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Abstract. We have carried out a detailed evaluation of the use of tex-
ture features in a query-by-example approach to image retrieval. We
used 3 radically different texture feature types motivated by i) statisti-
cal, ii) psychological and iii) signal processing points of view. The fea-
tures were evaluated and tested on retrieval tasks from the Corel and
TRECVID2003 image collections. For the latter we also looked at the
effects of combining texture features with a colour feature.

1 Introduction

Texture is a key component of human visual perception. Like colour, this makes
it an essential feature to consider when querying image databases. Everyone can
recognise texture but, it is more difficult to define. Unlike colour, texture occurs
over a region rather than at a point. It is normally defined purely by grey levels
and as such is orthogonal to colour. Texture has qualities such as periodicity
and scale; it can be described in terms of direction, coarseness, contrast and so
on [1]. It is this that makes texture a particularly interesting facet of images
and results in a plethora of ways of extracting texture features. To enable us to
explore a wide range of these methods we chose three very different approaches
to computing texture features: The first takes a statistical approach in the form
of co-occurrence matrices, next the psychological view of Tamura’s features and
finally signal processing with Gabor wavelets.

Our study is the first to focus an evaluation of texture features on the whole
image, and to tailor features for optimum retrieval performance in this context.
The majority of original papers devising or evaluating texture features used
classification or segmentation tasks to measure performance [2,3,4,5]. Both of
these tasks are significantly different to the problems faced in image retrieval
where one looks at generic queries for an entire picture. Real pictures are made
up of a patchwork of differing textures rather than the uniform texture images
often used in studies, such as the ones taken from Brodatz’s photo book [6].
To that effect we suggest encoding texture in terms of joint histograms of low
dimensional texture characteristics over the image in the same way 3D colour
histograms are computed, we have called this a Tamura image. Throughout our
work we have considered how best to cope with varying image sizes, scales,
formats and orientations.
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In the next section we look at the features we have chosen and how they
are computed. Sect. 3 then describes the image libraries and similarity measures
we used for evaluation. Sect. 4 presents our initial results on a training set and
suggests modifications and parameters that we found gave the best retrieval per-
formance. A larger performance comparison is carried out on the TRECVID2003
data set. Finally, Sect. 5 concludes the paper and outlines further work.

2 Texture Features

2.1 Co-occurrence

Statistical features of grey levels were one of the earliest methods used to clas-
sify textures. Haralick [7] suggested the use of grey level co-occurrence matrices
(GLCM) to extract second order statistics from an image. GLCMs have been
used very successfully for texture classification in evaluations [2].

Table 1. Features calculated from the normalised co-occurrence matrix P (i, j)

Feature Formula

Energy
∑

i

∑
j
P 2(i, j)

Entropy
∑

i

∑
j
P (i, j)logP (i, j)

Contrast
∑

i

∑
j
(i − j)2P (i, j)

Homogeneity
∑

i

∑
j

P (i,j)
1+|i−j|

Haralick defined the GLCM as a matrix of frequencies at which two pixels,
separated by a certain vector, occur in the image. The distribution in the matrix
will depend on the angular and distance relationship between pixels. Varying
the vector used allows the capturing of different texture characteristics. Once
the GLCM has been created, various features can be computed from it. These
have been classified into four groups: visual texture characteristics, statistics,
information theory and information measures of correlation [7,3]. We chose the
four most commonly used features, listed in Table 1, for our evaluation.

2.2 Tamura

Tamura et al took the approach of devising texture features that correspond to
human visual perception [1]. They defined six textural features (coarseness, con-
trast, directionality, line-likeness, regularity and roughness) and compared them
with psychological measurements for human subjects. The first three attained
very successful results and are used in our evaluation, both separately and as
joint values.

Coarseness has a direct relationship to scale and repetition rates and was
seen by Tamura et al as the most fundamental texture feature. An image will
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contain textures at several scales; coarseness aims to identify the largest size at
which a texture exists, even where a smaller micro texture exists. Computation-
ally one first takes averages at every point over neighbourhoods the linear size
of which are powers of 2. The average over the neighbourhood of size 2k × 2k at
the point (x, y) is

Ak(x, y) =
x+2k−1−1∑

i=x−2k−1

y+2k−1−1∑

j=y−2k−1

f(i, j)/22k .

Then at each point one takes differences between pairs of averages correspond-
ing to non-overlapping neighbourhoods on opposite sides of the point in both
horizontal and vertical orientations. In the horizontal case this is

Ek,h(x, y) = |Ak(x + 2k−1, y) − Ak(x − 2k−1, y)| .

At each point, one then picks the best size which gives the highest output value,
where k maximizes E in either direction. The coarseness measure is then the
average of Sopt(x, y) = 2kopt over the picture.

