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Abstract

This thesis investigates three of the core components of content-based image retrieval: visual features,

similarity functions and indexing methods. In the content-based paradigm images are searched in a

purely visual domain, where they are represented by high-dimensional features. Exhaustively searching

this feature space can take a prohibitively long time. I argue that by the use of judicious approximations

we can search large collections interactively, while keeping a good level of retrieval performance. I first

carry out a thorough investigation of texture features. This results in novel feature modifications which

give significant improvement in retrieval performance. The adaptations are based on considering the

representation of texture within whole, real images. Secondly, I present the first application of fractional

dissimilarity functions to image retrieval. These functions emphasise points close to the query in each

dimension, while reducing the noise from others. Through a thorough evaluation we show that these

functions give a consistent improvement in retrieval performance across a wide range of collections and

features. Following this theme, I generalise a class of local similarity functions that exhibit similar

behaviour. These functions decompose features into dimensions and index these independently. By

selecting only the points local to the query in each dimension, we can ignore a large proportion of data

and maintain retrieval performance. Experiments with five different image collections show that the

optimal proportion of each dimension, to maximise retrieval performance, decreases from 10% to 0.1%

— with a corresponding collapse of computing cycles — as the collection size increases from ten thousand

to one million images. The culmination of this work brings together the separate strands of research

to implement an image search system. We demonstrate that, using normal hardware, this system was

able to search four million images in just over one second, thus satisfying the goal of effective real-time

searching of large image collections.
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Chapter 1

Introduction

1.1 Motivation

In recent years digital imaging technology has improved in performance and become more accessible.

This, coupled with a reduction in storage and network costs, has led to significant changes in the way

that both individuals and organisations create and share pictures.

For personal photography the advent of digital cameras and video camcorders has resulted in the

virtual elimination of film, processing and paper. This has had the double effect of both lowering the

cost and allowing easy distribution of images. Correspondingly, peoples’ behaviour has changed; they are

taking many more pictures and sharing these widely. These images can be in personal picture collections,

shared on-line with applications such as Flickr1, or just added to the vast repository of servers connected

to the Internet. Recent phenomena include the use of eye-witness photographs and video to report news

events as they happen.

Many organisations are creating vast libraries of digital images. For example, libraries and museums

are digitising their existing photograph collections and making these available, both within their buildings

and over the Internet, to a much wider audience. Images of artifacts and documents that were once almost

entirely the preserve of a privileged few are now available to anyone with a computer and access to the

world wide web.

This explosion of digital imaging has created the need for new ways to search picture collections. In

many circumstances there may simply be too many for individuals to look at every one. People used

to be able to browse through a shoebox of prints; now that shoebox is digital and may contain tens of

thousands pictures. On shared Internet applications this number can easily increase to tens of millions.

Some collections may have textual metadata associated with images. These tags can range from the

1http://www.flickr.com

11



CHAPTER 1. INTRODUCTION 12

detailed, accurate cataloguing of a museum library, to a few keywords that a user thinks describe an

image they have just uploaded to a web application. This metadata can be very useful for finding images.

However, it has limitations. To generate the comprehensive and precise tagging needed by a library each

image needs to be assessed by an expert, thus, making the production of the metadata time consuming

and expensive. In contrast, the keywords entered by a person who took an image are less accurate, but

easy to create. The quality of metadata has a direct impact on the accuracy of any search. Moreover, a

given set of tags locks any subsequent search into the concepts determined by the original tagger. If the

information need of the user does not fit these concepts then satisfying their query may be difficult.

These problems highlight the need for retrieval based on the content of an object. For a digital image

this content comes entirely from information within the pixel representation: visually this may correspond

to colours, textures and shapes. Basing search on visual content obviates the need for metadata, thereby

opening up unannotated collections for users to search. In addition, where collections are already tagged

it provides an ability to search and browse in the visual dimension, lifting the constraints of a purely

textual representation.

1.2 Objectives

The aim of the work presented in this thesis is to research methods that will allow CBIR to be used

effectively with large image collections (greater than one million images). From this goal we get the

more detailed objective of researching the properties of three core components of content-based image

retrieval (CBIR). These are, the visual features used to extract content from a picture, the functions

used to quantify the similarity between features and the indexing methods used to facilitate a search.

Two key performance areas are addressed, retrieval accuracy and speed of search. Combined together

these are fundamental for building a practical CBIR system that can return usable results in a realistic

timescale.

Both the speed and accuracy of the CBIR method can be compromised by the high-dimensional

nature of the feature vectors representing visual content. The effects of high-dimensionality can reduce

the meaningfulness of a nearest neighbour search and the effectiveness of indexing techniques (Chapter 5

Section 5.2). However, the task of image search is, by its nature, inexact. The approach in this thesis

is to consider where accuracy is needed and where it is superfluous to performance. By relaxing the

need for accuracy where it has no benefit we can find ways to address the scalability problem and still

maintain the effectiveness of CBIR as an image search and browsing tool.
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1.3 Outline of this thesis

This thesis presents a body of work researching CBIR by focusing on the two goals of retrieval effec-

tiveness and efficiency (speed of search). The end result is a tool-set for CBIR comprising of visual

features, similarity functions and an indexing method. Together these enable rapid search and browsing

of large generic image collections. The task of CBIR is subtly different to that of many other vision

applications. Focusing on this specific task is a common thread through the work and has led to several

novel adaptations. The strengths and limitations of the work are highlighted throughout the thesis. The

thesis is structured as follows:

Chapter 2 first discusses the task of image retrieval. CBIR is often criticised for its lack of performance

when compared to metadata-based searches. These problems are said to stem from the semantic

gap between a user need an the content-based representation. To counter these criticisms several

scenarios are discussed to highlight the strengths and weaknesses of the various image search

techniques. From this we see that CBIR has its rightful place in the panoply of methods. A

general CBIR system is then described followed by a discussion of each component in turn.

Chapter 3 describes the experimental methods employed throughout this work. The bulk of the chapter

is taken up with a discussion on image collections and evaluation approaches. Understanding the

effect of these is important as it impacts the applicability of any conclusions. A range of four very

different collections have been used. This gives some assurance that findings are not just a feature

of the collection. In addition, to evaluate the performance of indexing methods a large image

collection sourced from the web was created. This had no ground truth and, hence, necessitated

a new evaluation approach. The options for this are discussed. The commonly used information

retrieval evaluation approaches using precision and recall are described, together with the use of

statistical testing of results. Finally some additional methods and features, used in the experiments,

are described.

Chapter 4 looks in detail at the first core component of CBIR, features. Specifically the focus is on

features that represent texture. The concept of texture is described followed by a taxonomy of

texture extraction methods used in computer vision. The experimental work modifies and tunes

existing features to show how it is important to consider their use in the context of the image

retrieval domain. In this case the features are representing whole, real images, rather than the

more usual task of classifying homogeneous texture tiles. From this some novel modifications to

the features were developed together with general guidelines for building texture features for CBIR.

Chapter 5 investigates localised similarity functions: classes of functions that emphasise the points

local to a query whilst reducing the impact of noise from distant points. This property has the
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effect of emphasising clusters within the feature space. High dimensionality has a pervasive effect

on CBIR; its impact on nearest neighbour search is set out. The commonly used distance measures

are summarised. This leads into an argument for localisation of similarity functions.

Two classes of functions are investigated: fractional dissimilarity functions and local similarity

functions. Detailed experimental results show how these functions behave with a real IR task.

Further experiments show how it is possible to find representative local subspaces by considering

which elements of the query are atypical. These are used to further localise the search. This chapter

also contains a topological interlude discussing the non-metric properties of fractional functions and

a proof that local similarity functions can be made metric if desired.

Chapter 6 takes the local similarity function investigated in the previous chapter and implements it

as a practical indexing method for CBIR. These functions have the exciting property that a large

proportion of the data is discarded for each search. This reduces the amount of data loaded from

disk, which is the major speed bottleneck with image search. Existing approaches to indexing

high-dimensional features are discussed to set the work in context. Alternative implementations

for the local similarity index are put forward. This is followed by an evaluation of both speed and

average precision of search as the size of a collection increases.

Chapter 7 draws some conclusions from the work and ideas in this thesis, highlighting both successes

and limitations. Recommendations for future research to extend the usefulness of the local search

methods are set out. These focus on the use of query sensitive searches to prune the search space

whilst maintaining retrieval performance.

1.4 Contributions

This thesis presents new work across several elements of the CBIR tool chain. The points below are

novel ideas and results published in this thesis and the papers listed in the following section:

1. Tuning and adaptation of texture features for CBIR: specific novel modifications included intro-

ducing logarithmic scaling for the Tamura coarseness feature and an entropy measure for Tamura’s

directionality feature (Section 4.4.5);

2. Identified concise and general principles for constructing texture features for CBIR, briefly these

are: looking for micro-textures in images as informative textures occur at small scales; keeping

orientation information as it is an important discriminator; isolating smaller texture regions using

image tiling improves performance; and, using less detailed features as this may produce more

robust performance (Section 4.5);
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3. The first application of fractional dissimilarities to CBIR: A thorough evaluation across a wide

range of data sets and features showed that these functions consistently outperformed all other

Lp-norm distances; found that a parameter of p = 0.5 produced robust performance in nearly all

circumstances (Section 5.5.2);

4. Introduced the use of local similarity functions for CBIR and showed experimentally that their

performance is comparable to Lp distance measures whilst using only 5–10% of the feature space

(Section 5.5.3);

5. Showed that selection of atypical dimensions when using local similarity improves retrieval perfor-

mance; this enables the amount of feature space searched to be reduced further (Section 5.5.3);

6. When using localised similarity functions for CBIR, demonstrated that it is the membership of the

local neighbourhood that is important rather than the details of the distance function; this led to

the introduction of localised similarity using a simple voting function as the basis for a fast search

method (Section 5.5.3);

7. Proved the metric properties of a set of local distance functions, including when using a voting

function (Section 5.4.4);

8. Showed empirically that the optimal neighbourhood size, for a local similarity index, reduces as the

size of the collection increased; correspondingly, the index gave meaningful retrieval results when

searching over one million images using a neighbourhood of 0.1% of each dimension (Section 6.4.1);

9. Demonstrated that a test implementation of the local index could search four million images in

just over one second (Section 6.4.2).

1.5 Publications

Many of the results presented in this thesis have already been published. These group naturally into

three categories, given below:

Texture features. Work on modifying and evaluating texture features for content-based image retrieval

was presented in Dublin, at the Conference on Image and Video Retrieval (Howarth and Rüger,

2004). This work was extended with additional experiments and published as a journal paper in

the IEE Proceedings on Vision, Image and Signal Processing (Howarth and Rüger, 2005c).

Similarity. The use of fractional dissimilarity functions for image search was presented at the European

Conference on Information Retrieval (Howarth and Rüger, 2005a). This was followed by work on

localised similarity, which was published as part of the Conference on Image and Video Retrieval
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in 2005 (Howarth and Rüger, 2005b). These two pieces of work were unified and enhanced with

experiments on the implementation and performance of a practical index, searching over one million

images. This was written up as a journal paper, which has been submitted for review (Howarth

and Rüger, 2007).

Evaluation exercises. The features and similarity functions developed in this work have been evaluated

extensively. Some of this was within the framework of formal evaluation exercises. The first of

these was as a submission to the image track of the Cross-Language Evaluation Forum 2004. The

details of the submission were initially published as a notebook paper (Howarth et al., 2004) and

then following additional investigation in formal proceedings (Howarth et al., 2005). The texture

features have been used for submissions to several TRECVID submissions including in 2004 (Heesch

et al., 2004).

1.6 Statement of originality

The work presented in this thesis is my own, except where otherwise stated.



Chapter 2

Image search

This chapter considers the task of image search. It starts with a comparison of content and metadata

based methods. Their strengths and weaknesses are highlighted by considering different image search

scenarios. This leads to a clear view of the application areas suited to CBIR. Following this, a generic

CBIR system is described with each component considered in turn. This chapter provides an overview of

the CBIR landscape; each of the later chapters contains background specific to the work they describe.

2.1 Image search

The rapid growth in the quantity and availability of digital images provides a motivation for research

into ways of automating image search. The underlying techniques of image search can be divided into

two broad camps, those based on metadata and those that use the content of the image.

Metadata approaches can be further subdivided into how images are annotated, manually or using

automated methods. In general, the generation of accurate metadata is expensive as it takes the time

of an expert cataloguer. The alternative of automated annotation, using statistical learning or object

recognition methods, can make annotation much cheaper. These methods are a hybrid of the two image

search approaches as they use the content of the image to generate keywords, and then search using this

metadata (van Gemert et al., 2006; Yavlinsky and Rüger, 2007). If automated annotation techniques

could reliably identify a wide range of objects and scenes then they could form the basis of a system that

may solve the image search problem. However, at present these methods can only identify a relatively

small vocabulary of concepts with limited accuracy.

17
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Figure 2.1: A polysemous image

2.1.1 The semantic gap

The semantic gap is the difference between the real meaning of an object and its representation. It

naturally occurs wherever computers are used to model complex objects. It can lead to limitations in all

information retrieval applications. For example, consider a text based search; it is easy to find documents

containing the word sorrow, but much harder to find prose that expresses sorrow. The documents in a

retrieval system are likely to be indexed by the words they contain rather than their emotional meaning.

So there is a gap between the document’s representation as symbols (words) and its meaning to a reader.

With text retrieval a user can quickly understand how the system works and to some extent format

their queries to work around the problem. With image retrieval the manifestation of the semantic gap is

much more fundamental. To a computer an image is just a sequence of bytes, like any other data. The

sequence represents a two dimensional arrangement of pixels, each with a colour and intensity value.

This data is all the information that an image retrieval system has to work with.

But what does a picture mean to the human user? Even for a seemingly simple image this can be

many things. Understanding can be at the detailed level of objects within the image: it can represent the

whole scene, a time of day, an emotion or a more abstract concept. For example the image in Figure 2.1

may mean, houses, water, boats, sky; village, harbour, Scotland, colourful; or calm, peaceful, reflection,

holiday. The meaning of a picture can vary for individual viewers depending on its context, their prior

experience, knowledge or cultural influences.

Even when a person views an image and annotates it with a textual meaning the keywords they use

depend on their own skill with language, subject knowledge and circumstances. So metadata can suffer

from the semantic gap. However, when an image is represented purely by its content the gap is more
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fundamental and much larger.

These varying concepts and meanings of a picture are very difficult to capture or to represent in a

query. The major criticism of content-based approaches is that they they do not meet the real need

of the user. Study of the information need of users showed that the majority of queries contained a

semantic component that required a deep understanding of the image (Armitage and Enser, 1997). In

a content-based approach this semantic meaning cannot be easily captured, either in an example image

used as a query, or the images in the collection. So it appears that using the visual content in the image

alone is not sufficient to enable a search on the semantic meaning of the image. The final conclusion of

this argument is that the only way to enable a fulfilling image search is using accurate metadata. Enser

and Sandom (2002) used this same argument to come to their pessimistic conclusion that retrieval of

video footage required human intellectual input and that CBIR offered little in this respect.

(Smeulders et al., 2000) presented a rounded discussion on the scope of content-based methods. They

split the search task into three types: target search, category search and search by association. Target

search is based on pattern matching using visual features. This is the method tackled in this thesis.

Category search includes classification and object recognition using supervised learning techniques. The

final type of search is where the user associates a semantic meaning with an image. This case is where

the gap between the visual representation in a computer and the understanding of the user are greatest.

2.1.2 Image search scenarios

It would seem from these arguments that the usefulness of CBIR is limited. However, the visual nature

of content-based methods gives them their strength. A good way to investigate the properties of each

method is to consider different image search problems and how these can be solved.

Historic image library. An image library is likely to have high quality metadata created by librarians

experienced in cataloguing objects. The keywords they associate with each image will encapsulate

the meaning of the image. Users of the library are likely to be searching for very specific images.

For instance the user may want to find an image of the first black football player to play for

England1. This search can only be satisfied using accurate and detailed cataloguing.

Web image search. Another scenario is that the user wants to find pictures of a specific object from

the web. An example could be that they are looking for pictures of an angelfish. They would

like to use a single word query as this adequately describes their information need. The image

collection on the web is very large and evolving over time so it is not practical for an expert to

annotate the images. However, there is a lot of contextual information from the web page itself.

Keywords can be extracted from the filename, the URL and the text associated with the image.

1The Nottingham Forest defender, Viv Anderson, on the 29 November, 1978, against Czechoslovakia at Wembley
Stadium
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This is the general idea used by web based image search, such as Google2. In general, searches

using this method return highly relevant images at the top of their results list, but miss a large

proportion of the total available relevant images: high precision and low recall (Section 3.3.1).

Digitising an existing photograph library. It is common that a museum that is digitising a col-

lection of photographs of artifacts may only have the resources to create metadata for a small

proportion of the images. A text search using this metadata will be accurate, but only give access

to a limited selection of images. To make the bulk of the collection available the museum could

provide a content-based search. This would enable a user to search and browse the otherwise inac-

cessible unannotated images. A user searching for images could use an initial text search and then

choose a image from the results as a query for the content-based search.

Personal image collection. An individual can quickly build up a large collection of pictures. Before

the advent of digital photography a few of these would be displayed in frames or sorted in albums,

but the bulk would remain stored in a shoebox or similar. The digital age has not changed this,

except now the shoebox is likely to be a directory on a hard disk. Unless a person is very methodical

their images are likely to become unannotated and unorganised with nondescript filenames. Here

content-based search is the only option other than browsing thumbnails. The user can pick an

image as a query, view the results, refine the query and re-search. In this way CBIR provides a

method of searching and browsing an otherwise inaccessible collection.

Amateur video. Video shot by non-professionals presents a different search problem. Unless accurate

records are kept the subject matter on miniDV tapes and in video files will quickly be forgotten.

