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ABSTRACT 
Content-based image retrieval enables the user to search a 
database for visually similar images. In these scenarios, the user 
submits an example that is compared to the images in the database 
by their low-level characteristics such as colour, texture and 
shape. While visual similarity is essential for a vast number of 
applications, there are cases where a user needs to search for 
semantically similar images. For example, the user might want to 
find all images depicting bears on a river. This might be quite 
difficult using only low-level features, but using concept detectors 
for “bear” and “river” will produce results that are semantically 
closer to what the user requested. Following this idea, this paper 
studies a novel paradigm: query by semantic multimedia example. 
In this setting the user’s query is processed at a semantic level: a 
vector of concept probabilities is inferred for each image and a 
similarity metric computes the distance between the concept 
vector of the query and of the concept vectors of the images in 
database. The system is evaluated with a COREL Stock Photo 
collection. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Abstracting methods. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Semantic multimedia retrieval, query by semantic example. 

1. INTRODUCTION 

Information retrieval systems have always forced humans to 
describe their query in terms of a written language. While in text 
retrieval we express our query in the same format as the document 
(text), in multimedia retrieval system this is more difficult due to 
semantic ambiguities. The user is not aware of the low-level 

representation of documents, e.g. colour, texture, or shape 
features. Thus a multimedia information-retrieval system relies on 
algorithms that model semantic concepts in terms of low-level 
features. However, by forcing a user’s idea to go trough this 
abstraction process (translating an idea into words) part of the 
original idea may be filtered leading to a less expressive query. 
This issue is even more visible in multimedia retrieval systems 
since multimedia information is very rich in terms of information 
content and expressiveness. 

Early research in this area produced systems where the user 
would draw a sketch of what he wanted to search for. QBIC [6] is 
a well known systems of this type. Such systems work well when 
one wants to search for images that are visually very similar to the 
sketch image. Taking one step further relevance feedback systems 
use the user input to compose a set of visually positive and 
negative examples that are different representations of the same 
semantic request. The system is still not aware of any semantics 
as it represents images by their low-level features. 

Systems that are aware of multimedia semantics have already 
flourished in the multimedia information-retrieval community. 
These systems allow the user to specify a set of keywords or 
concepts, which are thus used to search for multimedia content 
containing those concepts. This is already a big step from 
previous approaches towards more semantic search engines but in 
some cases (if not most cases) it still may be too limiting: 
semantic multimedia content captures knowledge that goes 
beyond a limited set of concepts. 

These types of approaches can produce good results but it puts an 
extra burden on the user that now has to formalize its “creative 
idea”. So far, the user had three ways to express his idea: by 
depicting the idea visually (visual sketch), by providing several 
positive and negative examples (relevance feedback), or by 
expressing the idea textually (image annotation). In all cases it 
might be restraining the user in terms of creativity or 
expressiveness. Thus, the user should be able to formulate a query 
with a “semantic example” of what he wants to obtain. Of course 
the example is not semantic per se but the system will look at its 
semantic content and not at its low-level characteristics (e.g. 
colour or texture). This means that the system will infer the 
semantics of an image and use those semantics to search an image 
database that has been indexed with the same semantic analysis 
algorithm. 

Note the clear distinction between the paradigm followed on this 
paper and the previous paradigms: user queries are not processed 
at the visual features level but at the semantic level. Thus, instead 
of matching images using their visual feature vectors we match 
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images with their concept feature vector. This paper contributes to 
the study and evolution of this new paradigm. 

The paper is organised as follows: Section 2 presents related 
work; Section 3 presents the query-by-semantic-example system; 
Section 4 describes the algorithm that infers the semantics of 
multimedia (both for query and database); Section 5 presents the 
semantic similarity metric; the experiments and the corresponding 
discussion are presented in Section 6 and Section 7, respectively. 
Finally, conclusions are presented in Section 8. 

2. RELATED WORK 
The problem of query by semantic multimedia example can be 
divided into two parts: (1) the multimedia analysis part that links 
keywords (or concepts) to multimedia, and (2) the semantic 
distance between the user examples and the existing elements of 
the multimedia database. 

