12 0.012

Web 100,000 5 27.9 2.73 0.102

Table 7.1: Percentage of images in sinks and sources.

While the problem of visual outliers can be alleviated by choosing a diverse and sufficiently large set

of features, the problem of sinks requires a different approach. We shall in the next section describe

a principled method for removing both sinks and sources.

7.2.1 Sink elimination through constrained NNk computation

Sinks are arguably the greater nuisance for while sources only mark out unreachable territory which

simply remains invisible to the user, sinks form traps from where there is no escape. There are two

approaches we can take to the sink problem. We may either remove the vertices and all associated

arcs from the network, a procedure that is guaranteed to decrease the number of sinks by one and to

add no additional source. Alternatively, we may add suitable arcs to the sink vertices with the effect

of weaving the sink back into the giant component. The second approach is no doubt preferable and

leaves only the question which arcs to add. Although a single arc linking any one sink vertex back to

the giant component would be sufficient to establish the desired connectedness, for larger sinks users

would have to look hard to find that one arc. We instead consider adding arcs to each of the sink

vertices. A systematic method that is in closest agreement with the original construction principle of

NNk Networks involves recomputing for each sink vertex the set of its NNk with the added constraint
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that for each weight combination we determine the most similar image from the complement of the

set of sink vertices. Any such NNk will provide a possible exit route. Since we do not want to destroy

the inter-connectedness of the sink vertices, we add the new set of NNk to the original set. Figure 7.3

gives an example how a strongly connected component consisting of three nodes (left) is thus linked

up with the remaining network (right).
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Figure 7.3: Weaving sinks into the giant component.

7.2.2 Source elimination through arc reciprocation

We would like to eliminate sources not by removing the associated vertices but by linking them to

the giant component. Sources have no incoming arcs from the giant component. The addition of any

one of such arcs would be sufficient to incorporate the source into the giant component. A reasonable

strategy for choosing such arcs is to reciprocate all the outgoing arcs of the source vertex (Figure

7.4), so that a source acquires as many inlinks as it has outlinks. Even if the source is not the closest

neighbour of any of its NNk , we expect it to be much more similar to it than the great majority

of other images in the collection and an artificial arc will not be entirely ill-placed. In fact, recall

from Chapter 6 that in the NNk Networks we studied, more than a third of the arcs are actually

reciprocated.

If sinks only ever consisted of two vertices, we could detect sink vertices once we have determined their

NNk by observing that they have but one outlink. This would allow NNk determination to remain

a one-pass algorithm. Unfortunately, this assumption is not valid. Although for many collections

the largest number of sinks consist of pairs, the majority of images come from larger sinks. Sink

elimination, therefore, requires a second pass through the image collection once all the NNk, and thus

all the strongly connected components, have been determined.
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Figure 7.4: Eliminating sources by reciprocating their outgoing arcs.
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7.2.3 Further considerations

Sink and source removal can be achieved efficiently with the above methods. One minor drawback of

the proposed solutions is that they force us to accept a number of inconsistencies with regard to the

additional information which we store for each image’s NNk. Recall from Chapter 5 that we keep the

support of each NNk (i.e. the relative size of its iso-NNk region) as a measure of the similarity between

it and its NNk. The new neighbours computed during sink elimination (i.e. those not forming part

of the sink) have iso-NNk regions that overlap with those of the initial set of NNk (i.e. those forming

part of the sink). Both sets partition the weight space and the sum total of their supports is therefore

2 rather than 1 as for ordinary sets of NNk. A method that can consistently be applied and that

treats each set as being of equal importance involves rescaling the support by dividing by 2. Often

sinks consist of no more than two images and occur at relatively low frequency in the collections we

examined. The inconsistencies introduced are therefore rather slight and an acceptable price to pay

for the improved connectedness of the network.

7.3 Incremental update of NNk Networks

Few image collections of interest are static. Most are in constant transition as images are added

to or removed from the collection. Although the construction principle underlying NNk Networks

is rather simple, we identified computational complexity as an important issue and addressed it in

Chapter 3 by developing various approximations and optimisations. These methods seem sufficient if

the collection is to be indexed only once. If the collection is in constant flux, however, recomputing

the entire network every time a new image has been added is a prohibitive task. One solution to cope

with dynamic environments consist in recomputing the network only every so often once a certain

number of changes have accumulated. In the meantime, any changes that occur could be brought to

the attention of the user by other means, for example in the form of a text caption that alerts users

to the fact that an image is no longer available, or with a separate network for recently added images.

Here we shall investigate in how far we can also achieve a truly incremental update whereby we add

and remove images without having to compute the entire structure de novo. To understand how this

could be done, we need to be clear about how NNk Networks change upon the addition and removal

of images.

7.3.1 Update scenarios

Adding a new image p to an existing NNk Network can have a number of effects on the topology

of the network. It involves, generally speaking, the addition of exactly one vertex and of at least

one edge. Part of the integration of the new image consists in connecting it to all its NNk. These

can be determined by applying the grid method developed in Chapter 3 with p as the focal image.

Thankfully, adding outlinks to p does not have any knock-on effects on the other edges of the network

and can therefore be achieved efficiently. However, p can potentially be among the NNk of any of the

other images already in the collection. Moreover, by becoming an NNk of some other image q, other

outlinks of q may be broken because the new image p may completely displace some of the former’s

NNk within their iso-NNk regions. And even if it does not wholly displace them, it will have the effect

of decreasing their relative support which would therefore need to be updated. Figure 7.5 illustrates

102



the changes that may occur to the network due to the addition of a new image. The new vertex on

the right acquires outlinks to two other vertices. One of these former vertices links to the new image

and in turn disconnects from one of its previous NNk. Note, as an aside, that although a new vertex

will typically cause the number of edges to increase, one can conceive of situations where a new vertex

is very similar to another and redirects all outgoing arcs of that vertex to itself leading to a graph of

smaller size.
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Figure 7.5: Insertion of a new node into an NNk Network.

Removal of vertices from the NNk Network is of equal importance as vertex addition for practical

purposes but constitutes a much smaller challenge. In addition to removing the vertex and all its

outlinks, we need to recompute the NNk of only those vertices that have previously linked to it. As

we have seen in Chapter 6, this number ranges between 0 and a few hundred for collections of several

thousand images with the majority of vertices receiving inlinks from only a few dozen. If we store

for each vertex both out and inlinks, vertex removal can be done efficiently. The principal challenge,

therefore, lies in image addition and it boils down to the problem of finding the images that are focal

with respect to the new image.

7.3.2 Subset selection

Ideally we only recompute the NNk for images whose NNk have changed upon the addition of an image

p. Whether this is the case for an image q can only be ascertained, however, by actually computing

the NNk of q. It seems that we would have to carry out the computation first in order to find out

whether it was necessary. Given that most images are focal to only a very small proportion of images,

in the great majority of cases we would find that the new image is not an NNk of q and that the

computation was indeed wasted. The search, therefore, is for other cues that give some indication as

to whether an image is focal with respect to the new image. We wish to compute the NNk only for

some set Q that is substantially smaller than the image collection. To see what such a cue could be,

recall from Chapter 6 that although the NNk relationship is not reflexive, the chance that q → p if

p → q is around 35% for the networks considered (Figure 6.5). In other words, about a third of the

focal images of the new image are found among its NNk. Making Q the set of NNk of the new image

would be a simple method of finding a fair proportion of focal images. Q would typically not exceed

80 for collections of 30,000 images. To do better than this, we could add to Q the images that are

not one but two links away from p. According to Figure 6.5 we can expect 60% of the focal images

to be among this augmented set but the size of Q also becomes very large very quickly making this

particular method unsuitable.

But the observation of partial reflexivity suggests another possible approach. We first note that
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whether an image is an NNk of p depends in a generally non-trivial way on its feature-specific distances

to p. An image that is more similar to p than any other under at least one feature is guaranteed to

be an NNk . If there is no such feature, it may nevertheless be an NNk if it is sufficiently close under

a set of features. Conversely, an image that is dissimilar with respect to all features is unlikely to

be an NNk. Imagine recording for each feature the N images that are most similar to an image p.

This yields a set of kN images not all of which are unique. For some N , the size of the set of unique

images UN varies between N and kN (given that the latter does not exceed the collection size) and

is generally larger for more orthogonal features. UN contains all images that are among the N most

similar images for at least one feature. For a collection of 10,000 images the relationship between

UN and N is depicted on the left of Figure 7.6. By definition U1 is a subset of the NNk of p. As

we increase N we expect UN to include more and more NNk. The precise relationship is depicted on

the right of Figure 7.6. We note that almost all of the NNk are among the images that are highly

ranked under at least one feature. For example, 95% of all the NNk are contained in the set U50.

From the left graph we observe that the size of U50 is around 250. The partial reflexivity of the NNk

relationship now suggests that a similar observation can be made for focal images. That is, most of

the focal images are expected to be found among the highly ranked images. This is indeed the case.

The corresponding curve is shown on the right of Figure 7.6. The curve does not rise as steeply as

that for the NNk and shows slower convergence but clearly vindicates our hypothesis that focal images

also tend to be highly ranked under at least one feature. In particular, 50% of the focal images are

contained in the set U12 (75 images), 75% in the set U40 (252 images), 80% in U56 (350 images).
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Figure 7.6: Number of unique images among the pool of top N (left). Proportion of NNk and focal

images among the pool of top N (right).

The observation suggests setting Q to UN for some N whose value will determine the trade-off between

accuracy and computational efficiency. To achieve an expected coverage of 80% using this method for

a collection of 10,000 images, we would have to compute the NNk of 350 images. This amounts to

3.5% of the computational effort that would be required were we to achieve an exact computation of

all the inlinks. The method has three pleasant properties: firstly, it provides us with a good estimate

of the expected coverage for a given value N ; secondly, it does not add inlinks where there should

be none; thirdly, the coverage for a previously added image p will tend to increase as more images

are added to the collection. This is so because subsequent subsets Q will occasionally contain focal

images of p that were not contained in p’s target set Q. Previously added images will thus acquire

more inlinks as the collection continues to grow. It is because of its approximative nature that the

method fails to find all inlinks in the first place, and that it will find them eventually.
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Figure 7.7: Effect of approximative update on network topology.

Much of the preceding section assumes that a single image is added to a collection. Perhaps a more

likely scenario involves the addition of a group of images. In such a case we can further reduce the

computational cost by noting that the sets UN may exhibit some overlap since an image from the

collection might be focal with respect to more than one of the new images. The set of images for which

we want to compute the NNk is therefore the union of the sets UN . Because this union is typically

larger than the largest UN , the coverage for each added image will be larger than predicted by the

right plot of Figure 7.6.

7.3.3 Effect of approximation on network structure

We can make predictions regarding the topological effect this approximation has on the resulting NNk

Networks. Firstly, since some of the inlinks will be missed, the network becomes sparser than the

corresponding exact network. As a result, the average distance between vertices will be somewhat

larger. Secondly, we expect the network to acquire more structure. To see why this should be the

case note that the focal images we miss are images that are considerably more distant in feature

space than many others (|UN | images to be precise) to the new image p. The fact that despite its

large feature-specific distances p is nevertheless an NNk of some focal image reflects the fact that p’s

distances to other images are even larger. The idea is illustrated in Figure 7.7. The collection initially

consists of three images q, r and s to which a new image p is added. The outlinks of p are shown on

the left diagram. Note that image s cannot be an NNk of p since it is further away for both features

than at least one other image. The inlinks of p are shown on the right. Both q and r are focal images

but so is s since it does not have any image that is closer to itself under feature 2. Assume now that

we only look for focal images in the set U1, that is, in the set of images that are most similar (N = 1)

to p under either feature. This set would include q and r but would exclude s, and hence, we would

fail to discover the link between p and s. Setting N = 1 is clearly an extreme measure that reflects

the simplicity of the chosen example. It only serves to illustrate a general point, namely that the

approximative method tends to find focal images that are close in absolute terms. As a result, the

method will tend to enhance any cluster structure that the images may exhibit in feature space.