To search these manually will be a time-consuming process as the video must be viewed. Content-

based search presents an alternative indexing method for video. Shot boundaries can automatically

be detected and keyframes for each shot extracted from the video. These can then be searched

using their content in the same way as any other image collection.

From this discussion we can see that each method has its strengths and weaknesses. The potential of

content-based image retrieval lies in its ability to give access to large unannotated collections of images.

It can be a powerful tool to employ on its own or in combination with metadata. This can be in a

situation where the content-based search piggybacks off an initial text search or where text is used to

filter the results of a content-based search. On its own CBIR offers the user an ability to search in the

visual domain. This is orthogonal to a text search. Although using a visual search tool may not be as

familiar as searching using text it can provide the user with access to parts of the collection that would

otherwise be hidden to them. The results can often be better than a user expects. They may attribute

2http://images.google.com/
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this to serendipity, however, this is really a characteristic of the of the behaviour of CBIR, in that it

retrieves images where the visual similarity is real, but not necessarily semantically obvious.

2.2 The content-based approach to image retrieval

Vision is the most highly developed human sense and the one we rely on most to get an appreciation of

the external world. Except in total darkness, our eyes are constantly feeding a vast amount of data into

our visual system. The processing of this data by the brain enables us recognise objects, see motion,

reach for things and build an internal map of our surroundings. At a higher level we can detect emotions

in others and appreciate visual art. We can do this with amazing speed and accuracy. A glimpse of

just a fraction of a second is enough to let us see, interpret and understand a scene. To do this a large

proportion of the brain is devoted to vision. One part of the system, the visual cortex, occupies a large

proportion of the cerebral cortex. Vision scientists and psychologists have researched many aspects of

how vision works, but we are still a long way from having a definitive understanding (Bruce et al., 1996).

One model of human vision splits the processing into two phases. The first of these is named the

preattentive phase. Treisman (1986) described preattentive processing of visual information as being

performed automatically on the entire visual field detecting basic features of objects in view. It is done

quickly without any need for focused thought. After this phase the system enters an attentive mode,

recognising objects and generating a semantic meaning.

In this model of vision we can see that the initial stage of human vision is based on the content of

what we see. Content-based systems can be thought of as trying to mimic the preattentive phase of

vision. With CBIR the basic features of colour, texture and shape are extracted from a set of images

and these compared to each other to give a measure of similarity between the original images. Given the

adaptability, power and speed of the human visual system and our gaps in knowledge of how it works,

it would be ambitious to claim that computer systems are capable of performing all the same tasks.

However, CBIR has the potential of being able to visually compare and sort large collections of images

very quickly. In this way it can be a useful adjunct to human vision in that it can enable the visual

comparison of a large number of images that a person would otherwise be unable to view.

2.2.1 System overview

The components of a typical CBIR system are shown in Figure 2.2. This diagram is an adaptation of

the generic retrieval model presented by van Rijsbergen (1979). At the centre of a CBIR system are

features and similarity. These two components are in fact key to the performance of a system as they

are the parts that contain the visual information and similarity judgements. In the following sections

each of the building blocks of CBIR is discussed.
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Information need

Query - image

sdfaasdfasdfasd
 asdf asdfsdf

Feature generation

sdfaasdfasdfasd
 asdf asdfsdf

Ranking

sdfaasdfasdfasd
 asdf asdfsdf

Similarity comparision
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 asdf asdfsdf

Results presentation

Relevance
feedback

sdfaasdfasdfasd
 asdf asdfsdf

Image collection

Index
sdfaasdfasdfasd

 asdf asdfsdf
Feature database

Figure 2.2: A generic image search system

2.2.2 The information need and query

The first problem to consider with image retrieval is, given an information need, how to specify a query.

For CBIR the query must be translatable into a content representation. For this reason queries are

generally specified visually. This can be with an example image or perhaps a sketch. The obvious

shortcoming of using an example image is where to get it from. Sketching out a query can overcome this

problem. A good example of this in action is the retrievr application3 based on work done by Jacobs

et al. (1995). Although fun to use, in reality sketch-based methods are not always feasible for a general

search application: it takes both time and skill to draw a query. So, as a practical choice, we are left

with the “query by example image” paradigm. This is widely used for CBIR. It can naturally develop

into a browsing approach, where the user selects further suitable query images from the initial results,

thus refining the search.

The advantage with using an image as a query is that it directly converts the query into a pixel

representation. From this we can get the query in the form of visual content – features. This approach

circumvents many of the issues in specifying a query. However, the user is now working in the purely

visual domain. There can be a disparity between the semantics of their real information need and what

is available to them in this visual representation – the semantic gap. Moreover there can be images with

the same semantic meaning that are very visually dissimilar. A way to circumvent this problem is to

pose multiple queries for each visually different sub-query, or to combine them into a single multiple

3http://labs.systemone.at/retrievr
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image query. Ultimately, the link with the semantics of a query is left up to the user. They become

an implicit part of the system, interpreting the visual characteristics of the images in relation to their

search need, and thus adapting to the multiple meanings that they attribute to an image.

2.2.3 Features

The aim of a CBIR system is to produce a ranked list of images that are relevant to the query. The

system starts with the pixel representation of the image. Although this can be used to find exact matches

it is of very limited use for comparing other visual properties of an image. Therefore, to rank images

we must first extract a quantitative representation of what we want to compare. These are the visual

features that are at the core of CBIR systems.

Features are an attempt to distill out some aspect of the image data that will be useful for comparing

pictures. In essence they are a compact representation of a visual facet of the image. They can represent

many things such as colour, texture, shape or structure. Practically, they are usually a vector of real

numbers. These vectors commonly can have from one to several thousand elements.

A multitude of different features have been developed for CBIR, computer vision and classification

tasks. Section 3.5 gives an overview of colour features for CBIR while Section 4.2 gives some detailed

background on texture features. One thing all features have in common is that, although they are

calculated precisely, they do not have a mapping to any clear semantic meaning. They are always just

visual features. With text there is a close link between user understanding and the representation, but

with visual features this link is less obvious.

So when designing features we have to work in an empirical framework. We can use sophisticated

techniques to build a feature that represents a specific characteristic, but only when it is tested do we

find how effective it is for a real retrieval task. This is not to say the choice of features is arbitrary. In fact

the features chosen will have one of the most significant impacts, of any component, on the performance

of a visual retrieval system. This can be evidenced by looking at the variation of retrieval performance

when using different features with a single collection (Howarth et al., 2005).

2.2.4 Similarity

Once the system has a representation of the image collection as features, it then needs to compare these

features. To humans, similarity is a judgement based on an interpretation of the image and the context

in which it is viewed. For CBIR we need to be able to take a query and the feature space and produce

a ranked order of pictures that reflect the user need.

In computer-based vision systems, similarity measurements are routinely carried out using metric

distance functions such as the Euclidean or Manhattan distance. Distances are calculated in the feature

space from the query image to all the others in the collection. These are then sorted. Obviously the
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distance function will have a significant impact on the ordering. The combination of feature and similarity

function provides the raw retrieval power of any CBIR system.

There is a clear gap between the cognitive nature of a human similarity assessment and the deter-

ministic similarity function. Indeed it was argued by Tversky (1977) that a geometric interpretation of

similarity, such as a metric distance, bears little relation to perceptual similarity. Human perception fre-

quently violates the metric properties of symmetry and triangular inequality. However, these geometric

functions have worked effectively in CBIR systems for some time. Section 5.3 provides some detailed

background on distance and similarity functions used for image retrieval.

If a person were to try and visually rank images in the same order as a simple feature and similarity

function combination, it would prove very difficult. Consider the case of a colour feature, we may be

able to match a few similar images with the same overall hue, but beyond this any ordering would not

be clear. It seems that the correspondence between a person’s similarity judgement and a similarity

function, is useful only for the most similar images.

As a final thought, if we consider the task of image retrieval it becomes clear that what is important

is the top few nearest neighbours that are retrieved. For someone searching a collection of one million

images they are much more interested in the ranking of the top hundred than the ordering at ten

thousand. So we should be able to concentrate on the behaviour in the region local to the query.

2.2.5 Indexing

Efficient indexing of the feature database is an important task as it can possibly enable CBIR to offer

something that the human visual system cannot: searching a vast number of images in real time. If CBIR

can be scaled up it will be able to add value as a search tool for large unannotated image collections.

The straightforward approach to a content-based search is to compare the features relating to each

image with that of the query image, and hence to find its nearest neighbours. If we consider this sequential

scan of the entire database, then the complexity of the task is linear, O(n), with respect to the collection

size. In this respect CBIR is scalable. However, the potentially large size of feature vectors and complex

similarity computations make the constants within this linear complexity large. In practice this means

that the search time for a relatively small collection can be too large to achieve real-time searches. To

increase the number of images that can be searched a faster indexing method is required. This may come

from either reducing the size of the constants within the existing linear task, or developing an indexing

method with a lower complexity class.

Unfortunately, there are several things hindering the application of indexing methods to CBIR. The

problems stem from the very features and similarity functions at the core of the system. The features

being used are high dimensional and the consequence of this, often referred to collectively as the curse

of dimensionality (discussed in Section 5.2), makes traditional indexing approaches ineffective. This is
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a significant problem: the area where CBIR appears to offer most is hampered by the technology at

its heart. Many high-dimensional indexing approaches have been developed. These are summarised

in Section 6.2. However, none of these have yet solved the indexing problem for the dimensionalities

common with CBIR features.

2.2.6 Ranking, results presentation and relevance feedback

These three components form an important part of the CBIR framework. A large number of researchers

work in these areas, however, they are not the focus of this work. They are often combined, with user

interface controls and relevance feedback allowing the user to influence the ranking function.

In its simplest form the ranking of results is a linear combination of distances computed using several

features. For multiple image queries there are several options for combining distances. These include

using a vector approach and the k-nn method, both described in Section 3.4, which are used in this work.

Relevance feedback methods have been widely studied. From an initial set of results the user specifies

images that are close to their requirements and, in some systems, images that are counter to their needs.

A common approach is to generate a single query point and move it so that it is closer to the positive

images and farther from the negative (Rui et al., 1997). An alternative method is query expansion. This

uses the same, user chosen, sets of positive and negative images, but supposes that the relevant images

fall into multiple clusters in the feature space. The example images are used to generate multiple query

points that should be close to these clusters (Porkaew et al., 1999). Relevance feedback methods have

been shown to be effective providing that the user is willing to be proactive in their search.

The most straightforward approach to results presentation is to show the user the top ranked images

and allow them to page through them. An alternative is to graphically indicate the degree of similarity

between images by varying their size or placement on the screen. An example of this can be seen in the

way that the NNk network results are displayed in a spiral to represent the underlying similarity graph

(Heesch and Rüger, 2004).

2.2.7 Current research

Content-based image retrieval has a rich research community. Each of the areas described earlier is

being very actively investigated. The separate components are brought together for the major evaluation

exercises, such as the TREC Video Retrieval Evaluation (TRECVID) (Kraaij et al., 2006) and the image

retrieval track of the Cross Language Evaluation Forum (ImageCLEF) (Müller et al., 2006). An example

of an image search system is shown in Figure 2.3. This shows a prototype interface for the image search

engine built by our group. The interface is designed to be dynamically generated and has an XML based

API. This flexibility means that it can connect to any search engine that supports the API, which makes

it ideal for integrating new research ideas produced by the group (Howarth et al., 2007).
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Figure 2.3: SIRIL - prototype search engine

CBIR also plays its part in some large collaborative projects, for example, the European Union funded

Knowledge Space of Semantic Inference for Automatic Annotation and Retrieval of Multimedia Content

(K-Space)4.

Currently the most active areas of image retrieval research appear to be the detection of features and

topics within images using automated annotation methods (Bosch et al., 2006; Wilkins et al., 2006; van

Gemert et al., 2006; Yavlinsky and Rüger, 2007). These approaches are seen as the most promising way

of trying to narrow the semantic gap between visual content the user’s information need.

2.3 Conclusion

This chapter has given an overview of content-based image retrieval. More detailed background material

is in later chapters, close to the relevant work: Chapter 3 gives details of collections, query types and

4http://k-space.eu
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performance measures; Chapter 4 reviews texture features; Chapter 5 focuses on distance and similarity

functions; and lastly Chapter 6 covers high-dimensional indexing approaches. A thorough review of the

CBIR landscape was given by Smeulders et al. (2000).

This chapter has argued that CBIR is ideally suited to searching unannotated collections of images.

In addition it can provide a visual search for annotated collections. In this way it complements searches

using metadata.

Although the image retrieval task uses many of the same methods as other computer vision appli-

cations its aim is quite different. With object recognition or classification the success of the method is

very clear; an object is in the image or not; a texture patch is a specific type or not. With CBIR, success

cannot always be as clearly defined. The user may have an idea of what they are looking for, or they

may only know when they see it. This stems from the multiple meanings that can be attributed to a

single image, that are not always obvious from its visual appearance. This “vagueness” in the problem

definition of image retrieval means that approaches from other applications can often be too detailed or

rely on theoretical models where the assumptions do not stand. In any work on CBIR it is important the

the characteristics of the task are taken into account. Relaxing the need for accuracy and using simple

methods may be fruitful lines to take in the quest to apply CBIR to large collections as a useful image

search and browsing tool.



Chapter 3

Collections and evaluation

3.1 Introduction

In this chapter we lay the foundation for the experimental work carried out in later chapters. CBIR is

largely an empirical discipline; although theoretical ideas can be employed they are only useful if they

can be verified in a practical context. It is therefore essential to establish an experimental methodology

and baseline against which new techniques can be judged.

The two main components of an evaluation framework are the collection of images and evaluation

measures. These have been a contentious issue in CBIR as, despite attempts to build a benchmarking

framework (Müller et al., 2003), there is no routinely used single standard collection and measure. It

is therefore usual for each researcher to define their own evaluation environment. We have gone down

the route of using several of the commonly available collections to allow our results to be judged widely.

Much of this work is about relative changes in performance with different methods. Hence, we have

defined a standard evaluation environment that has been deployed consistently throughout this work.

For testing purposes a collection comprises not only of a number of images, but also includes a set of

queries and relevance judgements. The design of the collection will affect the results of any experiment

run with it (Müller et al., 2002). In this Chapter, we discuss the choices available for building a collection,

the impact of these choices and the actual collections used.

Similarly, the choice of performance measures will affect interpretation of results. Here, as with the

collection and query design, it is important that the measured characteristics mirror real world user tasks.

We discuss the strengths and weaknesses of mainstream IR evaluation techniques. This is followed by a

description of statistical significance tests that are commonly used with information retrieval evaluation.

These tests go some way to ensuring that differences in performance are not just down to random

variations. Hence, they form an essential part of the evaluation framework.

28
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When evaluating scalability of a CBIR system we have to measure the search speed whilst still

maintaining retrieval performance. With indexing approaches that rely on approximations there is often

a trade-off between the two. This is discussed together with the problem of building a large (greater

than one million images) test collection.

The final sections cover some common methods and features that have been employed for this work.

Specifically, how to deal with multiple image queries, using either the the k-nearest neighbour approach

or the vector space model. I also give an overview of some of our visual features, and explain their

characteristics. These details will be useful when discussing results. Note that the description of texture

features is left until Chapter 4.

3.2 Image collections

It is widely recognised with image retrieval that the data set can have a large influence on the results

from any experiments and the resultant conclusions. Some collections, such as Corel, are regarded as

being “easy” whilst others are “hard”. However, these terms are not easily quantifiable. Indeed, although

commonly used by image retrieval practitioners they can be misleading. What is important, when we are

trying to evaluate the effectiveness of CBIR methods, is how the characteristics of an image collection

relate to a real image retrieval task.

3.2.1 Design considerations

In Chapters 1 and 2 we discussed the nature of retrieval in CBIR systems. Essentially, these systems

only use visual information: it is left to the user to infer semantic meaning to queries and results. The

combination of features and distances defines a topological space. From a simplistic viewpoint an ideal

query is one where the query image’s representation in this space cluster with those of the relevant

images. The later chapters of this thesis look at altering and using the characteristics of the feature

space. However, before doing this we consider the influence the image collection itself.

Types of images

Image collections have several obvious characteristics. The first of these we consider is the domain.

Collections can be heterogeneous such as a random collection of images from the web. Alternatively

they can have increasing degrees of specificity. Examples of these could be a collection of key-frames

from a regular news program, pictures of objects in a museum collection, medical images, pictures of

trademarks, satellite images or a personal album. Differing degrees of homogeneity can be given by the

subjects of the images, the conditions that the pictures were taken under or the equipment used. Other
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relevant characteristics of images are the quality, size and compression. These are likely to go hand in

hand with the domain.

If we consider the visual nature of the images then it is clear that a greater degree of similarity will

occur with a closed domain. In these circumstances we may be looking for small differences between

images. If we were to ask a user to group images visually it is likely that there will be a number of

relatively tight clusters. In a heterogeneous collection the situation may be different in that there will

be a greater number of looser clusters, possibly with fewer members in each. It is likely that the nature

of this clustering will be mirrored in the feature space. If this is the case then this will affect the type

of images retrieved by a CBIR system. For the closed domain the results will be dominated by similar

images and qualitatively look better than those of the more general collection, where the results of a

search may quickly degenerate into seemingly random images. This may affect the features and similarity

methods that are preferred for each collection.

Types of queries and relevance judgements

To carry out evaluation experiments we need a set of queries and relevance judgements together with

an image collection. In the query by example approach, queries can be single or multiple images. These

can also be combined with text. For still images this can be in the form of annotations or keywords; for

video, subtitles or speech recognition data may be available.

Given a query we need to know the relevant images in the collection. As discussed in the introduction

the notion of relevance is subjective. It will vary from user to user and also depend on the context. This

variation cannot be replicated convincingly.

There are three types of relevance judgements that are regularly employed:

• Groupings. This is where the collection is divided into groups of similar images. Examples of

categories from the Corel collection (described later) are penguins, reflective effects and places of

worship. The simplest way to define a query and ground truth is to choose a set of query images

from the group and have the remainder as relevant images.