The initial annotation of multimedia content with concepts can be 
done manually, with some automatic algorithm, or with some set 
of heuristics. Only in very limited circumstances can manual 
methods provide a real solution. Automatic algorithms are by far 
the most attractive ones involving a low analysis cost when 
compared to the manual method. Automatic algorithms are all 
based on some statistical modelling technique of low-level 
features. Several techniques to model a concept with different 
types of probability density distributions have been proposed: 
Feng and Manmatha [5] proposed a Bernoulli model with a 
vocabulary of visual terms for each keyword, Yavlinsky et al. 
[22] deployed a nonparametric distribution, Carneiro and 
Vasconcelos [1] a semi-parametric density estimation, while 
Magalhães and Rüger [15] engaged a maximum entropy 
framework. The above methods use features extracted from the 
multimedia itself, but heuristic techniques rely on metadata 
attached to the multimedia: for example, Lu et al [13] analyse 
HTML text surrounding an image and assign the most relevant 
keywords to an image. We follow the maximum entropy approach 
by Magalhães and Rüger [15]. 

The same semantic analysis is applied to both the multimedia 
database and to the example. The second step in the problem is to 
explore the semantic similarity between the user’s examples and 
the multimedia documents. These links can be computed 
automatically (pure query by semantic example) or semi-
automatically (relevance feedback). 

In most relevance feedback literature these links are initialised 
with some predefined set of weights and an iterative algorithm 
updates the weights of these relations based on the feedback from 
the different users.  Relevance feedback iteratively re-ranks 
results according to the positive and negative semantic examples 
successively specified by the user. Yang et al. [21] implemented a 
relevance feedback algorithm that works on a semantic space 
created from image clusters that are labelled with the most 
frequent concept on that cluster. Semantic similarity is then 
computed between the examples and the image clusters. Lu et al 
[13] proposed a relevance feedback system that labels images 
with the previously described heuristic and updates these semantic 
relations according to the user feedback. The semantic links 
between the examples and the keywords are heuristically 
updated/removed. Zhang and Chen [23] followed an active 

learning approach, and He et al [7] applied spectral methods to 
learn the semantic space from the user’s feedback. Other 
relevance feedback approaches have been proposed by Zhou and 
Huang [25], Chang et al. [2], and Wang and Li [20], and a good 
overview is Heesh and Rüger [8]. 

Moving away from semi-automatic retrieval, Rasiwasia [18] 
proposed an automated retrieval framework that computes the 
semantic similarity with a distance metric to rank images 
according to the semantics of the given query. They start by 
extracting semantics with an algorithm based on a hierarchy of 
mixtures [1]. Next, they compute the semantic similarity as the 
Kullback-Leibler divergence, and evaluate the system with the 
traditional precision measure by considering an image relevant if 
it shares one or more concepts with the query. This evaluation 
methodology does not account for the fact that one image sharing 
two concepts with the query is probably more relevant than an 
image sharing just one concept. We will discuss this fact and 
propose the use of rank correlation to evaluate query-by-
semantic-example systems. Our system is conceptually similar to 
the one proposed by Rasiwasia [18] but with a different semantic 
multimedia analyser and semantic multimedia similarity. 

3. QUERY BY SEMANTIC EXAMPLE 
The implemented query by semantic example system is divided 
into three parts: the semantic multimedia analyser, the indexer, 
and the semantic multimedia retrieval. Figure 1 presents the 
architecture of the system. 

 
Figure 1 – Query by semantic example system. 

In automatic retrieval systems, processing time is a pressing 
feature that directly impacts the usability of the system. We 
envisage a responsive system that processes a query and retrieves 
results within 1 second per user, meaning that to support multiple 
users it must be much less than 1 second. 



Semantic Multimedia Analyser 

The semantic multimedia analyser infers the concepts 
probabilities and is designed to work in less than 100 ms. Another 
important issue is that it should also support a large number of 
keywords so that the semantic space can accommodate the 
semantic understanding that the user gives to the query. Section 4 
presents the semantic multimedia analyser used in this paper, see 
[15] for details. 

Indexer 

Indexer uses a simple storage mechanism capable of storing and 
providing easy access to each concept of a given multimedia 
document. It is not optimised for time complexity. The same 
indexing mechanisms used for content based image retrieval can 
be used to index content by semantics. This topic is outside the 
scope of this paper. 

Semantic Multimedia Retrieval 

The final part of the system is the semantic multimedia retrieval 
in charge of retrieving the documents that are semantically close 
to the given query. First it must run the semantic multimedia 
analyser on the example to obtain the concept vector of the query. 
Then it searches the database for the relevant documents 
according to a semantic similarity metric on the semantic space of 
concepts. In this part of the system we are only concerned with 
studying functions that mirror human understanding of semantic 
similarity. Section 5 will detail the implemented semantic 
similarity metric. 

4. SEMANTIC MULTIMEDIA ANALYSER 
In this section we will see how to model concepts in terms of 
feature data of images. Following the approach proposed by 
Magalhães and Rüger [15], each concept iw  is represented by a 
maximum entropy model, 

( ) ( )( )| logit Fiwip w V Vβ= , 

where ( )F V  is a transformation of visual feature vector V , and 
iwβ  is the vector of the regression coefficients for concept iw . 