Contrast aims to capture the dynamic range of grey levels in an image,
together with the polarisation of the distribution of black and white. The first is
measured using the standard deviation of grey levels and the second the kurtosis
α4. The contrast measure is therefore defined as

Fcon = σ/(α4)n where α4 = µ4/σ4 ,

µ4 is the fourth moment about the mean and σ2 is the variance. Experimentally,
Tamura found n = 1/4 to give the closest agreement to human measurements.
This is the value we used in our experiments.

Directionality is a global property over a region. The feature described does
not aim to differentiate between different orientations or patterns, but measures
the total degree of directionality. Two simple masks are used to detect edges in
the image. At each pixel the angle and magnitude are calculated. A histogram,
Hd, of edge probabilities is then built up by counting all points with magnitude
greater than a threshold and quantising by the edge angle. The histogram will
reflect the degree of directionality. To extract a measure from Hd the sharpness
of the peaks are computed from their second moments.

Tamura Image is a notion where we calculate a value for the three features
at each pixel and treat these as a spatial joint coarseness-contrast-directionality
(CND) distribution, in the same way as images can be viewed as spatial joint
RGB distributions. We extract colour histogram style features from the Tamura
CND image, both marginal and 3D histograms. The regional nature of texture
meant that the values at each pixel were computed over a window. A similar 3D
histogram feature is used by MARS [8].
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2.3 Gabor

One of the most popular signal processing based approaches for texture feature
extraction has been the use of Gabor filters. These enable filtering in the fre-
quency and spatial domain. It has been proposed that Gabor filters can be used
to model the responses of the human visual system. Turner [9] first implemented
this by using a bank of Gabor filters to analyse texture. A bank of filters at dif-
ferent scales and orientations allows multichannel filtering of an image to extract
frequency and orientation information. This can then be used to decompose the
image into texture features.

Our implementation is based on that of Manjunath et al [10,11]. The feature
is computed by filtering the image with a bank of orientation and scale sensitive
filters and computing the mean and standard deviation of the output in the
frequency domain.

Filtering an image I(x, y) with Gabor filters gmn designed according to [10]
results in its Gabor wavelet transform:

Wmn(x, y) =
∫

I(x, y)g∗
mn(x − x1, y − y1)dx1dy1

The mean and standard deviation of the magnitude |Wmn| are used to for the
feature vector. The outputs of filters at different scales will be over differing
ranges. For this reason each element of the feature vector is normalised using
the standard deviation of that element across the entire database.

3 Experimental Set Up

We followed a two-stage approach: Initial evaluation and modifications to the
features were tested using a carefully selected subset of the Corel image li-
brary and the vector space similarity measure. We then ran larger tests on the
TRECVID2003 data using the k-nearest neighbour measure (k-nn). We have a
baseline for evaluation from previous work with the TREC dataset for which
k-nn has consistently proved the best retrieval method.

Image Collections. We selected 6,192 images from the Corel collection
to give 63 categories that were visually similar internally, but different from
each other [12]. A set of 630 single-image category queries was executed to test
performance across all categories. Relevance judgments on the retrieved images
were based on the categorisation. The results shown in Section 4 are the mean
average precision (m.a.p.).

A second larger image collection was used to give a more realistic perfor-
mance comparison. This comprised of 32,318 key-frames from TRECVID2003
collection [13]. The search task specified for TRECVID2003 consisted of 25 top-
ics, for each topic a few example images were given as a query. The published
relevance judgments for these topics were used to evaluate the retrieval perfor-
mance for different features and combinations of features.
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Similarity Measures. Distances between feature vectors were calculated
using the Manhattan metric. The resultant distances were then median nor-
malised to give even weighting when combined. The plain vector space model
was used for retrieval on the Corel data set as these involved only simple 1-image
queries.

For querying the TREC data a version of the distance weighted k-nn ap-
proach was used [14], with k = 40. Positive examples (P ) are supplied as the
query and negative examples (N) randomly selected from the collection. To
rank an image i in the collection we identify those images in P and N that are
amongst the k-nearest neighbours of i. Using these neighbours we determine the
dissimilarity:

D(i) =
∑

n∈N d−1(i, n)
∑

p∈P d−1(i, p)

4 Evaluation and Results

For each feature we evaluated performance in the configuration described in
Sect. 2. Ideas to improve performance were devised and evaluated. The general
themes considered were how best to represent an entire image, how to accom-
modate differing sizes and scale of images and how to cope with the regional
qualities of textures. These evaluations were run on the Corel data. Paired t-
tests were carried out to check whether results were statistically significant at
α = 0.05.