• Keywords. Often images will be annotated with multiple keywords. For instance a beach scene

may have the keywords, sand, sea, sky, beach, people, holiday. The same keyword may appear in

many visually diverse pictures. There will also be common associations, such as a cow normally

occurring in a field of grass. Again it is simple to choose queries and ground truth by splitting

those with the same keyword.

• User judgements. This type of query and relevance judgement aims to be as close to realistic real-

world queries as possible. A topic is created with one or more images together with an associated

statement of information need; relevant images are then manually identified. The expertise of the
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people making the relevance judgements (for example, general users or domain experts) will have an

impact on what they identify as relevant. With an evaluation conference, such as TRECVID, the

effort of manually reviewing a large collection can be reduced by using a pooling method (Harman,

1992). At such a conference many teams will submit retrieval results from their own systems. The

top ranked images from each run are pooled together. This reduced set is then manually reviewed

to identify relevant images. There is a risk that some relevant images in the collection are missed

as the entire collection has not been examined. Normally all those images not in the pool will be

marked non-relevant. The generation of incomplete ground truth in this way will introduce a bias

against any new system that is judged using it. The new system may find relevant images that

were not in the original pool, but will not be rewarded for this.

3.2.2 Discussion

The problem with any collection is that by slightly changing the images or queries we can change the

results significantly. Müller et al. (2002) demonstrated how it easy it is to get differing performance with

identical CBIR systems. They used a subset of the Corel collection and manipulated it by removing bad

images or groups, or by choosing the best image query. They demonstrated the difficulty of comparing

systems unless identical collections, queries and relevance judgements are used. Results from systems

with a low number of queries are inherently unstable. If one or two queries give high average precisions

changes in these can swamp differences in lower performing queries. So in general there is a problem

with stability of results.

The purpose of of a CBIR system is to retrieve images for a user. Correspondingly it would seem that

the most realistic relevance judgements would be those created by people. Other than the variability

of user judgements the main drawback of these is that they are time consuming to produce. For this

reason they are only usually created for large evaluation exercises. Often, only a small number of queries

are created. In certain circumstances this can make the results sensitive to the performance of a single

query.

The inherent problem with groupings and keywords is that often they do not correspond to the visual

similarity selections that a human user might choose. The concepts they represent may not have any

visual similarity, making retrieval an impossible task. Their major advantage is that a large number

of queries and related ground truth can be created quickly. Easiness of a group depends also on the

others present. For example in the ImageCLEF collection, described later, there are a few colour images

amongst the predominantly black and white repository. This makes the colour images extremely easy to

find.

If a single collection is used then there is a danger that systems and methods will become over-fitted

to the characteristics of that specific collection. This criticism can be levelled at TRECVID, which is the
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major video retrieval evaluation exercise. The nature of the collection and search task has remained the

same for several years and a huge amount of research has been focused on this. There is concern that

this could bias research and therefore resulting systems. However, the big advantage of using collections

from evaluation exercises is that they are standard and known by other researchers.

The main conclusion from this discussion is that no single collection adequately represents the com-

plexity and variability of the CBIR task. To perform comparative evaluations of methods we need to

employ a wide range of collections in a consistent evaluation environment. We can then vary a single

component and see if improvements occur with most collections. If this is the case then we can be

confident that the new method will robustly outperform the original. This is exactly the methodology

taken in this thesis. The actual collections used are described in the next subsection.

3.2.3 The collections used

Corel

The Corel Gallery 390,000 product contains 31,997 high-quality images, divided into subject groupings.

Subsets of the collection are widely used by image retrieval practitioners. We used a selection of Corel

that was created by Pickering and Rüger (2003) to evaluate visual features. Their goal was to create

a collection that would allow a fair evaluation, i.e., one with significant intra-category similarity and

inter-category difference. Confusing categories, such as those that were very visually similar to another

category or those that were highly abstract, were removed. This left a total of 6,192 images spread across

63 categories. This collection was then split into 25% training or query data and 75% test data.

The queries and ground truth were generated using the Corel categories. Single image queries were

made using each of the 1,548 images in the test set. Multiple image queries of 2 to 6 images were also

created. In each category and for each number of images, ten queries were randomly generated. This

resulted in 630 n-image queries, a total of 3,150 multiple image queries. Relevance judgements were

based simply on whether the test image belonged to the same category as the query.

This collection has been used throughout the work for initial investigations. Its size and large number

of queries meant that it was ideal for indicating how methods were likely to affect retrieval performance.

Getty

This collection was built by Yavlinsky et al. (2005) to address the criticism that using the Corel data

set is an unrealistic retrieval task. It is a collection of 24,396 medium-resolution images downloaded

from the Getty website (Getty Image Archive). The pictures are varied in nature, many of them are

fairly abstract and “artistic”. Attached to each image are multiple subject keywords that represent the

content.
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The collection was split in half to form a query and test set. The keywords were used to generate 100

single image query topics and associated ground truth. This retrieval task is therefore different to that

of Corel, being based on a soft overlapping classification rather than hard categories. A proportion of

images associated with a subject keyword can be visually different making the task a tough challenge for

CBIR. Indeed, these “rogue” images within a keyword set may give retrieval results worse than random

as the relevant images may be retrieved last. This data set provides a more realistic and challenging

task.

TRECVID 2003

This collection was created for the search task of the TRECVID evaluation workshop (Smeaton et al.,

2003) and is widely used. The task is that of video retrieval, and the collection comprises of 32,318

key-frames taken from ABC and CNN news broadcasts and C-SPAN programming. Associated with

each shot is text from automatic speech recognition and closed caption based transcript.

The images appear fairly noisy because they have been extracted from a video stream. The news

programmes are quite formulaic; this means that there are a large number of key frames with news

readers in studio followed by outside reports. There are also adverts that occur repeatedly. This means

that the collection contains a large proportion of very similar images. This is typical of production video

of this genre.

The search task specified for TRECVID consists of 25 topics. For each topic a few example images

are given as a query together with some text. The aim of the queries was to get a realistic search task

that a real user might come up with. The relevance judgements were created by expert users, often

intelligence analysts, using a pooling method.

ImageCLEF 2004

This is a medical image collection that was created for the image track of the Cross Language Evaluation

Forum (Clough et al., 2005). It comprises of 8,725 images together with associated notes in English and

French. The data set is quite different to others in that the images are mainly X-rays, CT-scans and

medical photographs. The majority of these are monochrome and are carefully posed. The result of this

is that that the collection contains groups of very similar images.

There are 24 single image queries. Ground truth was created by medical experts who reviewed the

entire collection. The task associated with this collection is in a very specialist domain. It therefore

provides an interesting contrast to the retrieval tasks set by the other collections.
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Web - A collection for testing scalability

There are specific problems that arise when we want to build a collection for evaluating scalability of

CBIR systems. The collection needs to be large. In addition we need to be able to vary the size of the

collection whilst preserving its characteristics. We decided on a maximum collection size of over one

million images for no reason other than this was more than one order of magnitude larger than any other

commonly used test collection.

One problem is where to source a large number of images. When this work was started there were

no suitable copyright-free image collections available at low cost. We decided to use the world wide web

as a source of pictures. These are not copyright free. However, it is generally acceptable to use them for

research purposes as long as they are not made widely available. The collection was originally built by

Yavlinsky (2005) by downloading 1.3 million images from .edu domain sites. At the same time the alt

tag details were saved and keywords extracted from the URLs. After filtering duplicates and navigation

images we were left with 1.1 million images.

To measure retrieval performance we still need queries and relevance judgements. We could generate

our own ground truth by exhaustive judgements, but this would be prohibitively time consuming. A

second option is to mix in an existing collection and use its queries and relevance judgements. A problem

with this is that the ground truth will not include any relevant images that exist in the large collection.

This could mean that precision results are understated. This artificial situation can also make retrieval

easier. The inserted images may be very homogeneous in terms of style elements such as lighting,

composition and colour. This means that they will cluster well in the feature space and thus be easier

to retrieve than if they were from the larger collection.

This, combination of collections, approach does give a practical method of obtaining queries and

ground truth for a large collection. As long as the inherent limitations are kept in mind when viewing

results it will be a reasonable collection for large scale retrieval experiments. It is the method I have

adopted for the experiments in Chapter 6.

3.2.4 Summary

My approach in this work is to apply the same methods consistently to the full range of collections as

described above. These are diverse, not only in the type of images, but also in the actual retrieval task

derived from the query and relevance judgements. If improvements are consistent across the range of

collections then one can argue that they are independent of the collection and generally applicable.

The Corel collection was used for exploratory work. Its design makes it ideal for development as

it highlights changes in performance in the visual domain. Westerveld and de Vries (2003), who used

the Corel collection in a similar way, stated that its characteristics make it an ideal vehicle for testing

new ideas and models. Experiments with this collection often reveal statistically significant differences
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between methods, and can aid in giving an understanding of underlying behaviour. I have followed up

any initial findings by systematically varying the collections and repeating experiments to determine

whether the results are indeed robust.

3.3 Measuring performance

This section discusses how to measure the performance of an image retrieval system. The text retrieval

community has been dealing with this issue for many years and has well established methodologies.

These have been discussed extensively by van Rijsbergen (1979) and Salton (1992). In most situations

the image retrieval world has either used or adapted these methods. This section does not aim to provide

any further insight but to explain the well known methods, their strengths and weaknesses and to justify

their use in the context of this work.

In the early Cranfield studies, Cleverdon et al. (1966) came up with six areas to quantify the perfor-

mance of document search systems. These have subsequently formed the basis of evaluation measures.

These were: coverage of the collection, presentation of results, user effort, time lag between query and

answer, precision and recall.

In this work we are primarily interested in the last three. The next subsections discuss how to evaluate

the quality of search results using precision and recall and how to measure the time lag and, associated

with this, the efficiency of a system. It is essential to measure both of these. For a usable system there

is no point improving precision or recall if the results are not obtained in a realistic time. As image

retrieval systems are scaled up, there is usually a trade-off between speed and retrieval performance.

3.3.1 Precision and recall

First it is worth revisiting the task of image retrieval to set the context of what evaluation is attempting

to quantify. A user supplies a query image or images and gets back a page full of images that the system

marks as relevant. Depending on the system the user may then browse the next and subsequent pages

of relevant images or possibly select positive examples and search again.

From this simple description we can see that an important factor is how many images are on a page

and how many pages a user is likely to browse. For example if there are twenty images per page and

the user looks at a maximum of five pages then we should be interested in retrieval performance for the

top one hundred items. As the first page is particularly important, we could justify measuring retrieval

performance for the top twenty.

There are further complications for real systems and searches. The number of relevant images in a

collection will affect any measure. In a controlled collection this will be known. In an open collection

this will be unknown. Sometimes a user may be searching for a specific image they have seen before,
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only one image is relevant. Perhaps there will be no relevant images, or thousands.

We need to find measures that give a good indication of visual search effectiveness. They should

enable us both to compare the algorithms that are being investigated and how the results fit a user

task. The ultimate aim is to find out how well does image retrieval help users when faced with a task of

searching an image collection and finding what they want.

Definitions

Precision and recall are the cornerstones of information retrieval evaluation. Together with fallout they

make up the standard measures, which are defined below. There are many references for these definitions,

however, we often use the trec-eval software for evaluation and therefore point the reader to proceedings of

the TREC workshops (Voorhees and Harman, 1999). These give a detailed description of the calculation

of measures and construction of precision–recall graphs, which we summarise in the next section.

Recall =
number of relevant items retrieved

total number of relevant items
(3.1)

Precision =
number of relevant items retrieved

total number of items retrieved
(3.2)

Fallout =
number of non-relevant items retrieved

total number of items retrieved
(3.3)

Precision – recall graphs

If we calculate precision and recall for a list of retrieved documents the values will have no dependency

on the ordering of the list: they are set-based measures. Usually we are interested in retrieving relevant

documents first. To get this information we need to calculate the measures as the depth of the result

list is varied. The result of this is often displayed using a precision versus recall graph. Researchers

are familiar with these graphs and thus able to interpret them easily. They give a visualisation of the

characteristics of the search engine and therefore underlying algorithms being used. As an example of

this we can consider the graph shown in Figure 3.1. The two curves shown have approximately the same

area under them, and hence, have about the same average precision of 37%. However, the characteristics

of the curves, and therefore the search engine that produced them, are quite different. Curve A has high

precision at low recall. This is suited to a web search engine, where the user wants as many positive

images as possible in the first page of results, but is not concerned about finding everything that is

relevant. Curve B has a higher precision at high recall. This response is ideal for a user that wants to

ensure that they retrieve all the relevant documents, i.e. intelligence analysts.

To construct a precision recall graph, precision is plotted against recall as we step through the

retrieved document list. Take an example where the collection has 10 objects and the query has 3

relevant items that are 1st, 3rd and 6th in the ranked results list. This situation is shown in Table 3.1,
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Figure 3.1: Example precision–recall graphs

Depth of retrieval list
- 1 2 3 4 5 6 7 8 9 10

Recall - 0.33 0.33 0.67 0.67 0.67 1.0 1.0 1.0 1.0 1.0
Precision - 1.0 0.5 0.67 0.5 0.4 0.5 0.43 0.38 0.33 0.30

Standardised Recall
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interpolated Precision 1.0 1.0 1.0 1.0 0.67 0.67 0.67 0.5 0.5 0.5 0.5

Table 3.1: Example calculation of recall, precision and interpolated precision

with the relevant items in bold. We start with just the first item in the result list; this is relevant so

precision will be 1.0 and recall 0.33. The next item is non-relevant, precision drops to 0.5 and recall

stays at 0.33. The third item is relevant and precision is now 0.67 with recall 0.67. The next two items

are non-relevant, recall will stay the same, but precision will drop to 0.5 and then 0.4. When the final

relevant item is retrieved recall will be 1.0 and precision 0.5.

The trec-eval software calculates interpolated precision for a standard set of eleven recall levels,

increments of 0.1 between 0 and 1. The interpolated precision for level x is the maximum precision for

any recall level equal or greater than x, as shown in Table 3.1. For a set of queries the precision at these

standard levels is averaged over the set and the graph drawn with these values.
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Average precision

It can be easier to compare performance with a single number that represents some combination of

precision and recall. There are several alternatives for this. The first we consider is average precision.

This is obtained by averaging the precision values as each relevant item is retrieved.

Average precision =

∑N
r=1 Precision(r)

N
, (3.4)

where Precision(r) is the precision when each of the N relevant items is retrieved. For the earlier example

this will be 0.72 (1.0+0.67+0.5
3 ). Average precision rewards systems that return more relevant items earlier.

This can be said to equate to the user who wants to see relevant items on the first few pages rather than

later.

If we repeat this over a set of queries and take the mean this becomes the mean average precision

(m.a.p.). M.a.p is a good single performance indicator, but as with all averaging processes, it may hide

interesting anomalies in the results for each query. If we want to look deeper into the results, then a

histogram or bar graph showing each query is a useful tool for more detailed analysis.

Precision at n documents

This is simply the precision measured when a specific number of objects have been retrieved. So we may

use precision at 5, 20, 100 etc.. The choice of what level to use can be made by considering the task

and type of user interface. As described in the earlier example we may choose values of n relating to the

number of images displayed on a page. So measures of precision at twenty and one hundred would be

suitable.

One of the limitations of this measure is that it is sensitive to the number of relevant images in

the collection. For instance a query with only one relevant item could only achieve a maximum of 1%

precision at 100, and consequently it would give very different results to a query with one hundred

relevant items.

R-precision

R-precision is useful to get around the effect on precision at n documents caused by variable numbers of

relevant images. It is defined as the precision at the R-th document retrieved, where R is the number of

relevant items for that query. It is a useful measure for comparing the performance of different features

or algorithms for a specific query. R-precision can be averaged over a set of queries with the usual caveat

about masking potentially important behaviour.
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F measure

The F -measure is the harmonic mean of precision and recall and is computed as:

F (i) =
2

1/Recall(i) + 1/Precision(i)
, (3.5)

where Recall(i) and Precision(i) are, respectively, the recall and precision for the ith item retrieved. The

F -measure combines precision and recall into a single measure, which has a high value when both of

them are high.

As a generalisation the E measure was proposed by van Rijsbergen (1979). This is similar to the

F -measure, but with a relative weight for precision and recall. This variable allows the user to specify a

parameter that weights their own degree of interest in precision or recall.

Alternatives

Many alternatives to the standard measures described above have been suggested. For example, Müller

et al. (2001) proposed normalised average rank. This normalises a rank measure by the collection size and

number of relevant images, thus making it easier to compare results from different queries. Unfortunately,

despite some advantages none of these new methods have been generally adopted.

An area where new measures and methods have been taken up is evaluation of performance for

collections with incomplete relevance judgements. This is particularly important to the very active

TREC evaluation community. TREC uses a depth pool approach, as discussed in Section 3.2.1, where

the union of the top results from each run is judged to find the relevant documents. A depth of 100

objects has been empirically found to give a good balance between effort and quality of evaluation.

However, this size of pool still needs considerable work producing the ground truth. In addition, Smith

(1998) noted that the effect of incomplete relevance judgements on precision-recall plots is that they may

become inaccurate after around 40% recall.

Buckley and Voorhees (2004) proposed a new measure, bpref, which is computed by considering the

relative ranks of documents that have been judged relevant or irrelevant. Documents not in the pool

are not considered in the measure. They showed that this measure was effective for ranking systems.

However, at low sampling rates it is not correlated with any of the usual measures. It was adopted for

the TREC 2005 terabyte track.

Another new measure that has been taken up by the TREC community is inferred precision. This was

put forward by Aslam et al. (2006) again to evaluate performance for collections with incomplete rele-

vance judgements. Their aim was to drastically reduce the workload of generating relevance judgements

while still producing an unbiased estimator. They showed that highly accurate estimates of average

precision, R-precision and Precision(n) could be obtained using as little as 4% of the typical TREC pool.