We have applied the update method on a network of 10,000 images to which we have added 50 images

one by one. For each of the 50 images we pool the top 20 images for each of 8 features (i.e. we use

U20). The accuracies of the method in terms of the inlinks that were found is illustrates in Figure 7.8.
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The values vary between 52% and 93% with an average accuracy of 69%. Thus, already for U20 the

method finds a fair proportion of inlinks. Greater accuracy could of course be obtained by considering

more than the top 20 images.
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Figure 7.8: Accuracy of update method when considering the top 20 images for each feature.

An important question concerning the updated networks is whether they will remain strongly con-

nected given that they were strongly connected before the update. It is easily seen that the removal

of a single vertex may disconnect the network. It may leave behind both sinks and sources and we

will therefore have to test for strong connectedness. The case of vertex addition is only slightly more

complicated. If vertex addition only involved the addition of new edges, not, however, the rupture of

existing edges, the new network could only become disconnected if the new vertex became a source (it

could not become a sink because it will have to have at least one NNk from the rest of the network).

This we could easily detect when computing the inlinks of the new vertex. The addition of a vertex

may also lead to the removal of any of the outgoing edges of its focal images. Imagine adding an image

to a strongly connected network which is a copy of one already present. All the former outlinks of its

identical twin will be removed and replaced by one single outlink connecting it to the new vertex. The

new vertex in turn will only link to its copy. Vertex addition may thus lead to new sinks and, through

the removal of edges, it may also generate new sources. In any case, network update requires the

recomputation of the strongly connected components and, if necessary, strong connectedness needs to

be restored using the method of Section 7.2.

7.4 Entry Points

7.4.1 Access through search results

In the browsing frameworks suggested by Rubner et al. (1997), Santini and Jain (2000) and Campbell

(2000) users begin the browsing process with the set of images retrieved from a search. The initial

search places the user in an area of interest which can then be explored further by browsing. This is

clearly a possible option for NNk Networks also. An example how this can work with a collection of

Web images can be seen on http://beta.beholdsearch.com.

But as we have argued in Chapter 2 one of the advantages of browsing is that it can potentially free

the user from the need of explicitly articulating a query. Unlike the above methods, NNk Networks
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are precomputed and exist independently of any query. This suggests at least one way of accessing

the network without formulating a query. The quest is for subsets of images that are valuable starting

points under a broad range of conditions. Choosing such sets appears to be of particular importance

for large collections as the number of images that can be displayed initially become an exceedingly

small fraction of the entire collection.

7.4.2 Hubs

Hubs are nodes with a disproportionately large number of outlinks. If users were initially presented

with a set of such hubs, they can expect a large choice of images in the subsequent step since each

hub has a large number of neighbours. For collections of 30,000 images and eight features, hubs are

images with around 70 outlinks (see Figure 6.7 in Chapter 6), a number that only slightly exceeds

what we can comfortably display on the screen.
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Figure 7.9: Relationship between average distance and outdegree.

It might be argued that instead of maximising the choice for the user, we ought to initiate the search

with those images that have a small average distance to all other images in the network. Although

we know from Chapter 6 that NNk Networks have very good connectedness with a diameter rarely

exceeding 7, the average distance between vertices can vary considerably as illustrated in Figure 6.6

of Chapter 6 and this is particularly so for small collections. It turns out that the two properties of

a vertex, its average distance to others and its outdegree, are strongly correlated: vertices with large

outdegrees tend to have small average distances. The scatter plot in Figure 7.9 gives an indication of

the relationship. Hubs, therefore, do not merely offer a wide choice of possible entry routes into the

collection but are also, as a result of this, closest on average to other vertices in the network. This

provides additional support of our view that hubs are suitable starting points if users do not want to

or cannot provide a query.

A shortcoming of this method is that it does not necessarily offer the user the best overview of the

image collection as hubs need not form a very heterogenous set. Such an overview could be achieved,

for example, by automatically identifying densely connected clusters of vertices. We will explore the

profitability of this idea in Chapter 8.
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7.5 TREC Video Retrieval Evaluation

TREC’s Video Retrieval Evaluation (TRECVID), organised by the National Institute of Standards

and Technology (NIST), provides an annual opportunity to test image retrieval methods on realistic

search tasks and fairly large collections of keyframes from video sequences. The collaborative nature

of the event makes it possible to construct relevance judgments and to provide metric performance

evaluation which in turn allows a direct comparison between different systems. Although retrieval

methods are free to vary, the prevailing method has undoubtedly been search by query image and it

was therefore of particular interest to see how much ground could be gained by using NNk Networks.

7.5.1 Collection, search topics and evaluation

The collection is obtained from about 130 hours of video sequences composed of 271 10–30 minutes

programs of ABC World News Tonight, CNN Headline News, and C-SPAN, the latter including

government committee meetings, discussions of public affairs, lectures, news conferences and public

hearings. The sequences were sorted chronologically and then split into a development collection (the

early half) and a test collection (the later half). For each shot (a set of consecutive frames obtained

from one continuous camera movement) representative keyframes were extracted making it possible

to treat the search for relevant shots as conventional image search. The test collection on which the

search was to be carried out comprised 32,318 keyframes.

The information needs are formalised in the form of formatted multimedia statements or ‘topics’

generated at NIST. Initially, a set of text-only candidate topics were created by mining various news

sources from the time period covered by the test collection and by analysing a log of actual queries

provided by the BBC. If there exist sufficiently large numbers of relevant shots in the test collection

for a particular candidate topic, it was accepted and enhanced with non-textual examples from the

Web and from the development collection. Topics consist of a title, a brief textual description of the

information need, and multimedia examples (video clips, images, audio). The verbal descriptions of

all the 24 topics are shown in Table 7.2. The original topic identifiers are the four digit numbers listed

in the table. Topic 120 was later withdrawn from the evaluation as it turned out to be rather trivial.

For simplicity, we shall henceforth identify topics by the number formed by the two last digits.

Submission includes for each topic a ranked list of at most 1,000 shots from the test collection and the

time elapsed during the search. The allowable maximum time for each topic was 15 minutes. Groups

were allowed to submit the results for four different system variants or ‘runs’.

With more than 30,000 keyframes, the set of relevant shots for each topic cannot sensibly be identified

manually, in particular since for some topics (e.g. topic 104) it would not be sufficient to inspect

a representative keyframe to determine the relevance of a shot. On the assumption that a relevant

shot is likely to be returned towards the top by at least one of the submitted runs, we should obtain

a fair proportion of the relevant shots by merging the top k results of different runs and inspecting

the resulting ranked list up to some depth manually. This is the procedure adopted by TRECVID.

With relevance judgments thus obtained, each submission is then evaluated to its full depth. The

performance measures are average precision and elapsed time for each individual topic and mean

average precision (MAP) for each run. Average precision is obtained by computing the precision for

every retrieved relevant shot and averaging these over the number of retrieved relevant shots.
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Find shots

100 ...with aerial views containing both one or more buildings and one or more roads.

101 ...of a basket being made - the basketball passes down through the hoop and net.

102 ...from behind the pitcher in a baseball game as he throws a ball that the batter swings at.

103 ...of Yasser Arafat.

104 ...of an airplane taking off.

105 ...of a helicopter in flight or on the ground.

106 ...of the Tomb of the Unknown Soldier at Arlington National Cemetery.

107 ...of a rocket or missile taking off. Simulations are acceptable.

108 ...of the Mercedes logo (star).

109 ...of one or more tanks.

110 ...of a person diving into some water.

111 ...with a locomotive (and attached railroad cars if any) approaching the viewer.

112 ...showing flames.

113 ...with one or more snow-covered mountain peaks or ridges. Some sky must be visible behind them.

114 ...of Osama Bin Laden.

115 ...of one or more roads with lots of vehicles.

116 ...of the Sphinx.

117 ...of one or more groups of people walking in an urban environment, e.g. with streets, traffic, and/or buildings.

118 ...of Congressman Mark Souder.

119 ...of Morgan Freeman.

121 ...of a mug or cup of coffee.

122 ...of one or more cats with parts of both ears, both eyes, and the mouth visible. The body can be in any

position.

123 ...of Pope John Paul II

124 ...of the front of the White House in the daytime with the fountain running

Table 7.2: Topics for the search task of TRECVID 2003.

7.5.2 System runs

The system we implemented for TRECVID allowed search by keyword and image query with manual

feature selection (S), relevance feedback (R) as described in Heesch and Rüger (2003), and NNk

browsing (B). The four submitted runs differed in the extent to which these three functionalities

were available to the users. Labelling the runs by the sequence of letters representing the functional

modules that were activated we have the following four runs: SRB, SR, B, and SB. For the third run,

which is our principal concern, users were not allowed to formulate a query but could see example

images as well as the topic description to guide their search.

NNk Network construction is based on six visual features and one text feature. We derived the latter

from the supplied speech recognition transcripts by first stemming for each keyframe the accompanying

annotation terms and then computing term weights according to the standard tf-idf formula. For more

details of the visual features, some of which we already described in Chapter 4, please refer to Heesch

et al. (2004). The NNk Network for the test collection using the set of seven features had an average

topological distance between vertices of 3.33, an average outdegree of 38.77 and a total of 1,253,074

edges.

Incorporation of this text feature introduces links between keyframes that share a comparatively large

number of salient terms and are thus likely to be semantically although not necessarily visually related.

Recall that browsing in NNk Networks takes place following visual cues. At each step, users select

the NNk that are visually the most similar to their target category thus hoping to approach it over a
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sequence of such steps. It is constructive to analyse how text-induced edges, which do not necessarily

involve any strong visual correspondence, fit into this search rationale. Clearly, once we have identified

a relevant image, text-induced edges may lead us to other relevant but visually very dissimilar images

which we would not otherwise have found. These images may in turn be the gateway to a whole new

group of relevant images which it might be profitable to explore using visual cues. It is text-induced

edges, therefore, that are well suited for linking up visually coherent relevance subgraphs and thus for

widening our catchment area once we have managed to place ourselves in a graph neighbourhood of

relevance. Interestingly, text-induced edges are much less useful for finding relevant images in the first

place. To see why this is so, one only needs to observe that a necessary condition for images to be

linked through a sequence of text-induced edges is that two adjacent images have at least one term in

common. Finding an appropriate nearest neighbour at any one step amounts to the task of not only

scrutinising the image annotations of the neighbours but also guessing which terms may lead through

a chain of co-occurrences to the first relevant image.

For the other three runs involving automated search, the added value of the textual information is

different and substantial. It can be exploited much more explicitly in the form of keyword searches

making automated search quite possibly a more potent technique for tackling more difficult topics.

With four users participating in the search tasks, a total of 24 topics and four runs, the natural design

choice for the search experiments was a 4× 4 latin square with the topics being divided into groups of

six and the rows and columns signifying, respectively, the set of four participants and the set of four

topic blocks. To reduce the effect of learning over the course of several topics, we randomise for each

participant the precise temporal sequence of topics within each of the four blocks.