Next we will present visual feature data transformation ( )F V  
and the implemented maximum entropy model. 

4.1 Feature Data Representation 
We create a visual vocabulary where each term corresponds to a 
set of homogenous visual characteristics (colour and texture 
features). Since we are going to use a feature space to represent 
all images, we need a set of visual terms that is able to represent 
them. Thus, we need to check which visual characteristics are 
more common in the dataset. For example, if there are a lot of 
images with a wide range of blue tones we require a larger 
number of visual terms representing the different blue tones. This 
draws on the idea that to learn a good high-dimensional visual 
vocabulary we would benefit from examining the entire dataset to 
look for the most common set of colour and texture features. 

The way we build the high-dimensional visual vocabulary is by 
clustering the entire dataset and representing each term as a 
cluster. We follow the approach presented in [14], where the 
entire dataset is clustered with a hierarchical EM algorithm using 
a Gaussian mixture model. This approach generates a hierarchy of 

cluster models that corresponds to a hierarchy of vocabularies 
with a different number of terms. The ideal number of clusters is 
selected via the MDL criterion. 

4.2 Maximum Entropy Model 
Maximum entropy (or logistic regression) is a statistical tool that 
has been applied to a great variety of fields, e.g. natural language 
processing, text classification, image annotation. Maximum 
entropy is used in this paper to model query keywords in the 
transformed feature space. 

We implemented the binomial model, where one class is always 
modelled relatively to all other classes, and not a multinomial 
distribution, which would impose a model that does not reflect the 
reality of the problem: the multinomial model implies that events 
are exclusive, whereas in our problem keywords are not 
exclusive. For this reason, the binomial model is a better choice as 
documents can have more than one keyword assigned. 

4.2.1 Over-fitting control: Gaussian Prior 
As discussed by Nigan et al [17] and Chen and Rosenfeld [3], 
maximum entropy models may suffer from overfitting. This is 
usually because features are high-dimensional and sparse, 
meaning that the weights can easily push the model density 
towards particular training data points. Zhang and Oles [24] have 
also presented a study on the effect of different types of 
regularisation on logistic regression. As suggested in [17] and [3] 
we use a Gaussian prior with mean zero and 2σ  variance to 
prevent the optimisation procedure from overfitting. 

4.2.2 Large-Scale Optimization 
Newton algorithms need the Hessian matrix to drive the algorithm 
into a local maximum solution. The computation of the Hessian 
matrix is very complex because the feature space might have up 
to ~10,000 dimensions producing the computation of a 
10,000×10,000 on each iteration. Thus, algorithms that compute 
approximations to the Hessian matrix are ideal for the problem at 
hand. The limited-memory BFGS algorithm proposed by Liu and 
Nocedal [12] is one of such algorithms. Malouf [16] has 
compared several optimisation algorithms for maximum entropy 
and found the limited-memory BFGS algorithm to be the best 
one. We use the implementation provided by Liu and Nocedal 
[12]. 

5. SEMANTIC MULTIMEDIA 
SIMILARITY 
This section describes the semantic space in which images are 
represented and a similarity metric that relates two documents 
semantically. 

5.1 Semantic Space 
In the semantic space multimedia documents are represented as a 
feature vector of the probabilities of the T concepts, 

[ ]
1
,...,

Tw wd d d= , 

where each dimension is the probability of concept iw  being 
present on that document. Note that the vector of concepts is 
normalised if the similarity metric needs so (normalisation is 



dependent on the metric). These concepts are extracted by the 
semantic-multimedia-analyser algorithm described in Section 5. 

It is important that the semantic space accommodates as many 
concepts as possible to be sure that the user idea is represented in 
that space without losing any concepts.  Thus, systems that extract 
a limited number of concepts are less appropriate. This design 
requirement pushes us to the research area of metrics on high-
dimensional spaces. 

We use the tf-idf vector space model. Each document is 
represented as a vector d , where each dimension corresponds to 
the frequency of a given term (concept) iw  from a vocabulary of 
T  terms (concepts). The only difference between our 
formulation and the traditional vector space model is that we use 

( )|iP w d  instead of the classic term frequency ( )|iTF w d . 
This is equivalent because all documents are represented by a 
high-dimensional vocabulary of length T  and 

( ) ( )| |i iP w d T TF w d⋅ ≈ . 

Thus, to implement a vector space model we set each dimension 
i  of a document vector as 

( ) ( )|i i id P w d IDF w= ⋅ . 