CHAPTER 3. COLLECTIONS AND EVALUATION 40

Their method is based on random sampling. They show that their estimates are unbiased and then

derive a sampling distribution that gives low variance estimates. The distribution gives high sampling

probabilities to documents near the top of the ranked lists of results. Thus these are more likely to be

judged.

3.3.2 Discussion

Precision and recall measure different aspects of the performance of a search engine. Although they are

the basis of most widely used measures, precision and recall are open to several criticisms. The most

obvious of these is that to calculate recall correctly it is necessary to know all the relevant items in

the collection. This is not always practical. Several enhancements have been proposed that improve

evaluation of precision for collections with incomplete relevance judgements.

Certain measurements using precision and recall are also reliant on an ordering. Some systems have

a weak ordering and may return many items with the same similarity value. To cope with these we have

to randomly order results that match to break the ties. Queries with few relevant images may be very

sensitive to the the exact order results are returned. For instance where there is a single relevant image

that is returned in the top ten results average precision can vary from 10% to 100%. In reality, if the

image is included on the first page of results viewed by the user then the practical significance of the

ordering is much less.

Possibly the most important limitation is their relation to the real image retrieval task. These

measures are applied in a batch mode using a set of standard queries. In a real system the user will

perform repeated searches, refining the query and browsing through the collection. The effectiveness of

this is not captured by applying these evaluation methods with fixed queries and relevance judgements.

Of course these methods can be used to evaluate the results of manual runs where a real user queries

a system and collects their own ranked list of results. However, when we step into this arena there are

several other things to be considered. The first of these is as discussed earlier, each user will have a

different judgement of relevance. When they are using the system this will implicitly affect the results as

they make choices what to include. There are user-oriented measures that aim to capture the performance

in this situation (Kekäläinen and Järvelin, 2003; Korfhage, 1997).

In addition, real user relevance judgements are not binary. They may judge several images to be

relevant to their search need but within this set have some that are more desirable than others. Similarly

although a high recall may appear desirable, it is not needed if the user needs to find only one high

quality result.

However, this work is focused on algorithms for features, similarities and indexing. The variability

introduced by a user would make it impossible to judge these in isolation. For this reason we choose to

stay with the “traditional” evaluation methods. Generally in this thesis we use mean average precision
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and interpolated average precision versus recall graphs to measure performance over a set of queries.

When looking in detail at individual queries we use a histogram of average precision. Over a wide range

of queries these generally give a good measure of performance for an image retrieval task, trading off

between precision and recall. They are also widely understood and adopted by other researchers, hence,

our results can easily be assessed. We therefore feel justified in the use of these measures.

3.3.3 Time lag and efficiency

The speed of a retrieval system can be quantified in several ways depending on the viewpoint taken. To

the user, the response time of a system is the most important. This equates to the time lag referred to

at the start of this section. The time lag of a search system is the average interval between the time the

search request is made and the time an answer is given. This can be easily measured as a wall-clock time.

Although this will include many variables it will give a realistic performance measure if experiments are

run repeatedly, in the same circumstances, and the times averaged.

If we are considering the underlying efficiency of the retrieval engine we can look at individual

components that make up the total response time. This is discussed below, but first we consider the

effect of response times on user perception.

Responsiveness

The general advice about response times for interactive systems has been around since the Sixties (Miller,

1968). These were discussed by Nielsen (1994) in the context of web usability. In reality the guidelines

remain the same for all applications whether they are web-based or not. They are driven by what users

expect and feel comfortable with. The three response times of interest are explained below.

0.1 second User interface components, such as menus, navigation and rollovers, should react within

this timescale. This speed makes the user feel that the system is responding instantly to their

actions.

1.0 second The user will notice a delay of this length but their flow of thought will not be interrupted.

They now have the feeling the the computer is working on the data rather than them working on

it directly.

10 seconds This is the limit for keeping the users attention focused on the task. With these sort of

times the user should be provided with some feedback, such as a progress bar. If the response time

is greater than this it is likely that the user will start doing something else in the gaps.

Given these timescales what is an acceptable search time? A user would expect an image search to

take some time as they would accept that the computer has to do something. Therefore an ideal response
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time would be one second, with a maximum of ten seconds. With a web-based application there would

also be all the overhead of loading images, multiple connections and so forth. If the user starts to see

the first images load then their interest will be held and this point can be taken as the search being

complete.

A search engine deployed as a web service may have to deal with concurrent requests. Whilst this is

an important factor it has not been considered or measured explicitly within this work.

Although this is all a little vague we can come up with a target time for a single search of 1 second. This

would be acceptable for a local system and also for a web-based version where the extra communication

time would be expected. We have therefore used this time as a target for the time lag between query

and response.

Efficiency of specific components

One way to break down the total time would be into the components identified on the system diagram

in Figure 2.2. We can then consider the time taken for each part: query submission, feature generation,

loading features, similarity comparison, ranking of results and result presentation. A straightforward

approach is to measure these separately and use the times to compare the efficiency of algorithms for

each component.

When searching a large collection the time to search the feature database — loading the required

features and comparing them — dominates the time taken. As a collection grows there will be a size

where it is no longer possible for the feature data to be stored in memory and it will then need to be

stored on and loaded from disk. At this point the disk access time will become the bottleneck in the

system as it is orders of magnitude greater than memory access (Hennessy and Patterson, 2006).

When considering indexing approaches a common alternative to recording actual time is to measure

the amount of data accessed. Indexing methods aim to reduce the amount of data that is searched so

a naive approach is to measure the number of bytes retrieved. This has many flaws as it does not take

into account the location of data on disk and the page structure. Reading a single byte will necessitate

loading a complete disk page, so if two bytes are on different pages these will both need to be loaded.

The size of a page can be varied when the file system is generated. A common size is 4kB.

So counting the number of disk page accesses will give a better measure of indexing efficiency. How-

ever, in reality a lot of hardware optimisations and caching occurs in a the I/O system, which are difficult

to account for. Without tight control of this the actual search times may be quite different to that ex-

pected from the number of disk page accesses. For example, there are significant efficiency gains to be

made by reading data as a contiguous multi-page block rather than many single pages (Comer, 1979).

The implications of these issues are discussed in Chapter 6 as part of the design and implementation

work.
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For the purposes of this thesis the primary speed measure used is wall-clock time. As long as care

is taken with the experiments this provides a useful measure. Indeed, as it is directly the concern of

any user it fits with the overarching principle of building practical retrieval systems focused on the user

need. In addition where appropriate we have included the quantity of data loaded and the number of

disk pages accessed as an indication of the relative efficiency of indexing algorithms.

Baseline

As a baseline measurement for time lag we have chosen to use a sequential scan of the feature database

stored contiguously on disk. With this approach the disk and I/O system will be working at maximum

efficiency. In these circumstances the average time to retrieve a page from disk can be ten times faster

than normal. For this reason, although this simple approach looks at the entire database, it is hard to

beat when searching high-dimensional features unless an indexing system is truly effective.

3.3.4 Statistical significance

The results of any experiment need to be interpreted. We have a dual purpose when carrying out these

experiments. Firstly, we are assessing the relative performance of different retrieval algorithms. Secondly,

we want to decide if these differences in results are meaningful for a user. The latter point is the primary

aim of an image retrieval system.

As we are taking a methodological approach it is important that we determine the statistical sig-

nificance of our results. That is, are the differences in mean average precision between two methods

significant or are they likely to be due to random errors. Having a valid statistical methodology for this

is an important part of the experimental method.

Of course having performance differences that are statistically significant does not necessarily mean

that these differences will appear meaningful to the user. Keen (1992) calls this practical significance as

opposed to statistical significance. As with all user driven measures this is much harder to quantify. We

have not attempted to do this systematically in this thesis. However, where any qualitative or anecdotal

evidence has appeared this has been presented in context.

Getting back to statistical significance testing a good summary of their practical use within retrieval

experiments was presented by Hull (1993). We are concerned with testing if the difference between mean

average precisions for two methods is statistically significant. The problem needs to be formulated in

terms of hypotheses. The alternative hypotheses, H1, will be that the higher result is in fact different

from the other. This is a one-sided test. Of course the null hypothesis, H0, is that there is no difference

between the results.

The retrieval results are obtained for a set of queries, so for each query we have a pair of results.

From these we to calculate a test statistic, T . In this situation there are three tests that are commonly
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used: the sign test, the paired Wilcoxon signed-rank test and the paired Student’s t-test. The first two

are non-parametric whilst the last is a model-based test.

Given the test statistic and its probability distribution we then choose a critical region, that is the

range of values that point to H1 being true by rejecting H0. The size of the critical region corresponds

to the risk of rejecting H0 incorrectly; this is called a Type 1 error. In this work we have chosen a

significance level of α = 5%. Of course there is also a risk of a Type 2 error, that is not rejecting H0

when it is false. The probability of this is usually denoted by β and is linked to the power of the test.

Each of the three tests has different assumptions and power. Correspondingly, their suitability will vary

depending on the circumstances. These are discussed below, starting with a description of the tests.

The starting point for all of the tests is the difference between the paired measurements. Suppose we

have n queries, each having a pair of average precision measurements. For query i we have observations

xi and yi, and difference wi = xi − yi. The tests all use different aspects of this random variable W .

Sign test

The sign test is the simplest test with no assumptions about the distribution of W . It is non-parametric

and uses only the sign of the differences, ignoring any information in the magnitudes of the differences.

The null hypothesis, H0, is that the probability of observing a positive or negative value for wi is the

same, i.e. P (W > 0) = 1/2 and that the median value of wi for i = 1 . . . n is zero.

The procedure is to count the number of positive differences, n+, and negative differences, n−. Zero

differences are ignored so we reduce the sample size to n = n++n−. We therefore have n Bernoulli trials.

Under the null hypothesis n+ and n− are binomially distributed, N ∼ B(n, 1/2). We consider the case

where it appears that X > Y , so the test statistic is t = n−. We can now calculate the probability of

the observed result and determine if it falls in the chosen critical region. The critical values for the test

can be found from tables, or with small values of n the probability of N ≤ t can be calculated directly.

For larger values of n we can use a normal approximation for the Binomial distribution, remembering to

apply a continuity correction. The mean and variance are µ = n/2 and σ2 =
√
n/2, respectively. The

critical value is then ⌊µ − zσ − 1/2⌋, where z is the required percentage point of the standard normal

distribution.

Paired Wilcoxon test

The Wilcoxon signed-rank test (Wilcoxon, 1945) takes account of the absolute rank of the differences as

well as their signs. This means that it is more powerful than the sign test, but it also has more assump-

tions. These are that the differences are assumed to be independent, each coming from a continuous

distribution that is symmetric about a common median θ. The null hypothesis H0 tested is that θ = 0.

The absolute values of the differences |W | are ranked. Where ties occur the average is used. Each
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rank is then given the sign of the corresponding difference and the positive and negative ranks summed

separately. For a two-sided test the smaller of these is taken as the test statistic T . As before we are

normally performing a one-sided test and take the value that the alternative hypothesis suggests should

be smaller. This can be compared with tabulated critical values to determine if the null hypothesis holds.

For large enough values of n (> 10), T has an approximately normal distribution. Its mean and

variance can be calculated as µ = n/4(n+ 1) and σ2 = n/24(n+ 1)(2n+ 1). As before we can then find

the required critical value using the standard normal distribution.

Paired Student’s t-test

The paired t-test is a parametric test. It assumes that W is distributed normally and the differences are

random samples form this. The null hypothesis supposes that the mean of the differences is zero. If the

populations are not normal then the test can be regarded as approximate.

To calculate the test statistic we find the sample mean and variance of the differences, w̄ = (w1 +

· · · + wn)/n and σ2 = 1
n−1

∑n
i=1(wi − w̄)2. We then have the test statistic:

t =
w̄

σ/
√
n

(3.6)

Under the assumptions this will be a Student’s t-distribution with n− 1 degrees of freedom. We can

use confidence intervals derived from the Student’s t-distribution to determine if the null hypothesis is

supported. If it is not then the difference between the measurements is statistically significant with the

chosen confidence level.

Discussion of tests

When choosing which test to use the first thing to consider is, does it test the hypotheses we have

formulated? The three tests considered do this. Secondly, are the assumptions of the test satisfied?

The non-parametric tests make the fewest assumptions about the distribution of the measurements.

Their drawback is that they are less powerful than the t-test and thus more likely to result in a Type 2

error. Of the two non-parametric tests the Wilcoxon test is generally more powerful (Daniel, 1978) and,

hence, is preferred.

The value of the t-test for information retrieval was savagely criticised by van Rijsbergen (1979)

because it is based on a continuous distribution whereas precision and recall are discrete. He concluded

that only the sign test could be considered valid. A counter argument is that with sufficient data,

bounded discrete measures are often well approximated by continuous distributions. The t-test remains

powerful and a useful tool in evaluation as long as this is kept in mind. We can perform tests of normality

along with the test itself to determine its validity. Hull (1993) suggested the use of quantile plots to
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judge if the distribution has either heavy skewness or large outliers. These are the most likely properties

to affect validity of the test.

In general, we have found that the assumptions of the t-test are routinely satisfied for experiments

where there are a large number of queries. Correspondingly, we have used this test where possible but

moved to the paired Wilcoxon signed-rank test where the underlying assumptions are not met.

One final point to note is that it is useful to consider where the test statistic lies in the critical region.

The further it is from the boundary the stronger is the evidence that the null hypotheses should be

rejected. Hence, examining the actual significance level of T may provide additional information.

3.4 Approaches to multiple image queries

With a single image query the distance or similarity measure automatically produces a ranked list of

results. When the query consists of several images we need to use a method to aggregate them to produce

a ranked list. The two methods used throughout this thesis are described below. Although it was not one

of the aims of the experiments described in subsequent chapters, it is interesting to note that k-nearest

neighbours consistently outperforms the vector based approach for image retrieval. This is consistent

with the findings of Pickering and Rüger (2003).

3.4.1 Vector based combination

This approach uses a simple sum of distances. Consider the case where we have n query images, with

feature vectors, q1, . . . , qn, and a test image with feature vector t. Using a distance function d, the

total distance of the multiple image query to the test image is the sum of the distances from each query

feature to the test feature,
∑

i d(qi, t). This method has the advantages of being efficient and simple to

implement.

3.4.2 K-nearest neighbours

This method is based on the idea that, given positive and negative example images, test images can

be classified according to their proximity to these examples. A version of the distance weighted k-nn

approach described by Mitchell (1997) was used (Pickering and Rüger, 2003). Positive examples are

supplied as the query and negative examples randomly selected from the collection. To rank a test image

t in the collection we identify the k positive or negative examples that are nearest to t. If P and N are

the sets of these positive and negative examples respectively, then |P |+ |N | = k. Using these neighbours
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we determine the overall dissimilarity as

D(t) =

∑

n∈N

(diss(t, n) + ε)−1

∑

p∈P

(diss(t, p) + ε)−1 + ε
. (3.7)

Varying the value of k can alter retrieval effectiveness across different queries and collections. However,

it was determined experimentally that a setting of k = 40 gave robust results. This value was used

consistently in our experiments. In the implementation a small positive constant value ε is added to the

denominators to prevent division by zero exceptions.

It is interesting to consider why k-nn outperforms the vector approach for image retrieval in a high-

dimensional feature space. Take a case where the query and relevant images are clustered together in

several distinct regions of the feature space. The formulation of the k-nearest neighbour approach means

that it will favour images in that are in one or more of the clusters, whilst the vector approach will give

all images equal weight. Hence, k-nn should outperform the vector approach where separate clusters

exist. This extra effectiveness comes at a price as the method requires additional operations to compute

the relevance D(t).

3.5 Visual features

The experiments throughout this thesis employed a range of high dimensional visual features based on

colour, texture and structure. Chapter 4 describes detailed work on modifying texture features for CBIR

and Chapter 5 looks at some specific characteristics of different feature types. It is left to this section

to give an overview of the non-texture features used in this work. Full details of the implementation of

these was described by Pickering and Rüger (2003).

3.5.1 Colour features

Retrieval of images using colour features was one of the earliest CBIR approaches used (Swain and

Ballard, 1991). The commonest method is to build either marginal or joint histograms based on a colour

space. Naturally, the joint distributions contain more information and are usually preferable. We can

choose the number of bins in the histogram through the degree of quantisation.

There are many colour spaces in general use (Travis, 1991). The majority of digital images are

represented in RGB space. The colour of each pixel contains a different proportion of red, green and

blue light. The representation often has a direct mapping to a physical device after a gamma correction.

This colour space will be a cube, often of dimensions 256 × 256 × 256.

HSV is a cylindrical colour space. Its representation appears to be more intuitive to humans than

the hardware representation of RGB. The hue coordinate H is angular and represents the colour, the
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saturation S represents the pureness of the color and is the radial distance, finally the brightness V is

the vertical distance. There are a few intricacies when quantising this space. Hue is singular at the

achromatic axis where it represents greys, therefore the hue bins can be merged.

The HMMD (hue, min, max, diff) colour space is relatively new. It is a combination of the RGB and

HSV colour spaces. The hue component is straight from the HSV value. The min and max values are

the minimum and maximum values of the RGB values. They give a measure of whiteness and darkness

respectively. Finally the diff value is the difference between min and max, this measures the saturation

of the perceived colour. Three dimensions, hue, sum and diff, are sufficient to describe the colour space

(sum is defined as (max+min)/2). HMMD is supported in the MPEG-7 standard. The core experiments

for the standard showed that it was very effective.

The actual features used are described below:

RGB is a joint colour histogram defined in RGB colour space. The usual configuration subdivides each

axis into 8 sections leading to 8 x 8 x 8 = 512 bins.

HSV is a joint colour histogram defined in the cylindrical colour-space. The arrangement of bins

normally used was 8 x 5 x 5. This results in 165 bins rather 200 because of the merged hue bins

along the axis.