An example of a possible beginning of a search session using NNk Networks is shown in Figure 7.10

for the case of topic 102. Example images are displayed in the left panel and may guide the users in

their search but are not used as queries. The first screen displays in no particular order the 50 most

highly connected vertices in the network as motivated in Section 7.2. These images provide the initial

access points for the user. Comparison with the set of examples suggests that the image at position

(3,3) is visually perhaps the most similar. Clicking that image results in the screen on the right which

displays on the main panel the set of NNk of the selected image with their size being related to the

relative support, i.e. the proportion of feature combinations for which that image is ranked closest

to the selected image). Images are arranged so that those with large support tend to gather in the

centre. The bottom panel shows the selected image in the centre with temporally adjacent keyframes

of the same shot placed on either of it. Selecting the image at the bottom right which displays a fair

amount of grass brings us to the screen on the bottom left with a number of sport-related images.

We find that one of the images in the temporal browser is a relevant keyframe. Selecting it gets us

to the fourth screen with relevant images aplenty. Note that the time needed to get from the first

to the fourth screen depends only on how fast the user selects images. The set of neighbours are

precomputed and need only be retrieved from the database. This makes it considerably faster than

search by query image.

7.5.3 Results

The results for the four runs are shown in Table 7.3. The MAP figures for the top six rows are

precision-recall values averaged over the 24 topics. The TRECVID mean is the MAP averaged over

all submissions. The three runs involving automated search attain very similar performance levels and
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Figure 7.10: A TRECVID search using NNk Networks.

were among the top eight overall. The performance achieved by our browsing run is significantly lower

than that of our other three runs and, on the face of it, does not seem to fare particularly well. This is

not quite so. The difference can be explained in part by the fact that the search runs could take explicit

advantage of the high-quality annotation available, a point which we made earlier. Indeed, for topics

with little visual similarity between relevant keyframes, keyword search proved an indispensable tool

and its exclusion from the browsing run rendered some topics particularly difficult. This is confirmed

by a closer inspection of the performance for individual topics achieved in the browsing run (Figure

7.11). Average precision is particularly low relative to the TRECVID median for topics involving

particular individuals, topic 103 (Arafat), topic 114 (Bin Laden) and topic 123 (Pope John Paul II).

It is especially these topics that could be tackled effectively through text-based search.

We therefore did not expect performance to equal that of search runs. Nevertheless, the performance

of the browsing run exceeds that of 25% of all the submitted runs which we deem quite considerable.

For a number of topics with substantial visual coherence among relevant keyframes such as topic 100

(aerial view), topic 102 (baseball) and topic 112 (flames) browsing achieved excellent result that were

far above the TRECVID mean for the respective topic. This agrees with our experience at the time

of searching. We observed, in particular, that once a relevant keyframe had been found, it was easy to
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Runs MAP rank out of 36

SRB 0.257 ± 0.219 5

SR 0.259 ± 0.210 4

SB 0.234 ± 0.240 8

B 0.132 ± 0.187 27

TRECVID Best 0.457 ± 0.276 1

TRECVID Worst 0.046 ± 0.051 36

TRECVID Mean 0.182 ± 0.088

Table 7.3: Search task results for TRECVID 2003.

gather more by exploring the local graph neighbourhood, an observation that is in close accord with

the outcome of our semantic analysis from Chapter 6.
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Figure 7.11: Performance according to topic.

7.6 Conclusions

In this chapter we have turned our attention away from theoretical considerations of NNk Networks to

important practical issues culminating in a large-scale performance evaluation of the network structure.

Sinks and sources are groups of vertices that form strongly connected components outside of the giant

component. Sinks are composed of near-identical images which share all edges amongst themselves.

Sources are composed of single vertices that tend to correspond to images with unusual visual charac-

teristics and are therefore not linked to from any other image. Elimination of both sinks and sources

ensures that NNk Networks are strongly connected so that users can enjoy unrestricted navigability.

To identify whether or not a vertex belongs to a sink or a source, it is necessary to determine the set of

strongly connected components that partition the network. This operation can be achieved in O(N)

where N is the order of the network and thus can be done efficiently even for large collections. Sink

elimination involves recomputing for each sink vertex the set of its NNk with the added constraint

that for each weight combination, we determine the most similar image from the complement of the

set of sink vertices. Source elimination is accomplished by simply reversing the outgoing arcs of the
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source vertex. Sink elimination is more expensive than source elimination, but with the proportion of

sinks being small (0-2.73%) it adds negligibly to the overall cost of NNk Network construction.

Being able to update NNk Networks efficiently is a crucial requirement in dynamic environments. We

have seen that an image can be removed from the network simply by recomputing the NNk of all those

images that have previously linked to it. The addition of an image is a somewhat greater challenge

as any image from the network could potentially link to it. Instead of recomputing the NNk for every

vertex in the network, we suggest to restrict the set of potential focal images to those that are amongst

the N most similar images to the new vertex under at least one feature. The method is motivated by

the observations that the great majority of an image’s NNk are among the most similar images under

at least one feature and that the NNk relationship is often found to be reciprocated. We show on a

collection of 10,000 images that a substantial proportion of focal images can thus be discovered at a

greatly reduced computational cost.

Users have to be given some initial access to the networks. This can be provided through the results

of a conventional search by keyword or example image. In cases when the user has either no particular

information need or no example image at hand, we propose to display the set of highly connected

vertices, the hubs of the NNk Networks, as these will provide a maximum choice in the next step. It

turns out that hubs are also the vertices that have the smallest average distance to the other vertices

further adding to their value. A potential shortcoming of hubs is that they do not necessarily provide

the user with an overview of the collection, a subject which we will address in the next chapter.

We conceive of NNk Networks as structures that are not only ideal for undirected browsing but also

capable of supporting effective search when the information need is fixed and well-defined. To assess

the validity of this second claim, we decided to use NNk Networks in the search task of TREC’s video

retrieval evaluation contest and defined an evaluation run in which only browsing was permitted. The

level of performance attained by most runs involving search by example query and keywords was out of

reach but NNk Network browsing nonetheless fared better than 25% of all other entries. For individual

topics with rich visual coherence among relevant images, browsing NNk Networks proved at least as

effective as search by example. Since we excluded the possibility of keyword searches from the browsing

run, a functionality included in the great majority of the submitted runs, relative performance of NNk

browsing is expected to increase noticeably when no textual information is available.

With this chapter we complete the exposition of what we consider to be the core of our NNk framework

for searching and browsing image collections. The natural progression from our current position is to

widen the scope for user interaction in NNk Networks by exposing more of their rich structural and

semantic information. The next chapter will take first steps in this direction.
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Chapter 8

NNk Network Clustering

8.1 Introduction

We have seen in Chapter 6 that NNk Networks organise groups of semantically related images in

subgraphs that exhibit a notable degree of compactness. We observed in particular that these sub-

graphs comprise only a small number of strongly connected components with the largest often seizing

a large proportion of the constituent images. NNk Networks thus appear to provide a concise repre-

sentation of the semantic structure of an image collection. The combination of representational power

with small-world properties accounts for the observation that the value of NNk Networks goes much

beyond that of supporting undirected browsing. As evidenced by the performance in the large-scale

search task of TRECVID, NNk Networks can provide an alternative to automated image search in

cases where the information need is well defined.

The effectiveness of image search may surprise in view of the minimal interaction on which it relies and

the fact that the semantic structure is never fully exposed to the users. At any one time users interact

with little more than a focal image and a set of NNk. Second-degree neighbours and the compact

subgraph structure which the focal image may form part of remain invisible to them and thus play

no direct role in facilitating image search. The semantic structure is significant only indirectly as it

allows users to gather relevant images by traversing the strongly connected components of relevance

subgraphs.

After the consolidation accomplished in the previous chapter we now venture a major leap forward.

Our principal goal is to automatically extract information about the semantic structure and to purvey

it to the browsing users. If relevance classes form compact subgraphs, we may hope that by identifying

compact subgraphs we get close to unveiling meaningful structure. The most apt formulation of our

objective is that of finding clusters in the graph. Cluster analysis has been the focus of considerable

research in machine learning and pattern recognition and we shall begin our analysis in Section 8.2

by providing a brief, and necessarily incomplete survey of existing techniques.

In Section 8.3 we apply one such technique, Markov clustering (MCL), to NNk Networks. The tech-

nique partitions the vertex set of a graph by simulating flow across the network and has the pleasant

properties of (i) converging quickly for large sparse graphs and (ii) being able to deal gracefully with

directed graphs. NNk Networks are largely motivated by the observation that images admit to dif-

ferent interpretations and that this multiplicity cannot be captured satisfactorily by imposing fixed
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feature weightings. The ability to represent different semantics in one structure is a strength of NNk

Networks which we would like to capitalise on when extracting image clusters. Instead of clustering

the vertex set, we propose to cluster the arc set instead. This amounts to applying the algorithm to

the dual of the original graph and results in a soft clustering in which images may be assigned to more

than one cluster.

One reason for the proliferation of clustering techniques is the difficulty of assessing the quality of a

clustering as this makes it difficult to demonstrate the relative merit of a particular method. When

information about the true structure of the data is at hand, it is common to validate a clustering by

measuring the discrepancy between the set of clusters and the set of classes. An alternative way which

we will motivate in Section 8.3.3 is to use non-parametric statistical analysis to test for each cluster

individually the null hypothesis that its members have been randomly chosen from the population

given the shared annotation between images within a cluster. We apply this validation method to the

clustering obtained for the Corel collection comprising more than 30,000 images.

Section 8.4 describes two ways of utilising the information obtained from the graph clustering. We

argued in Chapter 7 that, in the absence of an image query, highly connected images from a collection

form suitable entry points to the network since they maximise the subsequent choice for the user. The

disadvantage of displaying these hubs is that they may not provide a good overview of a collection.

Such an overview may better be achieved by exposing the cluster structure of the collection. This

could be achieved by displaying centroids of the various clusters extracted from the graph. The second,

and arguably more important role of the clustering is as an integral component of an augmented

interaction scheme in which the static nature of NNk Networks is complemented by a cluster selection

and expansion method. Because clusters are precomputed, this addition does not compromise but

only enhances the degree of interactivity of NNk Networks.

8.2 Cluster analysis

Several decades of research across numerous disciplines have produced a plethora of techniques for

data clustering. A thorough exposition must therefore remain outside the purview of this work and

readers are referred to a number of good textbooks that attempt to provide a unified treatment of this

disparate subject (Anderberg, 1973; Späth, 1985; Jain and Dubes, 1988; Kaufman and Rousseeuw,

1990).

Cluster analysis seeks to discover natural groups of objects by virtue of the clusters they form. Clusters

are typically identified as groups of objects that are more similar to each other with respect to a set

of attributes than to other objects. Cluster analysis therefore rests on the general premise that

similarity in appearance can be informative about deeper, in our case semantic relationships. As in

most other applications of cluster analysis we are only interested in clusters in so far as they tell us

something about the classes. Clustering hinges on the notion of the dissimilarity between objects.