The best performing features from the initial evaluation were then tested on
the TRECVID2003 data set. Tests were run with each texture feature combined
with a high performing colour feature.

4.1 Co-occurrence

The two main variables when creating a GLCM are the number of quantisation
levels and the vector. We decided to use four vector angles: 0, 45, 90, 135 and
four distances. This could be used to calculate up to sixteen GLCMs. However,
as the statistics are not invariant under rotation we also tried summing the four
angles at each distance into a single matrix. GLCMs can be made symmetrical
by including the reverse vector; symmetric and asymmetric matrices were tested.
The number of quantisation levels dictate the size of matrix and density of the
matrix. This may become a problem with small images or tiles. The effect of
varying quantisation between 4 and 64 levels was tried. Features were calculated
for whole and tiled images.

Preliminary results showed that distances between 1 and 4 pixels gave the
best performance. There was no significant difference between symmetrical and
asymmetric matrices. Tiling of the image gave a large increase in retrieval which
flattened out by 9 × 9 tiles. The results in Table 2 are for 7 × 7 tiles. Similarly
increasing quantisation improves performance. The concatenated features (cat)
gave better results at all points than the rotationally invariant summed matrices
(sum). The best feature was homogeneity with a m.a.p. of 12.2%.
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Table 2. Co-occurrence features — mean average precision retrieval

Quantisation
Feature 4 8 16 32 64

Energy: cat 7.63% 8.09% 9.30% 9.85% 9.54%
Energy: sum 7.04% 7.79% 8.85% 9.19% 8.96%
Entropy: cat 8.12% 9.22% 10.41% 11.09% 11.36%
Entropy: sum 7.54% 8.76% 9.79 % 10.37% 10.70%
Contrast: cat 8.46% 8.51% 8.35% 8.29% 8.28%
Contrast: sum 7.83% 7.85% 7.65% 7.59% 7.57%
Homogeneity: cat 9.17% 10.18% 11.16% 11.83% 12.19%
Homogeneity: sum 8.50% 9.52% 10.39% 10.93% 11.26%

4.2 Tamura

When calculating standard Tamura features for whole or tiled images the main
variable is the k value for coarseness. This effect of varying this, and the number
of tiles, can be seen in Table 3. The dashes in the table are where the image size
resulting from tiling meant that the k value was too large to be used because of
the border needed.

With the histogram features the main variable to evaluate was the window
size. Coarseness can be calculated at a pixel level. However, both the direction-
ality and contrast features operate over a region. A large window would smear
the feature and lose resolution; conversely a small window may invalidate the
statistical features, particularly if the directionality histogram is too sparsely
populated. To evaluate this the features were run over several window sizes,
creating a histogram for each feature.

A little surprisingly initial results showed that increasing the k value for
coarseness reduced the performance — the optimum value was 2. This may be
due to the large borders necessary for higher values of k. However, it is more likely
caused by the nature of textures in images and the way the algorithm averages
the 2k values. There are unlikely to be textures with a coarseness of 64 or 32
pixels in a normal image. The algorithm may still detect noise at this dimension,
biasing the average value of the feature. A change to the algorithm was made so
that it took the values of k rather than 2k — effectively introducing a logarithmic
scaling of the coarseness and giving less influence to the larger scales. This gave
a significant increase in performance for the histogram, from 6.1% to 10.1%, but
no improvement when applied to the standard feature.

Performance of the directionality feature was poor. A detailed look at the
operation of the algorithm showed that this was largely due to the sparse pop-
ulation of the histogram and subsequent difficulty in calculating valid variance
of its peaks. Several options for improvement were tried including calculating
global variance of the histogram and using entropy. The latter gave a substan-
tial improvement, from 6.6% to 9.7%, for the standard feature but negligible
effect on the histogram.
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Table 3. Tamura features — mean average precision retrieval

Standard features Histogram features
Tiling Window size

Feature 1x1 3x3 5x5 7x7 9x9 2 4 8 16

Contrast 3.24% 6.08% 7.20% 8.07% 8.03% 5.96% 6.71% 7.01% 6.92%
Directionality: peak finding 2.91% 4.16% 5.02% 5.79% 6.64% 5.39% 5.59% 5.57% 4.93%
Directionality: entropy 2.74% 5.35% 7.45% 8.93% 9.73% 4.89% 4.37% 5.24% 5.43%
Coarseness-2: 2k 4.42% 8.33% 9.48% 9.87% 9.91% 6.90% 5.99% 6.09% 6.01%
Coarseness-3: 2k 3.54% 7.57% 8.79% 9.19% 9.02% 6.52% 5.85% 5.96% 5.83%
Coarseness-4: 2k 3.49% 7.16% 7.68% 6.98% — 6.12% 5.71% 5.64% 5.40%
Coarseness-5: 2k 3.25% 5.74% — — — — — — —
Coarseness-6: 2k 2.92% — — — — — — — —
Coarseness-2: k 4.43% 7.96% 9.32% 9.57% 9.59% 6.44% 9.98% 9.83% 8.22%
Coarseness-3: k 3.91% 7.50% 8.92% 9.10% 8.94% 5.68% 10.08% 9.24% 7.93%
Coarseness-4: k 3.41% 6.95% 7.74% 7.15% — 8.81% 9.33% 8.12% 7.67%