HDS aims to capture the local colour structure of an image. Manjunath et al. (2001) give details of its

construction. It uses the HMMD colour space, replacing the min and max components by their

average. The quantisation used results in 184 non uniformly quantised bins. The local image

structure is captured by sliding an 8 x 8 structuring window over the image. The size of the

window may vary with the image size but the number of samples remains constant. Each of the

bins counts the number of window positions for which there is at least one sample pixel falling into

the corresponding bin.

3.5.2 Other features

Several other features have been used in experiments, including the texture features described in the next

chapter. It is important that features with widely differing characteristics are employed. This allows us

to determine if methods are efficacious across the full range or limited to specific circumstances. Two

features are described below:

Thumbnail is one of the simplest features. It is created from the pixel intensity values of a scaled down

image. We used a size of 40 by 30 resulting in a dense vector of length 1200. This feature is a good

discriminator for near identical images.
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Convolution was designed to discriminate between low level structures in an image. It uses the method

of Tieu and Viola (2000). It is created by filtering the grey scale image with 25 low level filters

designed to detect primitive structures. The resulting feature maps are then re-filtered with each

of the filters giving a 625 dimensional feature. This can be used or the filtering process can be

repeated to give 15,625 elements. This can also be applied to each of the three RGB channels

resulting in up to 46,875 elements. The underlying idea of this feature is that by creating so many

elements each will only have a small proportion of images where they have a high value. Thus

each element is very selective in its own right. We found as part of our work that there was a

duplication in the original filters meaning that there are only 24 unique filters. This reduces the

size of the feature correspondingly.

3.6 Conclusions

We have aimed to build a good experimental framework, which is essential for evaluating the outcome of

image retrieval research. When the research focuses on the retrieval of generic images then it is important

to overcome any bias that the image collections may create. By doing this we hope to ensure that the

methods we prefer are robust, and that we understand their limitations.

The first part of the framework is the collection. To ensure that results were not just a feature of a

data set used we ran experiments using up to four different collections. The primary experiments were

done with a collection taken from the Corel image library. These were then followed up with further

experiments using Getty, TRECVID 2003 and ImageCLEF 2004 collections. This enabled us to validate

our results and draw conclusions about the general applicability across the different collections. These

collections vary in their content, the nature of the queries and relevance judgements. In effect each

reflects a different user task.

For our evaluation method we stuck with the tried and tested measures based on precision and recall.

Despite their limitations we believe that these remain the most realistic approach to use when evaluating

different retrieval algorithms. They are widely understood in the retrieval community. We coupled these

with statistical significance tests, the paired t-test and Wilcoxon signed-rank test, using a significance

level of α = 5%.

For scalability testing we used a collection of one million images gathered from the web. The Corel

collection was merged with this to supply queries and associated ground truth. This combined collection

could then be varied in size, and both the search speed and retrieval performance measured.

Additional elements of the experimental system were the features and methods, such as k-nearest

neighbours. These were kept constant, meaning we could change just one thing and measure the impact.

Comparisons made in this way showed relative changes in performance.
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In a similar vein we set up a baseline system against which we could measure absolute performance.

This used methods known to be robust and effective. These were, the Manhattan distance measure, k-

nearest neighbours and linear sequential scan of the database. This gives us both a retrieval performance

and time-lag benchmark to beat.



Chapter 4

Texture features for content-based

image retrieval

4.1 Introduction

This chapter focuses on the first of the core components of CBIR highlighted in Chapters 1 and 2, visual

features. Image retrieval practitioners place varying emphasis on the features used in their research and

systems. The majority of features have been developed and tuned for application areas different from

CBIR, such as segmentation or classification. If features are used without any thought an opportunity

is being missed to improve retrieval performance of systems by ameliorating the fundamental building

blocks.

Features are so important because, in the CBIR approach, they contain the only information that

is available to differentiate between images. If the visual property that the user is interested in is not

captured within the feature then no system, no matter how sophisticated, will be able to deliver what

the user requires. This work concentrates on the construction and use of texture features for generic

image retrieval.

Texture is a key component of human visual perception. Like colour, this makes it an essential feature

to consider when querying image databases. Everyone can recognise texture, but it is more difficult to

define. Unlike colour, texture occurs over a region rather than at a point. It is normally perceived by

intensity levels and as such is orthogonal to colour. Texture has qualities such as periodicity and scale;

it can be described in terms of direction, coarseness, contrast and so on (Tamura et al., 1978). It is this

ambiguous nature that makes texture a particularly interesting visual facet of pictures and results in a

plethora of ways of extracting texture features. To explore a wide range of these methods three very

different approaches to computing texture features were studied in detail: The first takes a statistical

51
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approach in the form of co-occurrence matrices, next the psychological view of Tamura’s features and

finally signal processing with Gabor wavelets.

This work in this chapter has been published in several papers. The studies of Howarth and Rüger

(2004, 2005c) were the first to focus on evaluation of texture features on heterogeneous everyday images,

and the first to tailor features for optimum retrieval performance in this context. Howarth et al. (2005)

describes the subsequent use of these texture features for a submission to the ImageCLEF evaluation

exercise.

The majority of original papers devising or evaluating texture features used classification or segmen-

tation tasks to measure performance. Segmentation and classification tasks are significantly different

to the problems faced in image retrieval, where one looks at generic queries for an entire picture. Real

pictures are made up of a patchwork of differing textures rather than the uniform texture images often

used in studies, such as the ones taken from Brodatz’s photo book (Brodatz, 1966).

The remainder of this chapter is organised as follows: The next section surveys the range of methods

used for creating texture features and ends with a summary of related work. In Section 4.3, we discuss

the general properties of visual features and what makes a good feature for CBIR. Texture is difficult to

formally define. As a substitute for this we try to give some intuition into what is perceived as texture by

the viewer of an image. With this done the next step is to look at ways this information can be extracted

into a visual feature thus enabling the searching of an image collection. The discussion concentrates on

the details of the features chosen for this exercise.

Section 4.4 presents the experimental work. Initial experiments were with a training set of Corel

images. The results from this work led to the parameters and feature modifications that were found to

give the best retrieval performance. This study is then complemented by a larger performance comparison

on the TRECVID 2003 data set and a set of medical images from the ImageCLEF 2004 evaluation.

This work shows that the principles and modifications found with Corel are generally applicable across

several collections. Finally the conclusion to the chapter highlights the general principles discovered for

modifying features for CBIR and makes some concrete recommendations for the specific features used.

4.2 Background and related work

4.2.1 A survey of texture features

A vast amount of work in the field of computer vision has been done on texture features. This ranges

from devising new features for texture classification to very specific applications such as identifying

abnormalities in medical images. The performance of most new features has been measured and evaluated

in the context of segmentation and classification tasks.

There are many surveys of texture features. Two of the more recent and comprehensive surveys are
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by Tuceryan and Jain (1998) and Sebe and Lew (2001). They largely present the same material but

organise it using different taxonomies.

Tuceryan and Jain (1998) discuss the motivation for and applications of texture analysis. They then

present their taxonomy of texture models in which they subdivide features into statistical, geometrical,

model based and signal processing methods. In Chapter 3 of their widely used book, Principles of Visual

Information Retrieval, Sebe and Lew (2001) use a taxonomy of stochastic texture models to organise

their discussion. There are three major groups: probability density function, gross shape and partial

models. Probability density function methods are subdivided into parametric and non-parametric; gross

shape into harmonic and primitive; and partial into line and fractal. A summary of the principal methods

of texture feature extraction is given in the list below. There are hundreds of papers on this subject,

this summary references some of the earliest work on each feature. Although later work may refine

and deploy the ideas to new applications the underlying principles remain unchanged. The grouping of

methods below is not definitive and many other could be used. It does, however, give one way to organise

similar methods.

Statistical: A thorough exposition of statistical and structural approaches to texture was given by

Haralick (1979). His paper covered auto-correlation, optical transforms, digital transforms, textural

edgeness, structural elements, grey tone co-occurrence, run lengths and autoregressive models.

First order statistics such as the mean or variance of pixel intensity values are the simplest of

features. They give a global measure of the spread of intensity values. Various combinations

can be used to measure characteristics such as the smoothness or uniformity of an image.

Combining these statistical approaches with general feature methods, such as windowing or

tiling, can extend their usefulness and power.

Grey level co-occurrence matrices (GLCM) are amongst the most widely used texture fea-

tures. They were originally proposed by Haralick (1979). They are based on second order

statistics, that is the distribution of grey levels of pairs of pixels, where the pairs are defined

by the end points of a vector. A co-occurrence matrix of these pair values is built and various

features created from this. The GLCM method was chosen for this study, full details are given

in Section 4.3.2.

Grey level difference methods are similar to GLCMs in that they consider pairs of pixels de-

fined by a vector. However, they use the absolute difference between the intensity values so

are a first order statistical measure. Usually a histogram is built using the differences. The

histogram can either be used directly as the feature or properties may be computed from it

and these used instead.

Autocorrelation features capture information about the repetitive nature of a texture, such as
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regularity and coarseness. Autocorrelation treats the image as a two dimensional discrete

process and the autocorrelation function is simply the cross-correlation of the image with

itself. The rate of drop off of the function indicates how large the textural elements are;

slower drop off equates to larger elements. If the elements are spatially periodic then the

function will itself be periodic with repeating peaks and valleys. The autocorrelation function

is the Fourier transform of the power spectral function (and vice versa).

Model based: This subdivision contains features based on parametric statistical models together with

other significant methods.

Autoregression models can be used to synthesise texture as well as generate a feature repre-

sentation. For a one dimensional signal they are a method of time series analysis where the

signal is predicted from past values. If p samples are used then this is a Markov-p process. For

an image, time is exchanged for two dimensional space thus the value of each pixel depends

on its neighbourhood plus random noise values. The autoregressive moving average model

is often employed. The image can be treated as a two dimensional autoregressive process or

a seasonal one dimensional model where the rows (seasons) are concatenated. This is fitted

using least squares. McCormick and Jayaramamurthy (1974) used this to estimate the pa-

rameters of a given texture and then synthesise it. An autoregressive distance measure for

classifying textures was developed and tested by de Souza (1982). Mao and Jain (1992) suc-

cessfully used a multi-resolution simultaneous autoregressive model for texture segmentation

and classification. Their approach overcame one of the difficulties of autoregressive models,

that is the selection of appropriate neighbourhood and window sizes, by enabling dynamic

selection rather than empirically determined fixed sizes as used by other methods.

Markov Random Fields (MRF) are closely related to two-dimensional autoregressive models.

MRF’s were first used to model texture by (Hassner and Slansky, 1980). An image is rep-

resented as a lattice of pixel locations each with an intensity value. The assumption is that

probability density function of the intensity of a pixel depends only on the intensity of its

neighbours. The neighbourhoods can be defined in may different ways, such as the four first

order, eight second order or cliques of neighbours. Unfortunately, to model real textures accu-

rately a large number of parameters are needed making the models computationally infeasible.

Hassner and Slansky (1980) recommended Gauss MRF as a practical alternative. These use

a Gaussian probability density function to model pixel intensity thus simplifying the model

and computation (Chellappa and Chatterjee, 1985).

Wold: Picard and Liu (1994) suggested a new model to measure perceptual similarity based on the

two dimensional Wold decomposition. Wold (1938) originally applied his ideas to economic
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time series with Kolmogorov subsequently completing the work on prediction. The decompo-

sition is a sum of three orthogonal components, a harmonic, a generalised evanescent and a

purely indeterministic field. These correspond approximately to perceptual qualities of period-

icity, directionality and randomness (Rao and Lohse, 1993). They were shown experimentally

to provide a good texture discriminator.

Fractal models can be used to model the properties of self similarity across different scales.

Correspondingly, the fractal dimension of a region in an image can be used to measure the

roughness and scale of a texture. Keller et al. (1989) used the box dimension to estimate the

fractal dimension. They also showed that this alone was insufficient to discriminate between

all textures. A further measure, lacunarity, was proposed to address this. It uses the difference

between the actual and expected mass of the fractal set to determine the coarseness. Dubuc

et al. (1989) showed that the both the box dimension and variation method can be good

choices for evaluating the fractal dimension of functions (images). In (Dubuc and Dubuc,

1996) they presented numerical approximations of the variation and derived error bounds

that showed that this method should be more accurate than the the box dimension.

Tamura features are interesting because they were designed to mirror the results of psychophys-

ical experiments. Tamura et al. (1978) identified six facets that humans use to differentiate

between textures and then built features to quantify these. Three of these features proved

to have the strongest correlation with human perception of texture: coarseness, contrast and

directionality. These were chosen for the study and are described Section 4.3.4.

Geometrical methods view a texture as being composed of elements and analyse the geometric prop-

erties of these. These methods, whilst appealing, have not been widely adopted.

Voronoi tessellation of an image to extract texture elements was proposed by Tuceryan and

Jain (1990). Tokens are extracted by first applying a difference of Gaussians filter and then

selecting pixels that lie on a local maximum. This creates a binary image from which connected

components are identified which define texture tokens. From these the Voronoi tessellation

can be constructed and a feature generated using the moments of area of the polygon. They

evaluated their method using a texture segmentation task. The test images contained patches

of Brodatz textures, which the method successfully separated. The artificial test images gave

a very coarse, well defined segmentation problem. The effectiveness of this method for image

retrieval has not been tested.

Structural models assume that a texture is generated by rule based placement of texture elements.

Most methods use blobs, i.e. regions of uniform intensity in the image, as the texture element.
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Generally, they appear to be only effective when analysing a very regular texture (Tuceryan

and Jain, 1990).

Signal processing techniques have been fruitfully applied to texture classification and segmentation

tasks for many years. The majority of these approaches filter the image in some way and then

calculate features from the energy of the transformed image. The filters are usually based on either

a family of edge detectors, second order derivatives, or frequency and orientation filters such as

Gabor or wavelets.

Spatial domain filtering, the simplest of the signal processing approaches, uses edge detection

masks such as Roberts or Laplacian operators. These give a transformed image where the

response over an area indicates the ”edgeness” of the original. Other types of convolution

filters have been used with success. Malik and Perona (1990) used a bank of even-symmetric

filters (differences of offset Gaussians) followed by half wave rectification and inhibition of

spurious responses. Their method introduces a non-linearity which enables discrimination

between textures with identical first and second order statistics.

Gabor filters are the most popular signal processing approaches to feature generation. This

is probably due to their robust performance across a range of tasks. The window Fourier

transform filters a signal in both the frequency and spatial domains. The width of the window

determines the frequency and spatial resolution. Unfortunately, as one improves the other

degrades. The Gabor transform is obtained by using a Gaussian window function. This has

the advantage that it achieves the best possible frequency decompositions. A two-dimensional

Gabor function can be used to construct a bank of filters that are selective to a range of

frequencies and orientations. The characteristics of the response to these filters can then be

used as a feature. Complete details are given in the Section 4.3.3. The first use of Gabor

filters for texture analysis was done by Turner (1986).

Wavelets are another method of spatial and frequency filtering. They do not suffer from the same

trade off between frequency and spatial resolution as the window Fourier transform. They can

give good spatial resolution for high frequency events and vice versa. Kundu and Chen (1992)

first used a quadrature mirror filter (QMF) bank for texture classification. A QMF splits the

input signal into two bands which are then recursively subsampled. Orthogonal wavelets such

as the Haar and related Daubechies wavelets can be scaled to satisfy the QMF relationship.

The image is filtered by the sub-bands at each decomposition level. The feature vector is then

constructed from the mean and variance of the energy distribution of each transformed image.
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4.2.2 Related work

Work on evaluating the performance of texture features varies both in the features covered and the

application area used. To my knowledge the only quantitative comparison of feature performance for

CBIR was carried out by Deselaers et al. (2004). They evaluated the performance of a range of colour

and texture feature on the WANG and IRMA databases. The former is a hand-picked subset of 1000

images from the Corel collection whilst the latter is a database of 1,617 medical radiographs. Their work,

predictably, showed that different features performed better depending on the task. They did not focus

on texture or look at modifying the features for CBIR.

Other evaluations have not used the CBIR task but do provide insight into feature performance.

One of the earliest was by Wezska et al. (1976). They compared Fourier power spectrum with co-

occurrence, grey level run length and second order grey level statistics, with the co-occurrence features

performing the best. Several studies have compared filtering methods against co-occurrence methods.

The results have varied presumably because of different tasks, setups, collections and implementations.

For example, Strand and Taxt (1994) found in favour of co-occurrence methods where as Pietikäinen et al.

(1983) conclude that the filtering approach was better. A detailed paper by Randen and Husøy (1999)

compared many filtering methods with co-occurrence and autoregressive features using a classification

task. Their conclusions stated that there was no single approach that performed close to the best for

all images. They would not give a general recommendation but suggested testing Gabor filter banks,

autoregressive and co-occurrence features with the specific data set. Ohanian and Dubes (1992) compared

fractal, co-occurrence, Markov random field and Gabor features. They found that co-occurrence generally

performed the best. Other comparison studies include those by Gotlieb and Kreyszig (1990) and Jain

and Farrokhnia (1991).

All of these studies used specific texture image collections rather than generic pictures. The VisTex

Database has also been used for texture feature evaluation work. It does contains both reference textures

and texture scenes. Although its images are real-world pictures they are subsequently divided into

homogeneous patches and used in a classification context rather than for an image retrieval task.

Summary

What general principles can be drawn from this review of the literature? The first is that no one texture

feature is the best in all circumstances. Performance depends on both the collection and the task. It

should be remembered that implicit within each task is a specific performance measure. Very little work

has been done with an image search task that produces a relevance ranking. This study homes in on

what makes a good feature for CBIR. In addition it attempts to identify characteristics of images that

should be captured in relation to the search task. By doing this I aim to crystallise some broad principles

for texture feature design.
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4.3 Texture and how to capture it in a feature

In this section we look at the details of three texture features. Before this we discuss one of the main

theories of human visual perception and relate this to the representation of texture within images. This

links into the theme, developed in the introductory chapter, of CBIR as an application to assist visual

perception.