With data often being represented as points in Rn, it is common to characterise dissimilarities by

metric distances. This need not be the case, however. When objects are represented as vertices of

a graph, alternative distance measures may be better suited or the notion of a metric distance may

be meaningless altogether. We distinguish in the following between vectorial and graph clustering

but should hasten to say that this distinction is more out of convenience for the differences are often

slight.
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8.2.1 Vectorial clustering

The conventional data model underlying most clustering methods is that of a vectorial representation

of objects in Rn. Given a metric, the set of data points can be mapped to a pair-wise distance

matrix which provides the common starting point of virtually all cluster methods. It is commonly

distinguished between three broad groups of clustering methods according to how they utilise the

pair-wise distance information: (i) Partitional methods such as k-means divide the data into a fixed

number of non-overlapping sets so that some score function is minimised. Often the methods involve

iterative optimisation to find local optima. (ii) Hierarchical methods obviate the need to specify the

number of clusters. Different partitions can be obtained from the cluster hierarchy simply by taking

cross sections at different levels. Because of their nested nature, the resulting clusters can cover the

whole gamut of granularity from the more general to the more specific and have been the structure

of choice for a number of browsing models (for examples in image retrieval see Ma and Manjunath,

1996; Krishnamachari and Abdel-Mottaleb, 1999; Swets and Weng, 1999; Chen et al., 2000; Pečenović

et al., 2000; Barnard and Forsyth, 2001). (iii) Probabilistic methods, finally, seek to find an optimal

description of the data by fitting generative models. The result is not a partitioning of the data but for

each data point a vector of probabilities of belonging to each of the different clusters. The information

it yields is richer but it comes at the price of much tighter, and potentially incorrect distributional

assumptions.

8.2.2 Graph clustering

When data are represented in the form of a graph, cluster analysis can be formalised as a graph

partitioning problem. The quest is for a partitioning of the vertex set such that the subgraphs

induced by each of these sets are compact (in the same, similarly loose sense as that which motivated

our analysis of Chapter 6). As has been noted by van Dongen (2000), a graph may be regarded

as being closer to the optimal partitioning in the sense that a disjoint union of complete subgraphs

allows only one sensible partitioning and no other graph would justify such a partition better. For

vectorial data this correspondence could only be achieved in the limit of all points of a cluster being

infinitesimally close to each other and any two clusters being an infinite distance apart. In practice,

however, we do not expect graphs to be so clear-cut and for most graphs different optimisation criteria

will produce different partitionings.

Graphs are fully described by their adjacency matrix which we may conveniently construe as a matrix

of affinities to highlight the close connection to the distance matrix employed in vectorial clustering. It

is then easy to see that given data in Rn, we can readily cast it into a weighted graph representation by

turning the pair-wise distance matrix into an adjacency matrix with entries being some monotonically

decreasing function of the original distances. Thus, partitioning methods that are most naturally

formulated in a graph context can readily be applied to vectorial data by turning the latter into a

graph. In fact, in the great majority of applications of graph clustering, the graphs are ultimately

derived from vectorial data. NNk Networks, clearly, are no exception as their structure is entirely

determined by the distance matrices of individual features.
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Spectral clustering

One class of graph clustering methods that are most commonly employed in conjunction with vectorial

data but take their origin in a graph context are spectral methods. These have emerged in a number

of fields including computer vision and VLSI (Very Large Scale Integration) design. Despite the

substantial variation between particular spectral methods (Chung, 1997) their common objective is to

find the top eigenvectors of the Laplacian L of the graph’s adjacency matrix A. The second eigenvector,

for example, induces a partitioning of the graph into two parts which can be shown to approximate

the optimal partitioning for a particular optimality criterion. By employing several eigenvectors

simultaneously, one can achieve a k-way partitioning (Alpert et al., 1999; Malik et al., 2001; Meila

and Shi, 2001; Ng et al., 2005). The shortcoming of spectral clustering lies in its computational

complexity making it prohibitively inefficient for large matrices comprising several thousands of rows.

Graph contraction

Graph contraction methods are similar in rationale to that of agglomerative hierarchical clustering

of vectorial data points. In Song et al. (2005) a group of vertices is contracted to one vertex if their

induced subgraph contains only edges with weights above some threshold. By decreasing the threshold

over a number of steps, successive graph contraction leads to a nested hierarchy of clusters. In Wu

et al. (2004) the contraction step is preceded by a computation of so-called median vertices. These

are vertices located in the graph such that the average distance of a vertex to its nearest median

vertex is minimised. The problem of finding these median vertices is similar in nature to that known

as central clustering or vector quantisation of points in a vector space (Gersho and Gray, 1992). The

partitioning of the graph can loosely be thought of as the graph equivalent of a Voronoi tessellation. In

the ensuing contraction step all vertices of a partition are mapped to its median vertex. By repeating

the two steps the entire graph can be collapsed onto one root vertex.

We deem graph contraction methods unsuitable for our purpose as they place a premium on local

proximity favouring subgraphs which have a small average distance between constituent vertices. As

such, these methods will succeed in finding subgraphs with sphere-like topology but will fail to discover

those that are elongated, a property that many of the compact relevance subgraphs of NNk Networks

seem to exhibit.

Clusters as connected components of neighbourhood graphs

A common way to convert data in Rn into a graph is to represent each data point as a vertex and to

connect two vertices if the distance between their vectorial representations lies below some threshold

ε. The resulting neighbourhood graphs often form the basis for spectral clustering described above

but clustering can be obtained more directly by identifying clusters with connected components of

the graph. Clusterings of various granularity can then be obtained by varying the threshold (Duda

et al., 2001; Cheung and Zakhor, 2005). For the purpose of non-hierarchical partitional clustering,

the problem of how to determine ε in a principled manner is non-trivial and it is often found that the

resulting graphs consist of many isolated connected components (Belkin and Niyogi, 2002; Ng et al.,

2005).
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Markov Cluster Algorithm

A somewhat different approach to graph clustering has been taken by van Dongen (2000) in his

doctoral thesis. Like many of the above-mentioned methods, the Markov cluster (MCL) algorithm is

motivated by the observation that groups of vertices should be considered forming a cluster if they

share many of their edges and are connected to comparatively few vertices of other such clusters. Such

groups are found not by minimising some objective function, but by defining a Markov chain on the

vertex set and by simulating a random walk across the graph. Each vertex corresponds to a distinct

state of the chain and the transition probabilities are given by the normalised adjacency matrix of the

graph, the transition matrix. MCL exploits the fact that a random walk will spend most of its time

within highly connected regions and will rarely cross boundaries between such regions.

The standard procedure of simulating a random walk of length n is by raising the transition matrix

P to the nth power. (P n)ij then specifies the probability that a random walk reaches vertex j in

n steps when starting at vertex i. For strongly connected graphs, the corresponding Markov chain

will have a unique stationary distribution so that as n → ∞ the probability of being in a particular

state becomes independent of the initial state. The crux of the MCL method is that instead of letting

the Markov chain reach its stationary distribution, it amplifies large transition probabilities by a

process called inflation. Inflation involves element-wise potentiation by some power I and is followed

by a normalisation step to render the matrix stochastic again. By alternating matrix multiplication

with inflation, groups of strongly connected vertices eventually become segregated as most transition

probabilities vanish. The final matrix is exceedingly sparse and when interpreted in terms of an

adjacency matrix corresponds to a disjoint set of subgraphs each of which being a tree.

The MCL algorithm has been applied extensively in a number of areas most notably in molecular

biology for detecting protein families (Enright et al., 2002, 2003; Li et al., 2003) and in computational

linguistics for word sense disambiguation (Dorow and Widdows, 2003; Dorow et al., 2004). We chose it

over other clustering methods because it seems a robust and fairly efficient method that can be applied

easily to directed graphs. Although the computational complexity of the algorithm is quadratic in the

number of vertices and linear in the number of edges, we note that graphs with 100,000 vertices and

2,500,000 edges can be clustered in only one hour on a 3 GHz processor.

8.3 MCL on NNk Networks

8.3.1 Clustering of the original network

The MCL algorithm achieves a strict partitioning of the vertex set so that a vertex is assigned to

exactly one cluster. When applying MCL to the original network, therefore, it is done on the premise

that there exists a privileged class to which an image belongs. This assumption seems at first to be at

odds with our claim that images are polysemous. The two views are not irreconcilable, however, as it

could be argued that there usually exists a semantic facet of an image that stands out and which is

agreed upon by most users. Clustering the original network can hence be justified if we thereby hope

to discover the most likely class of an image.

We find experimentally that the results obtained from clustering the original network are very sensitive

to changes in the inflation parameter I . Recall that I denotes the power to which each matrix element

is raised after matrix multiplication. It is the inflation and subsequent normalisation step that have

118



the effect of strengthening flow between strongly connected vertices. High values for I let the matrix

converge quickly before flow from one area can spread into other areas of the network. The result is

a clustering that captures local structure and in the extreme case groups an image with its strongest

NNk. For low values of I , flow becomes global before the matrix converges and the final result reflects

structure at a larger scale. The relationships between the number of clusters, the size of the largest

cluster and the value of the inflation parameter for the Corel 10,000 collection are depicted in Figure

8.1.
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Figure 8.1: Relationship between number of clusters, maximum cluster size and I .

8.3.2 Modelling semantic ambiguity - MCL on the dual network

MCL clustering breaks the graph into equivalence classes with every vertex being assigned to exactly

one cluster. The shortcoming of the hard clustering thus obtained is its failure to model the semantic

ambiguity of images that to capture was the original motivation behind NNk Networks. By treating

each vertex as an indivisible semantic unit, MCL ignores the semantic multiplicity of images. As

we argued in Chapter 4, it is not individual vertices but vertex pairs with which we identify the

semantic atoms in NNk Networks. We should therefore hope to achieve a more faithful representation

of the semantic structure of a collection by clustering vertex pairs. Because a vertex participates in a

number of such pairs (as many as it has neighbours), clustering vertex pairs allows vertices to belong

to different clusters. Clustering vertex pairs of a graph G = (V, E) can be understood as clustering

the vertices of the dual of G. The dual of a graph, G′ = (V ′, E′), is obtained by converting each edge

in G into a vertex of G′ and connecting any two vertices in G′ if their corresponding edges in G share

a vertex. Because the set of edges incident with a vertex are mutually adjacent, a vertex v in G of

degree kv expands into a complete graph in G′ of order kv (and thus with kv(kv −1)/2 edges). Hence,

the number of edges and vertices of G′, denoted by n′ and e′, are

n′ = e

e′ =
1

2

∑

v∈V

kv(kv − 1) =
n

2

(

Var[k] + E[k]2 − E[k]
)

.

Note that the number of edges in G′ cannot simply be inferred from the average vertex degree of G

as it also depends on its variance. The dual of a graph contains more vertices than G if the average
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vertex degree is greater than two. From the above expression of e′, it follows that it also contains

more edges than G whenever 2E[k] < E[k2]. Thus, it is generally more costly to cluster the dual than

the original graph.

For directed graphs like NNk Networks we can find a dual by a slight modification of the above

definition. Instead of establishing an edge in G′ if the adjacent vertices correspond to adjacent edges

in G, we establish an arc in G′ from v to w if the corresponding arcs of v and w in G share the same

vertex x and are such that v is directed towards x and w is directed away from x. If we do not want

to retain the directionality of the original graph, we may instead convert it first into an undirected

graph by establishing an edge between two vertices if there is at least one arc involving both and

subsequently construct its undirected dual.

We adopt the former technique and so keep the dual directed. The conversion involves connecting

each of the outgoing arcs of a vertex v with the outgoing arcs of w where v → w. Hence, the total

number of arcs in the dual graph is given by

e′ =
∑

v∈V

∑

w∈V :v→w

kw (8.1)

We note as an aside that this is equal to the sum of the elements of A2, where A is the adjacency

matrix of the original network in which all non-zero weights are replaced by unity. The weight of

an edge in the dual graph is taken to be a function of the weights associated with the two edges it

connects in the original graph. There are several ways how these weights may be combined. For

our experiments we chose wij =
√

w2
i + w2

j , which has the effect of the larger weight dominating the

average. Clearly, the weights thus assigned do not generally add to unity even if they do in the original

graph, so they need to be normalised prior to applying the MCL algorithm.