The inverse document frequency is defined as the logarithm of the 
inverse of the probability of a concept over the entire collection 
D , 

( ) ( )( )log |i iIDF w P w= − D . 

5.2 Cosine Similarity Metric 
Documents d  and queries q  are represented by vectors of 
concept probabilities that are computed as was explained before. 
Several distance metrics exist in the tf-idf representation that 
compute the similarity between a document jd  vector and a 
query vector q . We rank documents by their similarity to the 
query image according to the cosine-distance metric. The cosine 
similarity metric expression is: 

( )
( ) ( )

1

2 2
1 1

sim , 1

T
i ii

T T
i ii i

q d
q d

q d

=

= =

= −
⋅

∑
∑ ∑
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6. EXPERIMENTS 
To evaluate our retrieval by semantic example system we tested it 
on an image dataset and used three performance measures. The 
following sections will describe the details of the experiments. 
Note that even though our system supports images and multi-
modal data we only present results of preliminary experiments on 
an image dataset. 

6.1 Dataset 
This dataset was compiled by Duygulu et al. [4] from a set of 
COREL Stock Photo CDs. The dataset has some visually similar 
concepts (jet, plane, Boeing), and some concepts have a limited 
number examples (10 or less). In their seminal paper, the authors 
acknowledge that fact and ignored the classes with these 

problems. The retrieval evaluation scenario consists of a training 
set of 4500 images and a test set of 500 images. Each image is 
annotated with 1-5 keywords from a vocabulary of 371 keywords. 
Only keywords with at least 2 images in the test set were used 
which reduced the size of the vocabulary to 179 keywords. 

6.2 Evaluation 
The system was compared to the reference rank constructed from 
image annotations and random results to provide upper and lower 
bounds for comparison. Precision and rank correlation measures 
provide us standard ways to assess our system. 

6.2.1 Precision and Average Precision 
Precision at 20 (P@20) is the proportion of the first 20 documents 
that are relevant. The motivation behind this measure is that users 
will generally only look at the first page of returned results and 
will rarely scroll beyond 3 pages of results, see [10]. 

Average precision is the standard measure for comparing a ranked 
set of results to binary relevance judgments [19]. Conceptually 
average precision is the area under the precision recall curve. It is 
calculated by averaging the precision found at every relevant 
document. The advantage of using average precision as a 
performance measure is it gives a greater weight to results 
retrieved early. 

These measures are widely used in information retrieval and they 
consider documents to be relevant or not relevant. However in the 
current scenario the relevance of a document is difficult to 
measure. Images can share several concepts or none. The problem 
is even more complicated because for a particular query an image 
with one matching concept might be more meaningful than an 
image with two matching concepts. Nevertheless, we repeated 
different evaluations where each document was considered 
correct if it shared one to four concepts with the query. This is 
limited by the number of manual annotations per image (five) and 
by the existing images that actually share such a number of 
concepts. 

6.2.2 Rank Correlation 
It is difficult to evaluate the results produced by query-by-
semantic-example systems: such systems try to match the 
maximum number of concepts (with associated noise), while 
humans just match the concepts that are “obvious”. Thus 
precision may not be a good indication of semantic similarity. To 
address this issue we created a reference rank that could then be 
reference correlated to the rank produced by the system. Ideally 
this reference rank would be constructed manually by multiple 
users. For the purpose of our evaluation we considered a reference 
rank constructed with the manual annotations of images and the 
semantic similarity metric to rank the results. Thus, rank 
correlation evaluates the semantic analysis according to the 
similarity metric used to create the reference rank. We use 
Spearman's rank correlation  

( )

2

2

6
1

1

ii

n n
ρ

∆
= −

−
∑

, (1) 

where i∆  is the difference between the position of the same 
document id  on the different ranks, and n  is the number of rank 



positions. ρ  quantifies how similar the reference rank is to the 
rank produced by the system. 

6.3 Methodology 
In our experiments we trained the 179 concept models on the 
4500 training images and used the 500 images for testing. For 
each testing image we computed the vector of concept’s 
probabilities. Then took each image out and used it as the query 
example. Then the semantic similarity matched that image with 
the remaining test images and produces a rank of semantically 
similar images. 

To evaluate our retrieval by semantic example system we used 
three performance measures: precision at 20, average precision 
and Spearman's rank correlation [11]. Note that because images 
have several concepts, images can be semantically matched 
through multiple concepts. This obviously creates a variety of 
correct ranks meaning that there is no “correct” unique rank. 

7. RESULTS AND DISCUSSION 

Query-by-semantic-example is a very special area of multimedia 
information retrieval that pushes the limits of what can be done 
with state-of-the-art algorithms. We will now report the most 
relevant facts that we found in our experiments. 