For this study we have chosen three features originating from very different viewpoints: Tamura,

co-occurrence and Gabor features. These cover three of the major texture feature methodologies: psy-

chological, statistical and, signal processing. Within their respective categories, each feature performs

amongst the best for both classification and segmentation tasks. They have not been refined too far

from the original idea, hence, are good representatives of their respective classes. Therefore, they should

give an insight into what characteristics of features perform well on a CBIR task, as well as allowing the

tuning of each specific feature. For these reasons we feel justified in the choice of these features for our

experiments.

4.3.1 Texture

This section aims to show the close link between how we choose to define texture and the subsequent

construction of features. To understand what makes a good feature we first discuss a model of visual

perception that proposes that texture is recognised at a primitive level. Then we link this to how texture

is represented in an image. This allows us to determine what are characteristics are likely to be the most

discriminatory.

Visual perception

The theory put forward by Marr (1982) treats vision as an information processing task. The input for

visual processing is the retinal image formed by light reflected from the structures a person is viewing.

This can be thought of as an array of intensity values. The first stage of visual processing aims to

interpret these varying intensities as a primal sketch. The primal sketch captures information about

edges, blobs and regions withing the image. After this comes the recognition of objects and events.

This fits in with the suggestion that texture is recognised in the pre-attentive phase of vision process-

ing. That is, it is one of the very low level properties recognised rapidly and accurately by the lowest

level of visual processing. It is possible to capture some essence of a scene with a very quick glance,

which equates to the primal sketch. After this stage comes the focused attentive mode where detailed

recognition and understanding occurs. If this model of vision is accepted then texture is seen using the

simple, primitive properties of an image. All texture features work on this basis, by assuming that the

characteristics of a texture can be extracted from an image using some low level property of the image.
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Texture in an image

Synonyms for the noun texture include, structure, organisation, pattern and plan (Roget’s Thesaurus,

Kirkpatrick, 1987). These include the two main ways that texture can manifest itself on surfaces, as

pattern or structure. Patterns are variations of tone or colour within the material while a structure

implies that there is a physical variation in the surface. Often these can be felt as well as seen, such

as on a rough, smooth or hairy surface. To view the underlying structure or pattern that makes up

the texture we need light to illuminate the surface. The quality of light, for example focused or diffuse,

will affect how the texture appears by creating different shadows and relief. So it is the combination of

surface and light that creates a visible texture.

When a two dimensional image is used as a representation of a scene, all texture is reduced to pattern.

For a digital image patterns are just changes in pixel intensity. At some scales the pattern may become

homogeneous over a region in the image. Thus texture may appear at varying scales in the same region

of an image. Consider a brick wall; at the finest detail there is the roughness of the brick itself, moving

up a level there are repeating bricks and mortar and at a larger scale the walls themselves may form a

pattern, as in a row of houses.

The obvious characteristic from this description is the multi-scale nature of texture withing an image.

The scale that a texture appears at will depend on how the subject was photographed, for example, if any

magnification was used. So the same texture may appear at different scales in two pictures. Matching

the same surface at differing scales is a difficult task. Indeed, for a search task it is likely that the user

would regard the images as being quite different. The resolution of the imaging process will act as a

limitation on the scale at which texture becomes apparent. The finer levels of texture from a scene may

well not be visible in the image. In addition there may be texture artifacts introduced by the image

making process itself. With halftone printing, used for posters, the dots used to make the image form a

texture. Similarly, with film photography there is the grain of the film or the pixels for digital media. An

additional texture may be introduced by noise, for example when high gain is used in low-light conditions

or with compression techniques. These are not part of the original scene but have been introduced by

the image making process.

So there is a bound on the fine scale of a texture in a picture. The upper bound is more a characteristic

of the photographers composition. Very large textures by their nature are only likely to occur in more

abstract, close-up pictures, where the texture occupies most of the image. The region a texture occupies

is another significant characteristic. If we consider that all real surface have textures, then images that

are pictures of real scenes will always consist of a patchwork of textures.

Another characteristic appearing in the brickwork example is orientation. In the case of the mortar

between the bricks the orientation is vertical and horizontal. However, the texture of the brick surface

itself has no distinct orientation. Finally there is the variation between intensity levels in the texture
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pattern. This will manifest itself as the contrast or sharpness of the texture.

Visual features for CBIR operate at the primitive level of colours, textures and shapes. Features

alone cannot hope to disambiguate the polysemous nature of a picture. What they can do is try and

differentiate between the visual facets that a user wants to search by. For textures we have identified

scale, region, orientation and intensity variation as some of the main visual properties. It is these that

we wish to capture within our features.

Next we look at some of the models for texture that researchers have developed and how these

naturally lead to feature extraction methods.

4.3.2 Second order statistics – co-occurrence matrices

The statistical properties of grey levels were some of the earliest measures used to classify textures.

One of the first low level properties put forward to describe texture was simple statistics of intensity

distribution. In his early work, Julesz (1962) and Julesz et al. (1973), originally suggested that first

and second order statistics were sufficient to describe all the textures that a person could discriminate

between. First order statistics include the average and variance of pixel intensity values. Second order

statistics consider the distribution of intensities of pairs of pixels at either end of a vector. The length and

direction of the vector can be varied to capture direction and scale information. Julesz carried out much

work in this area, initially finding that textures with the same first and second order statistics appeared

the same to viewers. Later he decided that this original finding was incorrect in some cases. This led

to him developing the idea of textons (Julesz, 1981). He proposed that textons, elongated blobs with

properties of colour, orientation, dimensions and endpoints, were the basic building blocks of texture.

A huge number of texture features have been based on the statistics of pixel intensities in an image.

Many of the later approaches have used parametric models such as those described earlier. However,

the widely used co-occurrence matrix is almost certainly the most important feature derived from this

statistical viewpoint. Haralick (1979) suggested the use of grey level co-occurrence matrices (GLCM)

to extract second order statistics from an image. GLCMs have been used very successfully for texture

classification, often outperforming all others in evaluations (Ohanian and Dubes, 1992).

Implementation

Haralick defined the GLCM as a matrix of frequencies at which two pixels, separated by a certain vector,

occur in the image. The distribution in the matrix will depend on the angular and distance relationship

between pixels. Varying the separation vector allows the capture of different texture characteristics.

Figure 4.1 shows a simplified example of the construction of a GLCM. The rows of the co-occurrence

matrix represent the value at the start of the separation vector and the columns the value at the end

(where (0, 0) is the top left corner). The circled entry in the GLCM therefore represents the number of
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Feature Formula
Energy

∑

a

∑

b P
2(a, b)

Entropy
∑

a

∑

b P (a, b) logP (a, b)
Contrast

∑

a

∑

b(a− b)2P (a, b)

Homogeneity
∑

a

∑

b
P (a,b)

1+|a−b|

Table 4.1: Features calculated from the normalised co-occurrence matrix P (a, b)

Figure 4.1: Construction of a grey level co-occurrence matrix

occurrences of the separation vector [1,0] that have a start value of 3 and an end value of 1. The three

occurrences of these in the quantised image are shown by the arrows representing the vectors.

Once the GLCM has been created, various features can be computed from it. These have been

classified into four groups: visual texture characteristics, statistics, information theory and information

measures of correlation (Haralick, 1979; Gotlieb and Kreyszig, 1990). Four features which have been

successfully used for texture classification were chosen for this evaluation. These are listed in Table 4.1.

Note that P (a, b) is the frequency that quantised grey level a co-occurs with quantised grey level b,

separated by a vector v.

4.3.3 Multiscale filtering – Gabor filters

Moving away from the statistical viewpoint, many psychophysical researchers, including Campbell and

Robson (1968) and de Valois et al. (1982), carried out experiments on the response of cortical cells
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to compound gratings with differing orientations and spatial frequencies. Their results led them to

conclude that the vision processing system operates in multiple channels, each sensitive to a different

band of frequencies. Later research showed that at high contrast the channels do interact and so are not

totally independent. However, all the research still supports the existence of multiple spatial filters in

the early stages of visual processing. Graham (1989) presents a thorough exposition of this area.

This multiple filtering theory of vision led to the idea of representing visual responses using signal

processing methods. Daugman (1980) proposed that the receptive fields in the visual cortex could be

modelled using two-dimensional Gabor filters. Turner (1986) then suggested that the same filtering

approach could be used for texture analysis. This ties in with the earlier discussion that texture is a

primitive property, identified in the early, pre-attentive, phase of vision.

Many spatial filtering methods for texture analysis have sprung from these ideas. However, the Gabor

filter remains the most popular of the signal processing based approaches for texture feature extraction.

A bank of filters at different scales and orientations allows multichannel filtering of an image to extract

frequency and orientation information. The responses of these filters can then be used to decompose the

image into texture features.

Implementation

My implementation is based on that of Manjunath and Ma (1996), later expanded in (Manjunath et al.,

2000). The feature is computed by first filtering the image with a bank of orientation and scale sensitive

filters and then computing the mean and standard deviation of the output in the frequency domain.

In the spatial domain a Gabor function is a sinusoid modulated by a Gaussian with an aspect ratio

of σx/σy. A two dimensional Gabor function can therefore be expressed as

g(x, y) =
1

2πσxσy
exp

(

−1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjFx

)

. (4.1)

We can generate a bank of self-similar filters by appropriate dilations and translations of the parent

wavelet g(x, y). For this we follow Manjunath’s method using the generation function:

gmn(x, y) = a−mg(x′, y′) with a > 1 and m,n both integers, (4.2)

x′ = a−m(x cos θn + y sin θn) and y′ = a−m(−x sin θn + y cos θn), (4.3)

where θn = nπ/K and K is the total number of orientations. The scale factor a−m is meant to ensure

that the energy is independent of m.

We can now generate our bank of filters following a design strategy that ensures that the half-peak
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Figure 4.2: Filter responses of a Gabor filter bank with 3 scales and 4 orientations

magnitude supports of the filter responses in the frequency domain touch each other (Manjunath and

Ma, 1996). An example of a filter bank generated in this way (using Matlab) is shown in Figure 4.2.

Filtering an image I with Gabor filters gmn results in its Gabor wavelet transform

Wmn(x, y) =

∫

I(x1, y1)g
∗
mn(x− x1, y − y1)dx1dy1. (4.4)

The mean and standard deviation of the magnitude |Wmn| are used for the feature vector. The outputs

of filters at different scales may be over differing ranges. For this reason each element of the feature

vector is normalised using the standard deviation of that element across the entire database.

4.3.4 Psychophysical experiments – Tamura features

Tamura et al. (1978) took an alternative approach of devising texture features that correspond to hu-

man visual perception of texture. Through experiments with people they identified six characteristics

(coarseness, contrast, directionality, line-likeness, regularity and roughness) that are used to discrimi-

nate textures. Features were designed to quantify these characteristics and the results compared with

psychological measurements using the same people. The first three were the most closely matched to

human perception and proved to be the best at classifying textures. Hence, these three features are used

in this study, both separately and as joint values.
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Implementation

Coarseness has a direct relationship to scale and repetition rates and was seen by Tamura et al. as

the most fundamental texture feature. An image will contain textures at several scales; coarseness

aims to identify the largest size at which a texture exists, even where a smaller micro texture exists.

Computationally one first takes averages at every point over neighbourhoods the linear size of which are

powers of 2. The average over the neighbourhood of size 2k × 2k at the point (x, y) is

Ak(x, y) =

x+2k−1−1
∑

i=x−2k−1

y+2k−1−1
∑

j=y−2k−1

I(i, j)/22k, (4.5)

where I(i, j) is the grey level at the image pixel coordinates (i, j). Then at each point one takes

differences between pairs of averages corresponding to non-overlapping neighbourhoods on opposite sides

of the point in both horizontal and vertical orientations. In the horizontal case this is

Ek,h(x, y) = |Ak(x+ 2k−1, y) −Ak(x− 2k−1, y)|. (4.6)

At each point, one then picks the size of k that maximises E in either the horizontal or vertical

direction; this is kopt. The coarseness measure is then the average of Sopt(x, y) := 2kopt over the picture.

Contrast aims to capture the dynamic range of grey levels in an image, together with the polarisation

of the distribution of black and white. The first is measured using the standard deviation of grey levels

and the second the kurtosis α4. The contrast measure is defined as

Fcon = σ/(α4)
n. (4.7)

The kurtosis is calculated by dividing the fourth moment about the mean, µ4, by the variance squared,

α4 = µ4/σ
4 =

∑

i

∑

j(I(i, j) − µ)4

Nσ4
, (4.8)

where µ is the mean intensity and N = the number of samples.

Experimentally, Tamura found n = 1/4 to give the closest agreement to human measurements. Initial

retrieval experiments confirmed this choice, and this is the value used in the following experiments.

Directionality is a global property over a region. The feature described does not aim to differentiate

between different orientations or patterns, but measures how directional an image is. Two convolution

masks are applied to the image to detect edges. The masks used are horizontal and vertical Prewitt

operators. These estimate the rate of change of intensity over each 3×3 region of the image. The results

of these are combined to approximate the angle and and magnitude of intensity change (edge) at each

pixel. A histogram, Hd, of edge probabilities is then built up by counting all points with magnitude
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Figure 4.3: An example image and its direction histogram

greater than a threshold and quantising by the edge angle. The peaks in the histogram will reflect the

degree of directionality. To extract a measure from Hd the sharpness of the peaks are computed from

their second moments. An example image and its direction histogram is shown in Figure 4.3. This shows

a main peak in the first bin which represents the horizontal direction in the image and a smaller peak in

the ninth bin representing the vertical component.

Tamura Image is a notion where I calculate a value for the above three features at each pixel and

treat these as a spatial joint Coarseness-coNtrast-Directionality (CND) distribution, in the same way as

images can be viewed as spatial joint RGB distributions. The regional nature of texture means that the

values at each pixel are computed over a window. Colour histogram style features, both marginal and

3D, can then be created using the Tamura CND image. A similar 3D histogram feature was used by

MARS (Ortega et al., 1997).

4.4 Experimenting with Texture Features

The aim of this experimental work is twofold. Firstly, to evaluate and modify the specific features for

the task of CBIR; secondly, to pull together some general principles for capturing texture in features. In

this way I provide both concrete recommendations and more general guidelines and intuition that can

be applied elsewhere. The work focuses on the representation of texture identified earlier, region, scale,

orientation and variation. These guide the pre-experimental questions and development work.

The experimental approach is explained in the next section. Following this, some general properties

of features are discussed, including tiling and windowing. These are particularly applicable to texture

because of its regional properties. The evaluation and feature modification work is described. This

starts with an investigation into the effect of tiling on feature performance. Each of the three features is

then discussed in detail with modifications evaluated using the Corel collection. Following this the best

performing features are re-evaluated using both the TRECVID 2003 and ImageCLEF 2004 collections.

This includes combining texture and colour features and looking at the effects.
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4.4.1 Experimental set up

Full details of the collections and methods used are in Chapter 3. A three-stage approach was used

for this work. Initial evaluation and modifications to the features were tested using a subset of the

Corel image library. Further tests were then run on the TRECVID 2003 (Smeaton et al., 2003) data to

confirm the findings on a large collection with a different search task. This was followed by an external

evaluation using the best texture features. This was a submission to the image track of the Cross

Language Evaluation Forum (ImageCLEF) (Clough et al., 2005; Howarth et al., 2005). It demonstrated

the effectiveness of the features on another, very different, search task.

Mean average precision was used throughout the work as a performance measure. Where necessary

results were tested for statistical significance using the paired Student’s t-test with α = 5%. For TREC

multiple image queries a version of the distance weighted k-nn approach, with k = 40, was used to

combine distances from each query image, refer to Section 3.4.2. Single image queries were used for the

Corel and ImageCLEF experiments.

4.4.2 General properties of features

In this section some general properties of features are discussed. These can have a big impact on the

information captured and subsequent search performance. We have already noted that texture is a

regional property of an image rather than a point property like colour. A single pixel does not have a

texture. Therefore we need to choose an area over which to calculate the feature. The most obvious

choice for this is the entire image. However, this gives a single value and does not take into account that

an image is really a patchwork of texture regions. To capture the regional information a technique such

as tiling or windowing can be used. With these methods it may be possible to isolate an area where the

texture is more homogeneous.

Tiling is where the image is split into tiles or sub-images and the features calculated for each tile.

This will capture the regional variation across the image. The features from each tile can be concatenated

together or considered independently. The former will capture some of the structure of the image, such as

sky occurring in the top tiles. The latter will allow matching of textures that occur at different locations.

Windowing is where a fixed size window is slid across the image and the feature calculated at each

position. The size and movement of the window can be varied but essentially the feature is capturing a

texture value for areas centred on certain points in the image. An example of this, where the window

is moved one pixel at a time, gives the Tamura Image feature as described earlier. Often the values for

each window position are collected into a histogram. If each point or window has more than one value

there is a choice of constructing a marginal or joint distribution histogram.

Finally there is the issue of normalisation of features. One option is not to normalise the raw feature.

Another choice is to normalise the entire feature to a value. An example is where the area of a histogram
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is normalised to one. This makes each feature a vector of the same length. Normalisation of this type

can be done with respect to the Euclidean or Manhattan distance (or other functions as we see in the

next chapter). Lastly each component of a feature can be normalised across the collection. A method

used by the Gabor feature is to make the distribution of each element have the same mean or variance

and thus give them the same weighting. Robust estimators, such as the median, can be used to reduce

sensitivity to outliers. Each of these techniques affects the weighting of complete features or elements

within the feature. By normalising we are discarding some information from the feature, in each case we

need to decide if this is the correct action to take.

4.4.3 Image tiling

As part of the evaluation I carried out experiments to determine the effect of applying the features to

image tiles. The method was to split the image into non-overlapping tiles and calculate the feature for

each tile. The resulting features for each tile are then concatenated into a single vector. Tilings up to

11 × 11 were evaluated. The effect of tiling is to add location information to the feature and isolate

regions of the image. It is more likely that a homogeneous texture will occur over these smaller regions.