The arc set of G can now be partitioned by applying the MCL algorithm to the vertex set of G′. As

before we obtain a strict partitioning of the vertex set but since each vertex now corresponds to an

arc in the original graph, the result amounts to a soft clustering of the original vertex set. A vertex

can now associate with as many clusters as the product of its in- and outdegrees, although in practice

we may expect many of a vertex’s incident edges to fall in the same cluster.
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Figure 8.2: Effect of r and I on the number of clusters.

As we noted above the dual graph is typically much larger than the original graph. Not only do we

have more vertices but also more edges (even though the graph may well be sparser). One way to

reduce the number of both edges and vertices in G′ is by not making every edge in G a vertex of
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G′. In particular, we may restrict our attention to the r strongest outgoing arcs for each vertex. The

total number of edges in G that become vertices in G′ is then reduced to at most rN where N is

the number of images in the collection (rN is an upper bound since the degree of some vertices may

be smaller than r). It is easily seen that the number of edges is then at most r2N and so decreases

quadratically with r.

By thus pruning the network we not only achieve a faster clustering but also appear to improve the

quality of the resulting clusters. We find experimentally that both the number of clusters and the

distribution of cluster sizes change considerably as we vary r as indicated in Figure 8.2 for the Corel

10,000 collection. For large r an increasing proportion of the images are concentrated in the largest

cluster. Allowing all edges to become vertices results in a number of clusters covering virtually the

entire image collection. Although large clusters may not in themselves be undesirable (there may

after all exist broad categories such as indoors and outdoors), we observe that their preponderance

is concomitant with a rapid decrease in the frequencies of clusters at other semantically meaningful

scales. Weak arcs seem to have a confounding effect on the clustering process and prevent the MCL

algorithm from finding tight groups.
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Figure 8.3: Cluster sizes (left) and number of clusters per image (right) for I = 20, r = 5 and 32,000

images.

The recommended range of values for the inflation parameter I is between two and five and indeed we

find that I = 2 proves a good value for clustering the original network. For the dual graph, however,

we observe that the number of clusters remains at a prohibitively low level even for I = 5 and that

results do improve by setting I as high as 20. The distribution of cluster sizes for I = 20 and r = 5

is shown on the left of Figure 8.3. Most clusters are in a range that can be displayed comfortably on

a computer screen. The plot on the right shows the frequency distribution of the number of clusters

to which images have been assigned to. With r = 5, the great majority of images are shared by five

clusters with very few belonging to six clusters. Note that r is the maximum number of outgoing arcs

of a vertex that we allow to take part in the clustering. Since each vertex also has incoming arcs,

however, the total number of clusters a vertex can be assigned to can exceed r.

8.3.3 Cluster validation

Visual inspection of the clusters suggest that the constituent images tend to be closely related. A

select few of the 2,399 clusters are shown in Figure 8.4. We shall now consider more objective ways of

assessing cluster quality. When the clustering is a strict partitioning and we know the classes which
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we hope to reveal through the clustering, its quality can be measured in terms of the discrepancy

between the class and the cluster distribution. A number of simple metrics have been proposed for

this purpose (Rand, 1971; Fowlkes and Mallows, 1983; Milligan et al., 1983) which are based on a

2 × 2 contingency table that records the number of object pairs that agree or disagree with the class

and cluster to which they belong. Given N objects, we have a total of N(N − 1)/2 object pairs to

examine. The larger the number of object pairs that either disagree or agree about both their class

and cluster membership, the better the clustering.

A related method counts for each cluster/class pair the number of objects that associate with it and

thus involves an m × n contingency table where n and m denote the number of clusters and classes,

respectively. For a perfect match the matrix would consist of exactly one entry per row and one

per column. A metric can then be defined in various ways using, for example, empirical conditional

entropy (Dom, 2001) or the normalised Hamming distance (Kanungo et al., 1994).

Both approaches measure the quality of the clustering in terms of the discrepancy between the actual

and the ideal clustering. Their success relies on the convenient properties of the clustering being a

strict partitioning and of objects being uniquely assigned to classes, neither of which is true in our

context. We therefore suggest an alternative statistical method that generalises to multiple class and

cluster memberships. Instead of measuring how far the actual clustering deviates from the ideal one,

we measure its compatibility with the null hypothesis that images within a cluster are assembled

randomly. We choose as the test statistic the size of the joint vocabulary associated with a cluster.

For convenience we shall call this the description size of a cluster. The choice is based on the not

unreasonable premise that the description size is related to the semantic coherence of a cluster: the

more terms we need to describe a cluster, the greater the diversity among its members and the lower

the quality that we may wish to ascribe to the cluster. Unlike the first two methods, our approach

measures the quality of individual clusters rather than of the clustering as a whole but the two are

clearly related and the latter can be inferred from the former.

The distribution of the test statistic under the null hypothesis may seem difficult to gauge for not

only does the number of terms vary between images, also the overall frequency distribution of terms

is highly non-uniform with many terms occurring only once and a few terms like “background” and

“outdoor” accompanying more than 60% of the images of the Corel collection. For a small random set

of images, however, we may consider the overlap between annotations within a cluster negligible (the

overlap will largely be with respect to the few terms occurring in a large proportion of images) so that

the description size can be modelled as the sum of identically and independently distributed random

variables. By the central limit theorem, therefore, we expect the distribution of the description size

to be well approximated by a normal distribution for large clusters. Figure 8.5 shows the description

sizes of random sets of order 60. It provide visual confirmation of this conjecture.

Given the distribution of the test statistic under the null hypothesis, we can measure the significance

of actually observed description sizes in terms of the probability mass to the left of that value under

the null distribution, i.e. the P -value. Instead of fitting a normal distribution and looking up the

corresponding P -values in statistical tables, we take a more direct, and arguably more accurate Monte

Carlo approach by determining the proportion of random clusters with a description size smaller than

the observed value. We approximate the distribution by generating for each observed cluster size

10,000 random image sets of that size for each of which we determine the value of the test statistic

(this was also done to generate Figure 8.5 but with a sample size of 1,000).

For each cluster we obtain a P -value which gives the probability that the description size for a cluster
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Figure 8.4: Clusters obtained by running MCL on the dual network of 32,000 images.
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Description sizes of random image sets of order 60

Figure 8.5: Frequency distribution of description size.

of this size would have been as low as or lower than the one observed had the cluster been generated

at random. We consider a cluster significantly deviant if the P -value falls below some significance

level α.

P -values have been a notorious source of contention and confusion among statisticians and their

frequent abuse has brought statistical hypothesis testing somewhat into disrepute. A common mis-

apprehension is the belief commonly found in textbooks that the P -value measures the probability of

the null hypothesis being true. If x is the value of our observed test statistic, then by Bayes’ rule,

P (H0|x) ∝ P (H0)P (x|H0), so the probability of H0 being true in the light of x clearly depends also on

our prior belief in H0. Another problem, which is of particular relevance in our context, arises when-

ever multiple tests are carried out and are followed by an ad hoc selection of those that are significant.

Under these conditions the chance of erroneously rejecting a true null hypothesis increases. Imagine,

for example, that we test two true null hypotheses with α = 0.05. The chance of rejecting at least one

of the hypotheses is 1−(1−0.05)2 = 0.0975, not 0.05. The problem is appropriately called alpha infla-

tion and much effort has been expended to control the risk of type-I error thus introduced (Hochberg

and Tamhane, 1987; Tukey, 1991). With the growing need for automated evaluation of large-scale

experiments, in particular microarray experiments in functional genomics involving thousands of pair-

wise comparisons, the problem of multiple comparisons is currently attracting considerable attention

(Simonsen and McIntyre, 2004). A simple method that guards against false positives is known as the

Bonferroni correction which reduces the significance level for each test to α/m where m is the number

of tests.

Such corrections are important if we are primarily concerned with validating individual, independent

hypotheses. In our context, the cluster-specific hypotheses all provide partial evidence in favour of or

against a global hypothesis that the clustering as a whole achieves a non-random segregation and the

individual tests may be highly non-independent (in the case that the clustering achieves its purpose).

What matters for us, therefore, is not the P -value of individual clusters but the distribution of P -

values for the ensemble of clusters. For a similar argument in a somewhat different context see the

paper by Böhm and Mayhew (2005). If segregation were random, the distribution of P -values would

be expected to be symmetrically centred at 0.5. Given some significance level α and m clusters,

significant P -values would be expected in α ×m clusters. The actual distribution of P -values for the

clusters found in the Corel collection is shown in Figure 8.6.
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From the 2,399 clusters, 657 or 27% score a P -value of less than 0.0001, 1446 or 60.2% of less than 0.05.

The preponderance of low P -values is not what we expect under the null hypothesis and it strongly

suggests that the clustering is of much better quality than what would be expected by chance. This

analysis confirms the impression one gains by visual inspection of individual clusters.
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Figure 8.6: Distribution of P -values for 2,399 clusters.

Judging by the P -value, we observe from Figure 8.6 that although the clustering on the whole appears

to capture the semantic structure of the collection well, not all clusters are assigned high P -values. If

annotations are available, we can readily prune the ensemble of clusters based on some threshold value

for P . If they are not, it might be of interest to conceive of alternative ways to measure cluster quality.

The problem amounts to finding some property other than small description size that is shared among

clusters with low P -value and only these. It is now an opportune moment to turn to an important

hypothesis that the NNk framework almost naturally gives rise to. If the hypothesis were true, it

would provide us with such a property. Unfortunately, we shall find that the hypothesis is most likely

to be false but we will argue that this result further strengthens the very premises on which the NNk

framework rests. We have repeatedly emphasised that the semantic unit in NNk Networks are pairs of

images that correspond to adjacent vertices, not individual images. This is an expression of the general

view that the meaning of an image reveals itself only by placing it in relation with others. These pairs

consist of a focal image and one of its NNk and are partly characterised by the average of all the weight

vectors for which that NNk is more similar to the focal image than is any other image (see Section

3.2.6 in Chapter 3). It is tempting to construe weight centroids as carrying a certain semantics and to

conjecture that similar weight centroids carry a similar semantics. If this were so, we expect the set of

weight centroids corresponding to semantically coherent clusters to form a comparatively homogenous

set with low variance, and thus we should be able to infer cluster quality from the homogeneity of

weight centroids. We have put this hypothesis to a test using the clustering obtained from the Corel

collection. For each of the 2,399 clusters, we note the weight centroid associated with each of its edges.

We then determine the variance with respect to each of the components of the k-dimensional weight

vector (where k is the number of features used) across all edges from a cluster and then average over

all k components. This forms our aggregate measure of within-cluster variance. For each cluster, we

may now plot its variance against the previously computed P -value. In order to make the plot more

easy to interpret, we do not plot each of the 2, 399 points but compute the variance at 10 equally

spaced P -values pi averaged over a neighbourhood pi ± 0.05 covering the interval [0, 1]. The results
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are depicted in Figure 8.7. The dotted lines mark the standard deviation and we linearly interpolate

between points. Clearly, if we wished to discern a trend, then it would be one in a direction opposite

to what we expect were our hypothesis correct. On the basis of these data we have no reason to

assume that the variance is smaller for high-quality, semantically coherent clusters.
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Figure 8.7: Variance within clusters with respect to weight centroids for different P -values.