Finally the combined marginal and 3D histograms were evaluated using a
window size of 8, k of 3 and entropy directionality. In addition a combined
feature vector of the 3 standard features was evaluated. The m.a.p. results were:
marginal histogram 12.0%, 3D histogram 13.7% and standard 14.3%. All gave a
significant improvement over the single features.

4.3 Gabor

Sect. 2.3 describes the generation of this feature. However, there still remain
questions over how to apply it to a heterogeneous set of images. The problems
of scale, varying size and so on apply. The evaluation in [10] was applied to fixed
tiles extracted from the Brodatz album. In [11] the feature was used successfully
with aerial photographs split into a large number of fixed size tiles and then
querying to find individual tiles. We decided to evaluate the feature in two con-
figurations across a range of scale and orientation values. The first scaled the
filter dictionary to the size of the image. This should scale the response so that
the same image of different size gives a similar value. The second approach was
to use a fixed size filter and apply this to a sliding window over the image.

Initial results showed that scaling the filter size gave much superior results to
the sliding window approach. Tiling increased performance in a similar manner
to the other features. The results shown in Table 4 are for 7 × 7 tiling. The
best performance is obtained from just 2 scales and 4 orientations. This was
unexpected as most literature recommends 4 scales and 6 orientations. Looking
at the filtered images indicated that, as for Tamura, this may be due to noise at
coarser scales.

4.4 Evaluation Using TRECVID2003 Video Data

A range of the best performing features were run on the TRECVID2003 data and
evaluated using the published relevance judgments. The queries were run singly
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Table 4. Gabor wavelets — mean average precision retrieval

Scale Orientation
3 4 6

2 13.1% 14.0% 13.9%
3 11.0% 11.4% 11.3%
4 10.8% 11.4% 11.2%

and then combined with a colour histogram feature, HSV [12]. The results are
shown in Table 5. For comparison some features used for previous evaluations
[12] gave m.a.ps of: HSV 1.9%, convolution 2.2% and variance 1.7%; random
retrieval would give 0.26%.

In this evaluation the texture features performed extremely well in compar-
ison with previous benchmarks. Gabor gave the best results, 3.9% or 15 times
better than random retrieval. Of the Tamura features the best performing was
the combined standard features. The top 3 performing texture features combined
and giving a m.a.p of 4.22%.

Combining with the HSV feature improved average retrieval performance in
all cases, but at an individual query level the benefits were both positive and
negative. It is interesting that using simple combination of features gives varying
degrees of improvement; being able to choose the optimum combination based
on the query would be beneficial.

Table 5. TREC evaluation — mean average precision retrieval

Feature Single Combined with HSV

gabor-2-4 3.93% 4.31%
co-occurence homogeneity 2.85% 3.03%
tamura standard all 2.57% 3.43%
tamura CND 1.65% 2.72%
tamura coarseness-2 0.97% 2.49%

5 Conclusions

We selected 3 different texture features, implemented and evaluated them. Both
the evaluation and implementation focussed on query-by-example image retrieval
rather than the usual classification task.

This led to some novel modifications to the Tamura features. We found that
looking for large scale coarseness degraded performance, so we limited the range
and used a logarithmic scale. An improvement in directionality performance over
small window sizes was achieved by using an entropy measure rather than taking
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the second moments of the peaks. We also encoded the features in terms of joint
histograms, the overall performance of these was similar to the standard features.

To improve the retrieval with Gabor we scaled the filter size to that of the im-
age, rather than using a fixed size filter. Rather unintuitively we found that fewer
scales gave higher retrieval rates. Our tests of co-occurrence matrices showed a
solid performance — as expected!

Our evaluation with TRECVID2003 data showed that the top 3 texture
features performed better than previously used colour features. Combination
with a colour feature boosted retrieval performance in all cases. Overall we have
demonstrated that we have produced robust texture features for image retrieval.

We would like to carry out further evaluations on larger data sets, partic-
ularly investigating the interaction of different feature combinations. Finally,
texture features have an advantage over colour features in that performance
should be the same for monochrome images. It would be interesting to perform
an evaluation on a library of black and white pictures.
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