The distance between images will be the sum of the distances between corresponding tiles.

The effect of tiling was investigated with all three texture features. It was found that retrieval

performance consistently improved with tiling. The graph in Figure 4.4 shows the average retrieval

performance for different tilings with the Tamura features (Section 4.4.5). The detailed results can be

seen in Table 4.4. The biggest jump is going from no tiling to 3 × 3, with returns diminishing as the

number of tiles is increased. It was found that performance peaked at 7 × 7 or 9 × 9 depending on the

feature.

Beyond the optimum level of tiling there was no significant gain. In fact performance began to degrade

with tilings above 9 × 9. As the image tiles decrease in area the features have smaller regions to work

on, thus reducing their effectiveness. At the extreme limit the feature will approximate to comparing at

images pixel level. It appears that high orders of tiling begin to add noise to feature rather than further

information. This was for images of a typical linear size of 300 pixels and was a general finding, common

across all the features investigated.

4.4.4 Co-occurrence

There are many details and parameters to consider when constructing co-occurrence matrices. These

issues are presented below together with a discussion of their impact on capturing texture. The results

shown in Tables 4.2 and 4.3 are for features generated with 7 × 7 tiling, as described previously.
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Figure 4.4: The effect of tiling on mean average precision using Tamura features

Vector

The vector used to choose pixel pairs defines both the scale and orientation that the feature can detect.

Normally a range of vector angles and distances are used to construct a set of GLCMs that will capture the

scale and direction of texture in the image. Results of some initial experiments are shown in Table 4.2.

These showed that four vector angles (0, 45, 90, 135 degrees) and four distances of between 1 and 4

pixels, consistently gave the best discrimination. This combination can be used to calculate up to sixteen

GLCMs. A feature is calculated from each matrix and the resultant values concatenated together. The

results in the table are using the energy feature. The next two items explain further variations relating

to how the vector can be used.

Symmetry

Each instance of a vector has a direction and starting point associated with it. By including the vector

in the reverse direction the GLCM can be made symmetrical. This approach has been widely used.

However, it was found experimentally to give no significant improvement over the asymmetric version.

As the symmetrical version takes extra effort to compute it was not adopted.

Rotational invariance

Another approach described in the literature is aimed at making the feature invariant to the orientation

of a texture. This is done by combining the pairs for all the angles at a distance into a single GLCM.

This will create a smaller feature. The results in Table 4.3 show that across a range of features the

concatenated features outperform the rotationally invariant version.
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No. of Orientations Pixel distances
1,2 1,2,4 1,2,4,8 1,2,3,4

2 7.8 8.8 8.8 9.2
3 7.9 8.9 9.6 9.8
4 8.2 9.8 9.8 10.4
6 8.4 9.8 10.0 10.2

Table 4.2: Mean average precision (%) with varying vector combinations

Quantisation in bits
Feature 2 3 4 5 6 7
Energy: cat 7.6 8.1 9.3 9.9 9.5 9.3
Energy: sum 7.0 7.8 8.9 9.2 9.0 8.8

Entropy: cat 8.1 9.2 10.4 11.1 11.4 11.3
Entropy: sum 7.5 8.8 9.8 10.4 10.7 10.6

Contrast: cat 8.5 8.5 8.4 8.3 8.3 8.2
Contrast: sum 7.8 7.9 7.7 7.6 7.6 7.5

Homogeneity: cat 9.2 10.2 11.2 11.8 12.2 12.0
Homogeneity: sum 8.5 9.5 10.4 10.9 11.3 11.2
cat = 16 concatenated matrices
sum = 4 rotationally invariant summed matrices

Table 4.3: Mean average precision (%) with varying co-occurrence features and quantisation

Quantisation

The number of quantisation levels used dictates the size and density of the matrix. More is not necessarily

better, as with small images or tiles the matrix may become very sparse. Quantisations between 2 and

7 bits were tried. From Table 4.3 we can see that using 5 or 6 bits usually gives the best performance.

The exact optimal level for this collection varies with the feature.

Feature

A final and obvious choice, was which feature to calculate from the GLCMs. The four evaluated cover

the major families. From Table 4.3 we can see that the largest variation is for 6 bit quantisation from

homogeneity with 12.2% to contrast 8.3%. At lower quantisation levels the variation is much less. Indeed

the contrast feature outperforms energy and entropy with 2 bit quantisation. It is dangerous to draw

too strong a general conclusion from these results. However, for the Corel collection it is clear the the

homogeneity feature outperforms the others.

From these results we can draw conclusions for this feature and collection. It is interesting that

increasing the scales of textures considered (vector length) does not continually improve performance.
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It appears that for image search the important textures occur at relatively small scales. This is a theme

that reoccurs with the later features. Similarly, increasing the number of orientations or quantisation

bits gives diminishing returns and ultimately reduces performance. There is a point beyond which these

add no further information.

Some specific conclusions for this feature are:

There was no significant difference between generating matrices symmetrically or asymmetrically.

Increasing quantisation up to 5-6 bits improves performance. The optimum level depends on the feature.

Concatenated matrices outperformed the rotationally invariant summed matrices.

With this collection the homogeneity feature performed best with a m.a.p. of 12.2%.

4.4.5 Tamura

Each of the individual Tamura features is calculated for a region of the image. Two methods to define

areas, tiling and windowing, were tested. The results for each method are shown in Tables 4.4 and

4.5, respectively. For tiling, the features are calculated for each individual tile. The resulting feature is

referred to as the standard feature. The size of the image or tile places a limitation of the largest value

of k that can be used for the coarseness calculation. Where this is exceeded a dash indicates this in the

table.

With the windowing method a window is slid across the image and the feature value calculated at

each position. This is then used to build a histogram. Coarseness is calculated for an area centred on a

pixel. The coarseness feature is calculated at each pixel within the window but the borders may extend

outside the window if required. Both the directionality and contrast features operate over a region. A

large window may smear the features and lose resolution; conversely a small window may invalidate

the feature, for example if the directionality histogram is too sparsely populated. To evaluate this the

features were run over several window sizes, creating a histogram for each feature, see Table 4.5. The

histograms were all L1 normalised. This means that the components of the vector are scaled so that

they sum to one (see Section 5.5.2 for experiments with normalisation).

Contrast

The contrast feature is the simplest of the three. I experimented with various values of n from Equa-

tion 4.7 and was in agreement with Tamura’s finding that n = 1/4 gave the best results. The feature

performed slightly better with tiling rather than windowing, 8.1% versus 7.0%.
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Coarseness

Tamura highlighted coarseness as the most important of his six features. It identifies the scale at which

the largest intensity variation occurs rather than any micro-texture that may be present. A major

parameter that can be altered is k, the maximum scale that is considered.

A little surprisingly, initial results showed that increasing the maximum k value considerably reduced

the performance of the coarseness feature. The optimum value was 2 for both the tiled and histogram

feature. This may be due to the large borders necessary for higher values of k. However, it is more likely

caused by the nature of textures in images and the way the algorithm averages the 2k values. In normal

images textures occur at much smaller scales than in Brodatz style texture images. Correspondingly,

there are unlikely to be textures with a coarseness of 64 or 32 pixels in images with a typical diagonal

of 450 pixels. The algorithm may still detect noise at this dimension, biasing the average value of the

feature and masking any finer texture present.

A change to the algorithm was made so the measure took the values of k rather than 2k. The value

of kopt was found as before, but now the coarseness measure is an average of Sopt(x, y) := kopt over the

image. This effectively introduces a logarithmic scaling of the coarseness value and gives less influence

to the larger scales. This change gave a significant increase in performance for the windowed feature,

from 6.1% to 10.1%, but no improvement when applied to the standard feature.

Directionality

Performance of the original directionality feature was poor, 5.6% for the window and 6.6% for the

standard feature. A detailed look at the operation of the algorithm showed that this was largely due to

the sparse population of the direction histograms and subsequent difficulty in calculating a valid variance

of their peaks. The feature value was sensitive to slight changes. Several options for improvement were

tried including calculating global variance of the direction histogram and using entropy. The latter gave

a substantial improvement, from 6.6% to 9.7%, for the standard feature but negligible effect on the

windowed feature. The entropy of the normalised histogram Hd was computed using
∑d

i=0Hi logHi.

Combined

The three individual features were combined into a single feature using two methods. The first was

simply to compute the standard features for each tile and concatenate the values together. For a 7 × 7

tiling this gave mean average precision of 14.3%.

The second approach was to generate marginal and 3D histograms. This was done by calculating the

three values, coarseness, contrast and directionality (CND) for points across the image using a window

size of 8. This could be done using every pixel as a point, or speeded up by moving in larger steps. In

this way a TamuraImage was created using the CND triples. All the techniques usually employed with
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Tiling
Feature 1x1 3x3 5x5 7x7 9x9
Contrast 3.2 6.1 7.2 8.1 8.0
Directionality: peak finding 2.9 4.2 5.0 5.8 6.6
Directionality: entropy 2.7 5.4 7.5 8.9 9.7
Coarseness 2k: max k = 2 4.4 8.3 9.5 9.9 9.9
Coarseness 2k: max k = 3 3.5 7.6 8.8 9.2 9.0
Coarseness 2k: max k = 4 3.5 7.2 7.7 7.0 —
Coarseness 2k: max k = 5 3.3 5.7 — — —
Coarseness 2k: max k = 6 2.9 — — — —
Coarseness k: max k = 2 4.4 8.0 9.3 9.6 9.6
Coarseness k: max k = 3 3.9 7.5 8.9 9.1 8.9
Coarseness k: max k = 4 3.4 7.0 7.7 7.2 —

Table 4.4: Mean average precision (%) for standard Tamura features

Window size
Feature 2 4 8 16
Contrast 6.0 6.7 7.0 6.9
Directionality: peak finding 5.4 5.6 5.6 4.9
Directionality: entropy 4.9 4.4 5.2 5.4
Coarseness 2k: max k = 2 6.9 6.0 6.1 6.0
Coarseness 2k: max k = 3 6.5 5.9 6.0 5.8
Coarseness 2k: max k = 4 6.1 5.7 5.6 5.4
Coarseness k: max k = 2 6.4 10.0 9.8 8.2
Coarseness k: max k = 3 5.7 10.1 9.2 7.9
Coarseness k: max k = 4 8.8 9.3 8.1 7.7

Table 4.5: Mean average precision (%) for windowed Tamura features
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Figure 4.5: Precision-recall graph for combined Tamura features, Corel collection

colour histograms could then be used. This feature gave mean average precisions of 12.0% for a marginal

histogram and 13.7% for the 3D histogram.

All combination methods gave a significant improvement over the single features. Precision recall

graphs for these combined features are shown in Figure 4.5. Precision is similar for the three approaches

at 10% recall with the difference widening at higher recalls.

4.4.6 Gabor

As with the other features there are two main questions that present themselves when applying the Gabor

feature to a heterogeneous set of images in which texture patches of varying size, scale and orientation

occur. The first is what configuration of filter bank best captures the scales and orientations occurring

in the images. The second is how to apply these filters, either to tiled images or using a sliding window

to build a histogram.

Tiling versus windowing

I evaluated the feature in two configurations across a range of scale and orientation values. The first

scaled the filter dictionary to the size of the image or image tile. The effect of this should be to scale

the response so that the same image of different size will give a similar value. The second approach

was to use a fixed size filter. This was then applied to a sliding window over the image and a marginal
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Scales Orientations
3 4 6

2 13.1 14.0 13.9
3 11.0 11.4 11.3
4 10.8 11.4 11.2

Table 4.6: Mean average precision (%) for Gabor wavelets

histogram built using the response from each filter.

Initial results showed that scaling the filter size gave much superior results to the sliding window

approach. Mean average precisions achieved with the sliding window were in the range 5–7%, approxi-

mately half that obtained with the tiling method. The results shown in Table 4.6 are for 7 × 7 tiling. It

was found that tiling increased performance in a similar manner to the other features.

Choice of filter bank

The configuration of the filter bank has a direct impact on the resolution of scale and orientation that

is captured by the feature. The results in Table 4.6 show that the best performance is achieved using

a filter bank of 2 scales and 4 or 6 orientations, the difference between these two combinations was

not statistically significant. Indeed the feature with 2 scales outperforms all others with the number of

orientations tested.

This finding indicates that the best choice of filter bank is different from those used by other re-

searchers. Most literature recommends 4 scales and 6 orientations although it is not clear if different

filter banks have been methodically tested. It must be remembered that previous work was predominately

aimed at texture classification rather than CBIR.

It was instructive to look at the filtered images for at the different scales. These indicated that, as

for Tamura, response at coarser scales was predominately from objects rather than textures. With the

structure of filter bank employed there is no advantage to be gained by increasing the selectivity by using

more scales.

Normalisation

The results shown are for normalised features. Each element of the feature was normalised to have a

median value of one across the collection. This gave equal weight to each element. The feature was also

tested in an unnormalised configuration. The results from this showed that normalisation consistently

improved performance by between 1 and 2%, this was statistically significant.
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Feature Single Combined
with HSV

Gabor-2-4 3.93 4.31
Co-occurrence homogeneity 2.85 3.03
Tamura standard all 2.57 3.43
Tamura CND 1.65 2.72
Tamura coarseness-2 0.97 2.49
HSV 1.91 –

Table 4.7: Mean average precision (%) for combined features with the TRECVID collection (7x5 tiling)

4.4.7 Evaluation using TRECVID 2003 video data

A range of the best performing features were run on the TRECVID 2003 data and evaluated using

the published relevance judgements. The queries were run singly and then combined with a colour

histogram feature, HSV, see Section 3.5 for details. The results are shown in Table 4.7. For comparison

some features used for previous evaluations gave mean average precisions of: HSV 1.9%, convolution

2.2%; random retrieval would give 0.26% (Pickering and Rüger, 2003).

In this evaluation the texture features performed extremely well in comparison with previous bench-

marks. Gabor gave the best results, 3.9% or 15 times better than random retrieval. Of the Tamura

features the best performing was the combined standard feature. The top 3 performing texture features

combined gave a m.a.p of 4.22%.

Combining each feature with the HSV feature improved average retrieval performance, over the indi-

vidual feature, in all cases. The improvements were all statistically significant however, at an individual

query level the benefits were both positive and negative. It is interesting that using simple combination

of features gives varying degrees of improvement; being able to choose the optimum combination based

on the query would be beneficial.

Experiments with tiling features again showed that features using this approach outperformed the

windowed versions. Increasing the tiling improved performance in the same way as described in Sec-

tion 4.4.3. The constant aspect ratio of the video keyframes meant that a tiling of 5 × 3 or 7 × 5 gave

approximately square tiles. The latter gave the optimal retrieval performance and the results shown are

for this tiling.

4.4.8 ImageCLEF 2004 Evaluation

The modified texture features were used for a submission to the image track of the Cross Language

Evaluation Forum (CLEF). This work was presented in (Howarth et al., 2004, 2005).

This evaluation provided a valuable test for the features as the medical image collection, described in

Section 3.2.3, presents a very different task. The nature of the images makes texture a key discriminator.



CHAPTER 4. TEXTURE FEATURES FOR CONTENT-BASED IMAGE RETRIEVAL 76

Feature Mean average precision (%)
Gabor 35.3
Co-occurrence homogeneity 19.8
Tamura standard all 20.7
Tamura CND 18.4
Tamura coarseness-2 14.5

Table 4.8: Mean average precision (%) for texture features with the ImageCLEF collection

Table 4.8 shows the retrieval performance for a range of the texture features. The Gabor feature on its

own outperformed all runs submitted to the evaluation with a mean average precision of 35.3%. The

actual run submitted to the evaluation combined five features, both colour and texture. It achieved a

map of 34.5% which was second in the evaluation, less than 1% behind the leader.

From the results we can see that the Gabor feature is a very good discriminator for this collection. A

reason for this, is that a class of images within the collection (for example chest x-rays) is always posed

in the same way. The result of this is that both the layout of an image, and the textures within it, will be

very similar to the others in its class. Hence, the tiled Gabor feature, which discriminates both textural

and structural information proves to be highly effective.

This evaluation confirmed that the results of the work testing and modifying the features is applicable

over a range of image collections. The choice of parameters has produced robust features that perform

well. The Gabor, co-occurrence and Tamura standard features in the configuration described consistently

give the best retrieval results.

4.5 Conclusions and recommendations

This chapter describes the implementation, modification and evaluation of texture features for use in

a query-by-example approach to image retrieval. The work uses three radically different feature types

motivated by i) statistical, ii) psychological and iii) signal processing points of view. Each feature was

evaluated and tuned on retrieval tasks using the Corel collection. Novel modifications to the features

were proposed and tested at this stage.

The improved features were then re-evaluated with the TRECVID 2003 and ImageCLEF 2004 col-

lections. This included testing the the performance of the texture features when combined with a

colour feature. The ImageCLEF work included a submission to the evaluation forum where the features

performed exceptionally well. This additional testing demonstrated that the work had identified and

produced texture features that perform particularly well for the image retrieval task, providing robust

performance across a range of data sets.

The evaluation with TRECVID 2003 data showed that the top three texture features performed better
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than previously used colour features. Combination with a colour feature boosted retrieval performance in

all cases. The Gabor feature performed particularly well with both the largely monochrome ImageCLEF

medical collection and the TRECVID news collection.

The work with each feature generated some concrete recommendations for using these feature types.

The key findings are below:

Co-occurrence: With co-occurrence matrices it was found that considering vectors of length 4 pixels or

less gave the best results. It appears that this scale of texture provides the best search discriminator

with the real images used for this evaluation. Alternatively it may be that the co-occurrence feature

itself is less effective at larger scales. In addition attempts to make the feature rotationally invariant

degraded performance. It was best to generate separate matrices for each vector angle.