Although this is undoubtedly a negative result in the narrow context that motivated the analysis

in the first place, it supports a conclusion of wider significance: The NNk idea is predicated on

the observation that the multiplicity of semantic facets of an image prohibits any fixation of feature

weights prior to user interaction. We resolve the dilemma of feature weighting by computing the

nearest neighbours under all possible weighted combinations of feature distances. This forms the basis

of NNk search in Chapter 4 and of NNk Networks as developed since. The discovery that the feature

weights which give rise to semantically coherent clusters are not necessarily homogenous suggests that

even to capture individual semantic facets it may not be sufficient to guess a single global metric. If

image classes describe complex distributions in feature space, any global distance metric induced by a

fixed set of feature weights should often prove locally suboptimal. Relevance feedback techniques that

aim to optimise a single metric from positive examples are therefore severely limited as the learned

parameters will provide an inadequate model for the complex metric structure of the class as a whole.

This echoes the observations of Li et al. (e.g. 2002); Qamra et al. (e.g. 2005) which motivated their

introducing dynamic distance functions. We could of course estimate the ‘correct’ local metric if the

class distribution were known. Otherwise, however, we are well advised to try different metrics and

let the user decide which one is locally optimal. This is precisely what NNk Networks seek to achieve

by representing the neighbourhood of an image in different feature directions. When the distribution

of a particular class falls on a low-dimensional manifold, most metrics will cause non-relevant images

to be woven into the network, but by also including the locally optimal metric, we have a high chance

of connecting the current focal image to a member of the same relevance class.

It is common practice to learn manifolds by approximating the topology of the data by means of

neighbourhood graphs (Tenenbaum, 1997; Tenenbaum et al., 2000; Belkin and Niyogi, 2002, 2003;

He et al., 2004). The geodesic distance between data points can then be approximated as the topo-

logical distance across the graph and dimensionality reduction techniques may then be applied to

the geodesic distance matrix. Because NNk Networks employ a set of different metrics to connect

each data point, we may fruitfully construe them as approximations of a large number of possible
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manifolds. The approximations are embedded in the network structure in the form of the relevance

subgraphs encountered in Chapter 6 with paths along the subgraphs corresponding to trajectories

along manifolds.

8.4 Applications of clustering

8.4.1 Collection overview

In a query-free environment alternative ways of accessing the network need to be found. We argued in

Chapter 7 that highly connected vertices or hubs are suitable candidates for initial points of access as

they lead users quickly into different areas of the collection. For users unfamiliar with the content of

a collection, it might be a more pressing objective to gain an overview of the collection. The clusters

obtained from the MCL algorithm can achieve this purpose by representing the semantic structure of

the collection. If annotations are available to check cluster quality directly, we can choose a subset

of high-quality clusters obtained from the dual which cover the collection well. Even a subset should

provide good coverage as the dual contains substantial overlap. For display purposes we need to

determine cluster representatives. For vectorial data the standard approach is to compute cluster

centroids as those data points that minimise the average distance to all other points of the cluster.

For graph data we may define centroids in a similar way by measuring distance in terms of the length

of the shortest path between two vertices. We find in practice that the centroids thus found tend to

be veritable outliers. This is a result of the fact that the subgraphs often have a tree-like topology

with arcs directed towards the centre. A second possibility is to examine the behaviour of the Markov

chain defined on the subgraph corresponding to the cluster. If P is the transition matrix derived from

the adjacency matrix through row-wise normalisation and pn
ij = (P n)ij then the probability of finding

the random walk at vertex j can be obtained by finding the limits

lim
n→∞

pn
ij .

If the Markov chain is irreducible (i.e. the subgraph is strongly connected) and aperiodic, then the

limit is the same for all i and denoted by πj . To ensure strong connectedness we reverse each arc of

the subgraph. The maximum period of the resulting graphs is then two. If the period is two then we

can obtain a stationary distribution by averaging entries over two successive matrices.

πj =
1

2
lim

n→∞

(

pn
ij + pn+1

ij

)

.

Vertices can now be ranked according to their πj value and the most frequently visited vertex can be

chosen as the cluster representative. We find that the resulting centroids represent the clusters much

better than the first, distance-based method.

As an aside it might be interesting to note that by displaying not the hubs but cluster representatives

we may expect to increase the chances that the initial display contains exactly one relevant image

because we are less likely to find two or more if the clusters really capture different relevance classes.

The reasoning is similar to that in Chapter 4 where we argued that the chance of finding exactly

one relevant image among the NNk of an image should be higher than were we to retrieve the same

number of images with some fixed metric.

127



8.4.2 NNk Clusters

We can take further advantage of the clustering by selectively informing users about any potentially

relevant structure associated with their current position in the network. When choosing a vertex as

the new focal image, we display not only the set of NNk but also the representatives of all the clusters

in which the image appears. We may call these clusters NNk clusters as they contain the current focal

image and at least one of the focal image’s NNk. The number of possible clusters for each focal image

is given by the product of their in- and outdegrees if all arcs participate in the construction of the

dual graph. If we only consider the five strongest arcs of each vertex for dual computation, the actual

distribution for 32,000 images is given by the right histogram of Figure 8.3.

Again we may think of different clusters as highlighting different semantic facets of the current focal

image. Unlike the display of NNk the clusters are meant to be semantically uniform and as such

they provide users with images that would otherwise need to be collected by following relevance paths

through the network. By choosing a cluster, users choose a particular semantics of the current focal

image. The process of cluster selection and expansion is therefore akin in rationale to NNk search of

Chapter 4. While the latter involves ranking the entire collection by applying a fixed weight set, the

former matches different semantics with precomputed clusters.

Figure 8.9 is a screenshot of a prototype system that provides a physical instantiation of the NNk

framework by integrating NNk browsing, NNk search with NNk cluster selection and expansion. The

partitioning of the interface is shown diagrammatically in Figure 8.8. The bottom panel relies on a

linear organisation of images according to some metadata (time a photograph has been taken, order

in a directory etc.) and shows the focal image in the centre. The left panel displays the set of NNk

that are associated with the current focal image. The size of each image reflects its support, i.e. the

number of weight sets for which it is closest to the focal image. The top panel on the right contains

a list of five cluster centroids. Each of these clusters contains the focal image and some of the NNk

found on the left panel. By selecting a cluster centroid, the content of the cluster is expanded in

the panel underneath. Different centroids expand into different NNk clusters. Here the rightmost

centroid represents a cluster with landscape images predominantly with meadows or grassland in the

foreground.

Temporal browsing panel

The set of NNk
Images of

selected cluster

Cluster centroids

Figure 8.8: Schematic interface.

It is interesting to note that there is common ground between this idea of cluster selection and

expansion and some relatively early work on image retrieval. Minka and Picard (1996) suggest to

precompute a large number of image groupings by applying a variety of different similarity criteria,

or ‘society of models’. The method seeks to capture as many of the potentially relevant groupings

beforehand and is motivated by the observation that for very large collections, it becomes impractical
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Figure 8.9: Screenshot of integrated system.

to perform online comparison of a query image with every image from the collection. Given a set of

positive images, groupings are retrieved that exhibit the greatest overlap with the selected images.

8.5 Conclusions

Since the NNk of an image can form a rather diverse set, images from a relevance class may form

distributed subgraphs spread out across the network. These subgraphs are never presented to users

in their entirety. Users only ever interact with a focal image and the set of its first-degree neighbours

so the semantic structure can only be exploited indirectly by following relevance paths through the

network. The goal of this chapter was to formulate ways to automatically extract this semantic struc-

ture and to make it available as another source of information guiding users during their interaction

with NNk Networks.

We identified a recently developed graph clustering algorithm as well-suited to our problem and applied

it to the dual of one particular NNk Network. By clustering the dual of a graph we allow any vertex

to be part of more than one cluster. Our cluster validation method is based on the assumption that

semantically coherent clusters should have a comparatively small joint vocabulary (the set of unique

words present in the annotations that accompany the images of a cluster). We call this the description

size of a cluster and make it our test statistic. For every cluster we compare its description size with

the distribution of description sizes expected under the null hypothesis that the cluster has been
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assembled randomly. With over 60% of the clusters scoring significant P -values our formal validation

confirms the positive impression we gain from manually inspecting individual clusters.

In cases where no annotations are available to check cluster quality, it might be desirable to have

alternative methods to weed out the few clusters of low quality. This motivated our conjecture that

semantically coherent clusters may be composed of edges associated with similar weight centroids. If

borne out by the data, weight centroid homogeneity could be taken as a surrogate measure of cluster

quality. Our analysis of the 2,399 clusters from the Corel collection rules out such a conclusion and

suggests instead that the distributions in feature space of images belonging to the same relevance class

are generally too complex to be captured by single feature combinations. This observation highlights

the importance of employing a multitude of different metrics for image search and also brings out

clearly a major limitation of any relevance feedback method that seeks to establish an optimal global

metric for a particular relevance class. By computing the neighbourhood of an image in feature space

according to a number of metrics, NNk Networks are shown to be more flexible and can represent as

part of their structure even the most contorted distribution.

The image clusters can serve a number of functions, two of which are outlined in this chapter. Both

require clusters to be represented concisely in the form of cluster centroids. We motivate two ways

how such a centroid may be defined. One is based on the notion of the topological distance between

vertices of subgraphs, the other involves finding the stationary distribution of a Markov chain defined

on the vertex set. The first application of the clustering is as an alternative form of accessing an

image collection. Cluster centroids can replace image hubs as initial points of access when no query is

formulated thus affording users with a potentially much better overview of the content of the collection

than can be achieved through hubs. The second function is that of providing users with a summary

view of the different classes the current focal image may belong to. When users select a new focal

image we display not only its NNk but also the centroids of all those clusters in which the focal image

appears. Instead of gathering relevant images by following relevance paths through the network, users

may frequently find it more profitable to select and expand appropriate cluster centroids. By revealing

otherwise hidden semantic structure to the browsing user, NNk clusters constitute a valuable addition

to the existing NNk framework.
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Chapter 9

Conclusions and Future Work

9.1 Summary of results

The broad objective of this thesis was to formulate new ways of searching and browsing large image

collections. The proposed framework is based on a simple but powerful idea which we have called the

NNk idea, where NN stands for nearest neighbour and k denotes the number of visual features. The

conventional way of ranking images based on similarity involves computing a set of near neighbours

under a fixed metric. We suggest instead to parametrise the metric and determine the nearest neigh-

bour under all different parameter settings. This provides us with an eclectic set of images which we

call the lateral neighbours or NNk. The set of NNk of an image are a distinguished set of neighbours

in a k-dimensional vector space. They may be viewed as an exemplification of the various semantic

facets of the image.

We have seen two major applications of the NNk idea. The first application is to relevance feedback.

The conventional approach to relevance feedback is to refine feature weights over a number of iterations

based on positive and negative examples. NNk search exploits the fact that each NNk of a query image

corresponds to a particular parameter setting, namely the feature weights for which that NNk is more

similar to the query than is any other image. The technique involves two steps: by first displaying the

NNk of the query image and letting the user select one or more relevant NNk , we can in a second step

retrieve using the weight sets associated with the selected images. The method turns out to be highly

effective even for large collections of more than 30,000 images and is shown to outperform alternative

relevance feedback methods.