Scalability of the Semantic Query Analysis 

The time complexity of the query semantic analysis is a crucial 
characteristic that we consider to have the same importance as 
precision. For this reason we carefully chose algorithms that can 
handle multimedia semantics with little computational 
complexity. Table 1 illustrates the time required to extract the 
visual-features and to run the semantic analyses of Section 5. 
Measures were taken on an AMD Athlon 64 running at 3.7GHz 
Note that these times are for the inference phase and not for the 
learning phase. 

These times can be further improved because we write the state of 
all intermediate steps onto disk, which takes much more time than 
the algorithm itself. On a production system, the data generated 
from analysing a query example would not have to be written to 
disk which would greatly improve computational performance. As 
mentioned before this is an important feature because the system 
needs to extract the semantics of each example fast and it should 
also be able to support several users simultaneously. 

margHSV 3x3 feature 30 ms 
Tamura 3x3 feature 54 ms 
Gabor 3x3 feature 378 ms 
Semantic annotation (179 concepts) 9 ms 

Table 1 – Semantic analysis performance per image. 

Rank Correlation 

Spearman's rank correlation coefficient ( ρ ) is a non-parametric 
measure of correlation. As we compare two ranked lists of results, 
it is an appropriate measure to quantify how closely the rankings 
produced by our retrieval-by-semantic-example system correlate 
to the ground-truth rankings. The mean ρ  achieved by our 
system is 0.27, the rankings produced by our system were 

significantly different from the ground truth with a confidence of 
99.99% (when using the Student's t-distribution approximation), 
however this is still better than the random mean ρ  of 0.25 with a 
confidence of 99.99%. 

Random 0.25 
Spearman’s RC 0.27 

Table 2 – Rank correlation retrieval results. 

Retrieval Precision 

Retrieval precision evaluation requires a careful analysis of the 
test data and of the results. Each query image on the test data has 
five concepts, thus it is very likely that several images on the test 
set have at least of those five concepts. This means that almost all 
images are valid for one matching concept. However, when we 
increase the number of agreeing concepts, the number of relevant 
images decreases, meaning that it becomes more difficult to 
retrieve relevant images. This is visible on the random measures 
that we show on Table 3, where the increase of semantic 
consistency (matching concepts) the raises the difficult of 
retrieving relevant images. 

Concepts 1 2 3 4 
Random MAP 21.02 3.64 1.13 0.36 
MAP 23.54 8.16 5.64 2.43 
Random Mean P@20 25.09 6.33 1.83 0.52 
Mean P@20 31.91 14.29 7.22 2.41 

Table 3 – Retrieval precision results (values in percentage). 

Looking now at the results we can see that the system performs 
much better when we need a greater level of semantic 
consistency. As we increase the number of matching concepts, 
MAP and Mean P@20 increases more significantly. We believe 
MAP and P@20 reflect much better results than Spearman's due 
to the greater weight given to documents returned earlier in the 
search (in contrast to Spearman's, which gives equal weight to the 
whole ranking). After a detailed examination of the ground truth 
we believe this is caused by all annotations having an equal 
weight. For example: an image of a bear in a wood could have 
annotations, bear, sky and tree. A human assessor may deem bear 
as the most important concept in the image, however, this is not 
reflected in the annotations. 

8. CONCLUSIONS 

This paper presented preliminary results concerning query by 
semantic multimedia example. The conducted experiments allow 
us to draw interesting conclusions and plan future work. 

Query by semantic multimedia example has to work in a high-
dimensional semantic space, which is at the same time a strong 
and a weak characteristic of the system. While the high-
dimensionality accommodates a large number of concepts of 
increasing semantic expressiveness, it also increases the confusion 
between concepts therefore decreasing accuracy. Different metric 
measures exist that takes into account the dimensionality of the 
semantic space but it will always carry a trade-off between 
accuracy and semantic expressiveness. 



The reference rank was produced with the cosine-distance metric 
between annotated concepts that do not necessarily produce a 
rank considered correct by a human. We still believe that rank 
correlation is the best way to access query by semantic example 
but the reference rank must be constructed by a human. 

   
Figure 2 – A correct but inconsistent result: the 

query image (left) and the retrieved image (right) 
share the concept “water”. 

Probably an issue that will never have a solution is related to the 
fact that semantics are ambiguous by nature. Sometimes, even 
when a retrieved result is technically correct it is obvious to a 
human that it should not be at the top of the rank, as the example 
of Figure 2. A possible way to improve this situation is to have a 
weighted similarity metric where most-relevant concepts have 
higher weights. 
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