The second application, which occupies the greater part of the thesis, can be viewed as a natural

extension of NNk search. It provides an effective solution in situations when the first retrieval result

is unsatisfactory or when users have no clearly defined information need. Rather than retrieving with

the weight set of a chosen image, we instead enable users to view the NNk of that image. Because

we can precompute the NNk for every image in a collection, the interaction can then take the form of

browsing a static, hyperlinked network in which every image in connected to all its NNk.

We have investigated the suitability of the resulting NNk Networks for content-based search from a

number of different viewpoints. Investigation of their topological properties revealed the presence of

small-world properties: even for large collections of 100,000 images vertices are on average not more

than four links apart (like in random graphs) but the networks also exhibit a substantial degree of
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local structure (unlike random graphs). These findings suggest that users should be able to navigate

quickly across the network whilst always having a sense of locality and neighbourhood. An analysis

of the distribution of relevant images across the network showed that these tend to cluster in ways

that should support directed search. Relevant images form compact subgraphs that allow users to

satisfy their information needs by following relevance paths. These analyses were complemented by

a large-scale quantitative evaluation on 32,000 images and a set of realistic search tasks. The study

provides strong evidence that even for difficult collections and tough queries, interactive search across

NNk Networks provides a very fast and effective alternative to automated content-based search.

By applying the MCL algorithm for graph clustering to the dual of NNk Networks, we demonstrate

how some of the semantic structure can be captured automatically and made available to users during

the interaction.

In addition to providing an evaluation of the new interaction scheme, we highlight and solve a number

of questions of practical relevance: how can we update the network efficiently in dynamic environments,

how can we ensure that the networks are strongly connected and how do we access the network in

query-free environments?

The thesis has been concerned with the development and the evaluation of a new framework for image

search and browsing and much what has been covered is, by necessity, groundwork. There are two

strands along which the work can be taken further: it can be applied to other domains and it can be

extended and refined in numerous ways. Its application to new domains should be an exciting way to

characterise better the strengths and weaknesses of the proposed framework. We expect there to be a

fertile interplay between the two strands as new applications will come with their own requirements

and any refinements to the core framework may open up application areas not previously thought of.

We will in the following sketch a few suggestions.

9.2 Application to other domains

NNk Networks have been developed primarily for interactive image retrieval but the same framework

can be applied to other types of media as well as multimedia. The networks provide a well-motivated

data structure for any objects that can be given a vectorial representation and for which it is not

always obvious how individual features are to be combined. We shall here consider its applicability

to music and document retrieval.

9.2.1 Music retrieval

With the dramatic increase in the amount of digitised music available on the Web both in the public

domain and on commercial sites, content-based music retrieval is gradually gaining greater prominence.

Text search requires music pieces to have been annotated but even if they are, annotation is typically

restricted to composer and genre and may thus prove insufficient for finding pieces that are musically

similar. Content-based retrieval can work from the raw audio (Cano et al., 2005) but is most frequently

applied to more structured formats such as MIDI (e.g. Doraisamy and Rüger, 2004). For monophonic

music it is straightforward to find a robust representation in terms of low-level features related to

pitch, harmony and rhythm. For polyphonic music this is somewhat more difficult (Pickens, 2001),

and certainly much harder than for retrieval of text documents where words tend not to overlap.
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Automated search for music pieces based on their content is therefore still fraught with difficulties for

general collections. The greater fault-tolerance of browsing over automated search should render NNk

Networks a valuable complement if not alternative.

The transfer of NNk Networks from images to music is not, however, without difficulties. Although

Cunningham (2005) concludes from an extensive study of user interaction with music archives that “the

most significant lesson learned from this exercise is that people do a lot of browsing with music.” and

observes that “browsing has not been well supported in MIR systems, relative to searching”, browsing

typically takes place within classification hierarchies that are established manually and populated on

the basis of metadata. Browsing takes place by following textual cues. Purely auditory browsing is

more problematic as has been noted elsewhere (Blandford and Stelmaszewska, 2002). Unlike images,

music pieces have a temporal extension and need to be listened to in real-time before users can judge

their relevance. Besides, downloading music files can be comparatively time-consuming. In many cases,

however, some metadata is available and can be used to label NNk so as to facilitate pre-selection.

As mentioned above, the presence of metadata does not at all diminish the value of content-based

organisation of music. The two are rather complementary: On the one hand, metadata is generally

poor and can capture music content to an even lesser degree than image captions. Composer and

genre information on their own provide groupings that are not always desirable or sufficient from

a musicological perspective. Content-based organisation helps to unveil relationships on the content

level between pieces that outwardly have little in common. On the other hand, content-based browsing

benefits from visual cues which can be provided through metadata by labelling pieces accordingly. One

should also note that metadata can be incorporated not only as a means to label NNk but also as

another feature during network construction.

Semi-structured music files are much more similar to text documents than images: they are essentially

linear and allow easier access to semantic primitives such as harmonies, pitch and rhythm. This

provides an opportunity to enrich NNk Networks by labelling NNk not simply by metadata, if present,

but also with the musical feature that is assigned greatest weight for that particular NNk. This makes

less sense in content-based image browsing not only because image features tend to be more obscure

but also, of course, because the content of an image is best obtained by visual inspection.

Although attempts have been made to cluster music files without feature extraction (Cilibrasi and

Vitányi, 2005), it has been observed that the clustering is incapable of modelling the fact that music

pieces, like images, may be categorised in different ways. Pieces by J. S. Bach may rightfully be

grouped together with those by Gershwin for reasons of harmonies and with Chopin on the basis of

their melodic structure. Dual clustering of NNk Networks provides an interesting solution to recover

these multiple relationships. NNk Networks should not only appeal to the ordinary consumer but also

open up exciting opportunities for scholarly research.

9.2.2 Document retrieval

Information retrieval research was originally concerned with text documents to the extent that text

retrieval was, and still is, synonymous with information retrieval. The features traditionally used

for text retrieval are individual terms: documents are represented as term vectors in which each

component represents some information about the occurrence of the respective term. The most

common term statistics is the TF-IDF weight (Salton and McGill, 1982). TF is simply the frequency

of a term in the document under consideration. IDF is the inverse of the number of documents in which
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the term occurs and is typically taken to the logarithm to render it less sensitive to the collection

size. The number of features, therefore, is larger by many magnitudes than in typical image and

music retrieval applications. Another difference of some significance relates to the fact that queries

take the form of a set of terms. Unlike in image and music retrieval, users thus specify explicitly

which features they deem important for similarity computation. Determining feature relevance is

therefore less prominent a problem in automated text retrieval but it becomes an issue when users do

not specify terms, as would be the case in browsing applications. Documents also display a degree of

polysemy not only because they may treat a number of different topics but also because each topic

can be related to many others. An article on the Italian renaissance relates to articles covering the

spread of renaissance ideas throughout the rest of Europe but also to articles that portray historical

figures of the time. Clearly, terms will need to be assigned different degrees of relevance in order to

distil these different facets. With a few million terms for moderately sized corpora, the k in NNk is

too large to make network construction even remotely practical.

An exciting solution is latent semantic indexing, or LSI (Deerwester et al., 1990; Landauer and Dumais,

1997). LSI seeks to extract from text not just term occurrences but semantic structure thereby

dramatically reducing the number of dimensions. LSI approximates the original T -dimensional term

space by the first k principal component directions in this space using the N × T document-term

matrix to estimate the directions. This principal components approach exploits redundancy in the

terms: terms that regularly co-occur in documents may be merged and replaced by a new surrogate

feature. The new k-dimensional representation of the documents is much more amenable to NNk

Network computation.

Documents share with music pieces that it takes time to judge their relevance but documents have the

advantage that they may be summarised more meaningfully. The possibility of concise representations

makes browsing a valuable complement to automated search and it is already used as such. Citeseer,

for example, provides links to related documents based on sentence similarity and co-citations thus

allowing researchers to navigate a complex network structure with different types of links. Google pro-

vides for each retrieved document a link to related documents. Unlike NNk Networks, however, these

navigation structures are not versatile enough to extract different semantic facets of the documents

because the similarity metric is fixed.

Another application in which it is not always clear how to assign weights to different features is to

structured documents. The Extensible Markup Language (XML) has by now assumed such a ubiquity

on the Web and in many other computing applications that XML retrieval has become a topic of great

interest. An important issue pertaining to XML retrieval is the presence of two distinct dimensions

along which relevance may be judged, namely content and structure. Content can be captured using

traditional techniques from flat document information retrieval while structure fits well into a database

framework. This poses not only the problem of how to build efficient index structures that combine

structure and content information (Weigel et al., 2004, e.g.) but also how to allow for inexact matches

(e.g. Lalmas and Rölleke, 2004) of content-and-structure queries (CAS queries). If both content and

structure can be assigned continuous similarity values, then NNk Networks could provide a way to

build navigable structures that are unbiased with respect to either feature. This should be particularly

valuable as users may often only have a vague idea how to weigh the relative importances of structure

and content.
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9.3 Extensions and ramifications

9.3.1 Synergy effects with text search

We have envisaged NNk Networks as static structure that encompass entire collections and whose

principal application is to query-free image search. We mentioned in Chapter 7 that they can easily

be integrated into conventional image search systems by using the results of a visual search as entry

points into the network. We observed from our user experiments in 7 that for difficult queries it may

sometimes take some imagination to find the first relevant image but that more relevant images are

then found quite readily. Often, the converse holds for text-based image as supported, for example,

by Google. The inconsistency of the annotation results in comparatively low precision but there are

often at least some images that are relevant. It is inordinately difficult, however, to then accumulate

more of the same kind. These observations suggest that a powerful synergy between text-based search

and NNk Networks should be possible. The former provides excellent starting points which may be

difficult to obtain through automated content-based search. The latter allows effective exploration of

the neighbourhood around the set of relevant images. For this to work, the image collection would

not even need to be fully annotated.

The conventional presentation of search results is that of a ranked list distributed across a number

of hyperlinked sites. Alternatives include clustering of the search results (Hearst and Pedersen, 1996;

Zamir and Etzioni, 1998; Leuski and Allan, 2000; Carey et al., 2003). If a collection has been annotated

exhaustively and reliably so that text search becomes an option, NNk Networks can be employed

to organise search results. Rather than browsing the NNk Network that corresponds to the entire

collection, users may instead navigate across a much smaller network that contains only the top n

images from the automated search. This could be based, for example, on the topological distance

between retrieved images in the original network.

9.3.2 Image annotation by label propagation

Automated image annotation provides a different route towards solving the problem of content-based

image retrieval. By learning associations between visual features and labels on a training set, labels

may be predicted on unseen images, see for example the work by Yavlinsky et al. (2005) and references

therein. Once a collection has thus been annotated, conventional keyword search can be carried out.

The approach may appear circuitous but has the advantage of users no longer having to specify a query

pictorially. Moreover, once labels are available, images can be organised according to known semantic

relationships between terms. If the distribution of terms and visual features is flexible enough, we can

discover semantic relationships between visually dissimilar images.

NNk Networks provide a concise representation of the visual similarities and semantic relationships

between images. If a collection is partially annotated, the graphs provide natural structures to propa-

gate annotation terms to unlabelled images. Such an approach would be model-free in the sense that

it does not assume any particular dependency between features and terms and it thus circumvents

the need to learn a model which might not always be possible in the absence of a good training set.

As such it is similar to early work on automated annotation where labels were propagated based on

textural similarity (Picard and Minka, 1995) but also to recent work in functional genomics where

graph structures are increasingly used to represent the functional relationships between genes. In
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a typical functional-linkage graph, for example, each vertex corresponds to a protein, and an edge

connects two proteins if some experimental or computational procedure suggests that these proteins

might share the same function (Yanai et al., 2002; Marcotte et al., 1999). Zhou et al. (2002) and

Karaoz et al. (2004) suggest ways to propagate evidence systematically across the entire graph to

provide functional annotations for new proteins.

9.3.3 Variations on the NNk theme

Beyond linear convex combinations

We defined an image to be an NNk if it is closest to another under some convex combination of k

feature-specific distances. If d denotes the k-dimensional distance vector of an image and D be the set

of all distance vectors for a collection, we found in Chapter 3 that the linear combination of distances

in the form of a dot product w · d has the consequence that the NNk are images whose d are among

the extreme points of the convex hull of D. If we relax the linearity constraint and allow aggregation

functions which are non-linear in the distances, i.e. f(d) =
∑k

i=1 wi(di)
α, α > 0, we obtain a larger

set of neighbours. In fact, the solution for general α is the solution of the maximum vector problem

(Preparata and Shamos, 1985) which contains all those d for which there does not exist another point

that is closer along every dimension. The solution set contain the NNk as a subset and can be quite

large in particular if features are not positively correlated (Börzsöny et al., 2000).

In all our experiments we noticed that the number of NNk is in pleasant and almost striking agreement

with the number of images which users may be able to interact with at any one time. They also

seem to exhibit a degree of variability that proves adequate for both directed search and undirected

exploration. For applications with a small number of different features (such as content and structure

in XML retrieval) the more comprehensive non-linear aggregation method might be of interest. An

appealing feature of this approach is that the NNk can be found explicitly by solving the maximum

vector problem rather than by scanning of the parameter space. The most efficient algorithms to

achieve this have O(N log N) for k = 2 and O(N(log N)k−2) for k ≥ 3 (Börzsöny et al., 2000).

Region-based NNk

The visual features that we employ for NNk Network construction are computed either for the entire

image or for each of a set of tiles that partition the image. The spatial information extracted through

the tiling renders the image representation non-invariant with respect to rotation and reflection, a

feature that may often be desired as spatial relationships between image parts can help distinguish

between different scenes. But because the final feature vector for a tiled image is a concatenation

of the individual feature vectors computed for each tile, the representation does not lend itself well

for detecting similarity between regions. Images that share similar objects in different environments

cannot readily be detected even if the objects occupied the same position in the image because any

local similarity is diluted by the dissimilarity in the rest of the image.

We could greatly enrich the network structure by also computing features for a set of image regions as

in Carson et al. (1999) and Ma and Manjunath (1999). This would allow us to find the set of NNk for

each region of an image and offers a potentially more powerful selection strategy (but also additional

computational overhead during network construction).
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9.3.4 Linearised networks for large collections

NNk Network construction as proposed in Chapter 5 has a time complexity that is quadratic in

the number of images and linear in the number and the average length of the image features. The

quadratic dependency results from the need to compute pair-wise distances for every feature. As of

September 2005, Google provides access to 2, 187, 212, 422 images. Turning the image content of the

web into a NNk Network would certainly be a major challenge given our experience on a collection of

100,000 images.

There are a number of remedies that can be combined to alleviate the problem. One solution is to

use compact features of small size rather than sparse histogram features. Often visual features consist

of several hundreds of bins only a minority of which are non-zero. Another solution, to which the

problem lends itself very well, is parallelisation. Both should improve run times substantially without

compromising accuracy. For very large collections, approximations seem inevitable. As mentioned in

Chapter 5, reducing the complexity of k-nearest neighbour search is one promising approach. Constant

time k-nearest neighbour search would reduce the complexity of network construction from O(N 2) to

O(N). In addition, we propose to linearise NNk Networks as follows: instead of populating the entire

N × N distance matrix for every feature, we can tile the matrix along its diagonal into overlapping,

quadratic submatrices, subsequently compute the pair-wise distances for the submatrices only and

finally construct the network on the basis of the computed distances. This corresponds to dividing

the collection into overlapping image sets. Because of the partial overlap images from the intersection

may connect to other images from adjacent sets thus helping to keep the resulting network connected.

The final network can be viewed as a interlinked ensemble of individual networks. To increase the

degree of interconnectedness between adjacent image sets, we would want to keep each image set

rather diverse. An example of a distance matrix divided into overlapping submatrices is shown in

Figure 9.1.

Figure 9.1: Linearisation of distance matrix.

Let us consider the computational savings. Consider a collection of N images divided into overlapping

subsets of M images with an overlap between adjacent image sets of 0 < P < M/2 (so that an image

occurs in at most two sets). Assuming for simplicity that the first and the last set in the collection

do not overlap with each other, the number of pairwise computations is given by

T (N, M, P ) = (N − P )(M + P ) + P 2,

which has time complexity O(NM) rather than O(N 2). It needs to be investigated to what extent

this linearisation affects network topology and navigability but if users are not in pursuit of that one

image but a class of images, the restriction may be quite acceptable.
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Glossary

Affine combination: A vector y is an affine combination of vectors x1, x2, ..., xm if y =
∑m

i=1 aix
i

and
∑m

i=1 ai = 1

Affinely independent: A set S is called affinely independent if no point in S is an affine combina-

tion of other points from S.

Convex combination: An affine combination of vectors with the additional constraint that all

coefficients are non-negative.

Convex hull: The convex hull of a set S is the set of all convex combinations of the points in S.

For planar objects the convex hull has the shape an elastic rubber band would assume when stretched

around the object.

Dynamic partial distance functions: A non-metric distance function that compares two k-

dimensional vectors x and y by considering only the m components (0 < m ≤ k) with smallest

Manhattan distance, i.e. |xi − yi|. The m component-wise distances are aggregated in a general

Minkowski metric.

Focal image: In the context of this thesis, we refer to a focal image as the image whose NNk we

compute.

Geodesic: A geodesic between two points P and Q is the curve between P and Q that has minimum

length. The length depends on the metric of the space. In the plane, the geodesics are straight lines.

On the sphere, the geodesics are great circles.

Hyperplane: A hyperplane is a higher-dimensional analogue of a two-dimensional plane in three-

dimensional space. In an n-dimensional vector space, a hyperplane is a linear subspace of (n − 1)

dimensions.

Iso-NNk region: The set of all weight sets for which a particular image is the NNk of some focal

image is referred to as the iso-NNk region of that NNk. It is a convex region within the k- dimensional

weight space.

Linear combination: A vector y is a linear combination of vectors x1, x2, ..., xm if y =
∑m

i=1 aix
i,

ai ∈ R.

Mahalanobis distance: The Mahalanobis distance is a distance measure introduced by P Maha-

lanobis in 1936 to determine the degree of similarity between multi-variate vectors. It differs from
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Euclidean distance by taking into account the correlations between vectors components. Given two

n-dimensional vectors x and y, the Mahalanobis distance is

d(x, y) =
√

(x − y)T Σ−1(x − y).

where Σ is the covariance matrix for the distribution from which x and y are assumed to come from.

Manifold: A manifold is a topological space that is locally Euclidean, i.e. around every point, there

is a neighborhood that is topologically the same as the open unit ball in Rn. Intuitively, any object

that is nearly “flat” on small scales is a manifold.

Metric: A non-negative function g(x, y) describing the distance between neighbouring points for a

given set. A metric needs to satisfy:

1. g(x, y) = g(y, x)

2. g(x, y) = 0 iff x = y

3. g(x, y) + g(y, z) ≥ g(x, z) (Triangle inequality)

Minkowski metric: The Minkowski or Lα metric is given by

D(x, y) =

[

∑

i

|xi − yi|α
]

1

α

, α ≥ 1.

This reduces to the Euclidean metric for α = 2 and to the L1 metric for α = 1. The case α → ∞
yields the L∞ metric, maxi |xi − yi|.

Multi-modality: This term is used in two different senses. Firstly, it denotes the presence of

multiple modes in a distribution, such as the distribution of image features in feature space. Secondly,

it is used when referring to the integration of different data types or types of interaction (generally

modalities). For example, multi-modal image search commonly implies the joint utilisation of visual

features and textual annotation for retrieval. Multi-modal interfaces allow for different input modali-

ties, e.g. speech and text.

NNk: An image that is closest to some other image (the focal image) under some instantiation of

a parametrised metric. NN stands for nearest neighbour and k denotes the number of parameters,

or weights. This thesis considers the NNk when the distance function is a convex combination of

feature-specific distances,

D =

k
∑

i=1

widi,

k
∑

i=1

wi = 1, wi ≥ 0

where di is an arbitrary distance metric defined for the ith feature. Because all weights are non-

negative, this combination is convex.

Polytope: The word polytope is used to mean a number of related, but slightly different mathemat-

ical objects. We use it to describe a finite region of n-dimensional space enclosed by a finite number of

hyperplanes and thus as the general term of the sequence “point, line segment, polygon, polyhedron...”.

Simplex: A k-simplex is the convex hull of a set of k + 1 affinely independent points in Rn. We

say k is the dimension of the simplex. In one dimension, the simplex is the line segment [−1, 1]. In
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two dimensions, the simplex is the convex hull of the equilateral triangle. In three dimensions, the

simplex is the convex hull of the tetrahedron. The simplex is so-named because it represents the

simplest possible polytope in any given space. It turns out that the weight space considered in this

thesis forms a simplex and we refer to it as the weight simplex. The weight simplex for k features is

(k − 1)-dimensional.

Skyline operator: The Skyline, or Pareto operator selects those tuples in relational databases that

are not dominated by any others, that is, no other tuple is better over each of the designated attributes.

Support: The support of an NNk with respect to some focal image is the relative size of its iso-NNk

region. We approximate the support as the proportion of weight sets for which that image is the NNk.

t-test: A t-test is any statistical hypothesis test in which the test statistic has a Student’s t distri-

bution if the null hypothesis is true. It can be used to test the null hypothesis that the means of two

normally distributed random variables are equal based on two finite samples.

χ2 distribution: The χ2 distribution is a probability distribution frequently used in statistical

significance tests. It is useful because, under reasonable assumptions, easily calculated quantities

can be proved to follow distributions that are well approximated by the χ2 distribution if the null

hypothesis is true.

It is commonly used to test the fit between a theoretical frequency distribution and a frequency

distribution of observed data for which each observation may fall into one of n classes. In particular,

the test statistic is

χ2 =

n
∑

i=1

(Oi − Ei)
2

Ei
,

where the sum is over all n classes. The deviation is considered significant if the χ2 statistic is greater

than some critical value (which depends on n and the level of confidence at which we would like to be

able to reject the null hypothesis).
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Heesch, D. and S. Rüger (2004). Three interfaces for content-based access to image collections. In

Proc Int’l Conf Image and Video Retrieval, pp. 491–499. LNCS 3115, Springer.
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Heesch, D., A. Yavlinsky, and S. Rüger (2003). Performance comparison between different similarity

models for CBIR with relevance feedback. In Proc Int’l Conf Image and Video Retrieval, pp.

456–466. LNCS 2728, Springer.

Helman, D. (1988). Analogical Reasoning. Kluwer.

Hochberg, Y. and A. Tamhane (1987). Multiple Comparison Procedures. Wiley.

Hong, P., Q. Tian, and T. Huang (2000). Incorporate support vector machines to content-based image

retrieval with relevant feedback. In Proc IEEE Int’l Conf Image Processing, pp. 750–753.
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