Tamura: The work with Tamura features led to some novel modifications. It was found that looking

for large scale coarseness degraded performance. This contrasted with Tamura’s original intention

for this feature, of identifying the largest scale texture in the image rather than any smaller micro-

textures. Limiting the size of textures considered was beneficial. In addition using a logarithmic

scale to emphasis smaller textures improved the performance of the histogram feature. The perfor-

mance of the standard directionality feature was boosted by using an entropy measure to find the

degree of directionality in the angle histogram, instead of taking the second moments of the peaks.

Two methods for combining the three individual features were tried. Overall, the simple approach

of calculating the three standard features for each tile and concatenating these into a single feature

outperformed encoding the features in terms of joint histograms.

Gabor: Rather unintuitively it was found that considering fewer texture scales gave higher retrieval rate.

A filter bank of 2 scales by 4 orientations outperformed the commonly used 4 by 6 configuration.

Applying the feature to image tiles was much better than using a windowing method to build a

histogram.

Tiling: In all cases using the feature with image tiles, up to a maximum of 9×9, improved performance

over either untiled or histogram features.

Throughout this study I have considered how best to cope with varying image sizes, scales, formats

and orientations. This was working predominantly with images of roughly 105 pixels, i.e. 450 diagonal

pixels. When working with larger images it is suggested to first down scale them to roughly this size

before extracting the texture features from this thesis.
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General principles for texture features

If this chapter only developed some good features for image retrieval then, although beneficial to prac-

titioners, its value would be limited to those using these specific techniques. However, this work has

given some insight into what texture characteristics are important for image retrieval. The summary

below aims to identify some concise and general principles for constructing texture features. These are

general guidelines for use when developing or adapting texture features for CBIR. They are intended as

a starting point for ideas rather than being prescriptive.

Scale: In real images textures exist at relatively small scales. Larger artifacts in the image tend to be

objects rather than distinctive textures. In general these smaller scales give better discrimination

for image retrieval. Therefore texture features should aim to find and emphasise micro-textures

rather than large scale variations.

Orientation: The orientations of repeating patterns within images can be important for image search.

Making features that are rotationally invariant appears to be counter-productive (Section 4.4.4).

The different angles should be kept separate within a feature.

Region: Tiling of texture features is beneficial. It is an effective way to isolate regions over which

textures occur. In addition it captures some of the structure of an image.

Selectivity: For image retrieval the goal is not trying to classify exact textures but to generate a

representation that reflects that an image that is a patchwork of textures. Increasing the amount

of detail in a feature is beneficial, but only up to a certain point. Beyond this it can add noise and

degrade performance. Using less selective discriminators may produce a more robust feature.

This chapter has described work on visual features for image retrieval. The features produced have

been used very successfully for content based search systems, evaluation exercises and automatic image

annotation. They have performed robustly with any image collections they have been tried with. The

general guidelines developed for constructing texture features should prove useful for those developing

new features or modifying existing ones.



Chapter 5

Localised similarity functions

5.1 Introduction

At the heart of any CBIR system are visual features, that have been extracted from images, and functions

that are used to quantify the similarity between these features. The combination of these two components

will drive the overall performance of a system. The previous chapter focused on visual features; this one

moves on to the problem of what similarity function to use.

Two frequently studied research areas in CBIR are maximising retrieval performance using similarity

measures and improving the efficiency and speed of search by applying indexing methods. Often the

methods employed are mutually exclusive. The best performing similarity measures are usually compu-

tationally expensive and optimal indexing approaches can place many restrictions on what features and

similarity functions can be used.

This chapter investigates how to localise the measurement of similarity. That is, emphasise points

that are close to the query in some subspace of the full feature space. I show that this has dual benefits

for CBIR, both improving retrieval performance and speeding up the search of high-dimensional features.

The two approaches used are fractional dissimilarity and local similarity functions.

Fractional dissimilarity functions are a non-metric extension of commonly used Lp metrics while

local similarity functions measure similarity based on a local subset of the feature space. Surprisingly

these two classes of functions have a lot in common. These functions are applied to the task of image

retrieval and their behaviour is investigated experimentally. The original work on fractional functions

was published in Howarth and Rüger (2005a), and localised similarity in Howarth and Rüger (2005b).

I also show how it is possible to identify parts of the feature space that are more interesting for visual

search and how this can be used to further localise similarity, improve retrieval performance and speed

up search.

79
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The most significant limitations to the CBIR approach come from the high dimensionality of visual

features and the effect this has on both search and indexing. This aptly named “Curse of Dimensionality”

is discussed in the following Section. After this, Section 5.3 sets out some background material on the

use of similarity within the context of CBIR. Section 5.4 then discusses the main idea of this chapter,

localising similarity. This leads onto the specific functions used for this work. Experimental work, using

the framework described in Chapter 3, was performed to support the use of local similarity. The results

of this are set out in Section 5.5.

5.2 The Curse of Dimensionality – a problem for image retrieval

The high dimensionality of visual features has a major influence on the choice of similarity function

for image retrieval owing to the “curse of dimensionality”. The curse manifests itself in several ways.

Donoho (2000) presents a interesting discussion of both the curse and blessings of dimensionality. He

lists three problems that high dimensionality apparently makes intractable: accurately approximating a

general high-dimensional function, integrating a high-dimensional function, and systematically searching

through a high-dimensional space. It is the last of these that particularly affects image retrieval by

both compromising the validity of nearest neighbour search and diminishing the effectiveness of indexing

methods.

The “curse” term was coined by Bellman (1961) to describe the effects of the exponential growth of

hyper-volume as a function of dimensionality. As a consequence the behaviour we understand and use in

two or three dimensions breaks down as the dimensionality of a space increases. To gain some intuition

we can consider the way volume changes as we look at a proportion of each dimension. Let us say that

our feature space is described by a p-dimensional unit hypercube containing uniformly distributed data

points. Given a query point, how much of the range of each dimension must we consider to capture a

proportion of the data q? To enclose a fraction q of the unit volume the length will be r = q1/p.

If we are trying to enclose 1% of the data, then in 10 dimensions this means we must consider 63% of

the range of each dimension. If the dimensionality is 100 then this increases to 95% of each dimension,

for 500 dimensions it is 99%. The graph in Figure 5.1, which shows edge length required to enclose up to

10% of the hypervolume, shows this. This behaviour is why it is often stated that all of the volume of a

high-dimensional space is in the skin. As a result of the exponential growth in volume high-dimensional

feature space is very sparsely populated. All of this causes significant problems for nearest neighbour

search and indexing of high-dimensional vectors.

Effect on nearest neighbour

Beyer et al. (1999) carried out a theoretical analysis of the meaningfulness of a nearest neighbour in a
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Figure 5.1: Fraction of volume enclosed versus edge length of sub-cube, for varying dimensionality

high-dimensional space. They proved that if

lim
p→∞

Var(dp(x, y))

E[dp(x, y)]
= 0 , (5.1)

where dp(x, y) is the distance in p dimensional space between two random points drawn from the distri-

bution, then for every ε > 0

lim
p→∞

P (Dmaxp ≤ (1 + ε)Dminp) = 1 , (5.2)

where Dmaxp is the maximum dissimilarity between 2 points in a p dimensional distribution, and

Dminp is the corresponding minimum dissimilarity. The implication of this is that when Equation 5.1

holds, then the distance of the nearest and farthest point from any query point converge to the same

value. Effectively the contrast between data points becomes insignificant and as a consequence the results

of a nearest neighbour search will lose their meaningfulness.

It is interesting to consider what conditions that are required for Equation 5.1 to hold and subse-

quently, if they do, then at what dimensionality the nearest neighbour starts to lose its meaningfulness.

Beyer et al. (1999) demonstrated that this occurs with most reasonable data distributions and distance

functions. The effects become significant very quickly for IID vectors. In addition, Equation 5.1 can hold

for unique dimensions even where there is some correlation between all dimensions. Empirical evidence

showed that nearest neighbour can become unstable, in the sense that the distance to the nearest and

farthest points converge, with as few as twenty dimensions. If this occurs with a feature space and

similarity measure used for image search then the idea of a nearest neighbour can lose meaning as a
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measure of relevance, as can the use of the top k nearest neighbours as a list of most relevant images.

Effect on indexing

Bellman (1961) originally described the problems with dimensionality after considering exhaustive enu-

meration on product spaces. If a dimension is split in half then with p dimensions there will be 2p

partitions. This means that with 100 dimensions there will be approximately 1030 partitions with this

simple scheme. So unless there is a huge amount of data the probability of a point occurring in a partition

will be very low. For a hypercube, containing uniformly distributed data, this probability equates to the

volume of the partition. We can see from the graph in Figure 5.1 that the volume of a hypercube of edge

length 0.5 tends to zero with increasing dimension. With a spherical range query things are worse. Even

the largest possible query, which fits entirely within the cube, will have a volume that rapidly shrinks

with increasing dimension. Here most of the volume will be in the corners of the hypercube, which are

not enclosed by the sphere.

The consequences of this affect all high-dimensional indexing methods. Weber et al. (1998) set out a

quantitative analysis of how high dimensionality affects the indexing of vector spaces. Their conclusions

were that both partition and cluster based indexing methods lose effectiveness at high dimensionalities.

They claim that, on average, existing indexing methods are outperformed by a simple sequential scan

when the number of dimensions is greater than ten. At this point most indexing methods are well on

the way to degenerating into a sequential scan.

They introduced a general cost model using the number of disk blocks that must be accessed as

the cost of a query. Sequential scan is much more efficient than random access of disk blocks. They

conservatively estimated the access time to be a factor of five faster, meaning that an indexing method

had to access less than 20% of the disk blocks to be beneficial. In fact they showed that there is a

dimensionality, for any indexing scheme, above which all blocks need to be accessed. They established a

crude bound of 610 dimensions for all schemes. In practice this is much lower. Their work led them to

suggest that an optimised linear scan was the best solution for high-dimensional indexing. Their method,

the vector approximation file, is more fully discussed in Section 6.2.4.

Many indexing methods rely on the triangular inequality property of a distance metric to prune the

number of elements that need to be searched. This leads to an alternative way of considering the effects

of high dimensionality (Samet, 2006). As dimensionality grows the probability density of distances has

a smaller variance and larger mean, i.e. becomes more concentrated. If we have a query point q and a

indexing point r, from which we know the distance to every other point s, then it is possible to us the

triangular inequality to eliminate points.

Thus, we can say any point s that satisfies |d(q, r) − d(r, s)| > ε cannot be a distance of ε or less

from the query. d(q, r) is known, so we need to consider the distribution of d(r, s). Unfortunately, if high
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dimensionality has taken effect, the probability density function of d(r, s) will be large at distance d(q, r),

as all points tend to the same distance from each other. Worse than this, as the variance is low, even a

small distance of ε around d(q, r) will enclose a large area of the density function: P (|d(q, r)−d(r, s)| ≤ ε)

will tend to one. Thus the probability of pruning any element will be very small.

Beating the curse

The preceding discussion points to a worrying conclusion for anyone wanting to build large scale content

based image retrieval systems. It seems that both nearest neighbour search and indexing methods lose

their effectiveness in high-dimensional feature spaces. Possible ways to mitigate these effects can be

investigated by considering ways to slow down the convergence of Equation 5.1.

One ray of hope is that much of this analysis is based on uniformly distributed data, but real data

is rarely uniformly distributed. It may be that the intrinsic dimensionality is much lower than the

apparent dimensionality. Dimensionality reduction methods can be used to find these lower dimensional

projections or embeddings. Of course it is still important that the nearest neighbours in these spaces

are meaningful for our purposes. This is unlikely to be the case with global dimensionality reduction

methods.

It is possible that the data is grouped into relatively tight clusters. This can occur when a collection

contains very similar images. This is often the case for classification or image matching tasks, where

there are almost identical images in the collection. With an image search task there may be clusters but

these are likely to be more loosely defined and to overlap each other. In addition clusters may only be

apparent in subspaces of the entire feature space.

The approach taken by this work is to try and identify similarity functions that will mitigate the

effects of high dimensionality by preserving the contrast between data points at higher dimensionality.

This is applied to image search and it is vital to ensure that the relevance of results is preserved. To do

this we need to consider our knowledge of the characteristics of visual feature spaces. The approach used

is discussed in Section 5.4. But first, in the next section, we consider commonly used distance functions

and previous attempts to optimise these for image search.

5.3 Similarity and distance functions for content-based image

retrieval

A similarity (or dissimilarity) function is a way of ordering the features given a specific query point.

These can take many forms, but are usually described as a function that maps points of an R
n feature

space to a one dimensional value. The result is typically seen as an indication of the degree of relevance

of the collection images with respect to the query image and the feature. Usually several feature vectors
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derived from colour, texture, shape or other characteristics are searched concurrently. The similarities

from these are somehow combined, and the results ranked to compute the top-matching images in a

collection.

5.3.1 Commonly used distance functions

A large number of different distance and similarity functions have been used for computer vision. The

variety of functions that have been employed for image retrieval is much less, with the Manhattan and

Euclidean distances being very popular. The sections below give an overview of the main similarity

function types.

Geometric

For image retrieval measures derived from the L-norms, Equation 5.9, are frequently used as a matter of

course. These fall under the grouping of geometric functions. Other functions in this category include the

cosine, dc, and Mahalanobis, dm, distances. Both of these use Euclidean geometry, the first represents

the angle between two vectors while the second uses the covariance matrix of the data to both account

for correlations between elements and normalise dimensions. The cosine distance is widely used in text

retrieval as a measure of the distance between sparse vectors. The Mahalanobis distance is suited to

classification tasks. They are defined as

dc(x, y) = (x · y)/(|x||y|) and (5.3)

dm(x, y) =
√

(x − y)T Σ−1(x− y) , (5.4)

where x and y are vectors from the same distribution with covariance matrix Σ. The formulation of

dm is interesting because if the covariance matrix is replaced by a diagonal matrix of the variances, dm

becomes the normalised Euclidean distance, and if Σ is replaced by the identity matrix then dm becomes

the Euclidean distance.

The quadratic-form distance (Hafner et al., 1995) has the same formulation as the Mahalanobis

distance but replaces the covariance matrix with a heuristically determined similarity matrix. Each

element of the similarity matrix indicates the similarity between individual bins of the feature vectors.

It attempts to capture the cross-bin similarity information within a histogram.

The histogram intersection distance (Swain and Ballard, 1991) is defined as

d∩(x, y) = 1 −
∑

i min(xi, yi)
∑

i yi
. (5.5)

It is a form of L1 distance suitable for partial matches with histograms of different areas. It is equivalent
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to the L1 distance if x and y are histograms of equal norm.

Information theoretic

Another major grouping of similarity functions is based on information theory. These include Kullback-

Leibler divergence, or information gain; it gives an indication of the difference between two probability

distributions. Traditionally described in a coding context, it can be used to measure the additional bits

that are needed when using a code for a distribution that is different from the true distribution. For

image retrieval a symmetric version of K-L divergence, Jeffrey divergence (Ojala et al., 1996), is normally

used in preference. This has the advantage of being numerically stable and robust when comparing real

distributions. It is defined as,

dj(x, y) =
∑

i

(xi log
xi

zi
+ yi log

yi

zi
) (5.6)

where zi = (xi + yi)/2.

Statistical tests

Non-parametric tests such as the χ2 statistic have been used for segmentation and retrieval tasks (Puzicha

et al., 1997). The statistic is calculated between two vectors using

dχ2(x, y) =
∑

i

(xi − yi)
2

zi
, (5.7)

where zi is as before. This function is not a metric. It is similar to the Euclidean distance, but each

dimension is scaled by the average value of the two vectors on that dimension.

Ground distance

The Earth Movers Distance (Rubner et al., 1998) is a well known measure for comparing colour feature

distributions generated from images. It is based on the amount of work necessary to change one distri-

bution into another. To do this, each feature distribution is first clustered into k clusters; the feature

can then be represented by a signature comprising of k tuples, each being the centroid and mass of a

cluster. When comparing two signatures, one signature can be thought of as a set of holes and the other

as mounds of earth. The distance is the minimum amount of work needed to move the earth into the

holes. The work, in this case, is the mass moved times the distance it is moved. The minimum amount

of work necessary can be computed using the transportation algorithm. An advantage of this function

is that it is not as sensitive to binning and quantisation details as histogram measures.
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5.3.2 Optimising similarity functions

The ideal similarity function would be one that mapped the feature space directly to the perceptual

similarity space of the user. Ultimately the perception of a user is influenced by variables that may not

be captured by low level features, or even be visual. Therefore with current techniques a perfect match

in the perceptual space remains impossible. What the similarity function must do is consistently return

a set of images that seem reasonably visually similar to the user. That is, a results set where the user

can understand the visual link with the query. If this is achieved, then users will be able to learn how to

use the system to achieve their search goals.

Researchers have worked on finding optimal similarity functions for image retrieval. Much of this

work has been done using classification or supervised learning methods. Whilst this is useful, the classes

or queries within a training set can never fully represent the variation present in a stream of real queries.

For example, Vasconcelos and Lippman (2000) presented a paper giving a unified view of several common

distance measures. They framed the retrieval task as a classification problem with a goal of minimising

retrieval error. From this they could show that many distance measures were sub-optimal cases of

the Bayesian criteria. They demonstrated that a maximum likelihood approach gave the best results.

However, if we choose not to model predetermined classes then this approach is not practical.

Several broad approaches that are relevant for CBIR are discussed below. By examining what has

been successful we can obtain a better understanding of how different similarity measures behave when

used for image retrieval.

Evaluations

Where comparative evaluation of dissimilarity functions have been done these are usually in a framework

of classification or image matching. The studies of Manjunath and Ma (1996) and Puzicha et al. (1997)

applied a range of statistically based measures to small collections of largely homogeneous texture images.

Rubner et al. (1998, 2000) concentrated on functions that included a cross-bin element, such as the

earth movers and quadratic-form distances. Their proposition was that including information about the

relationship between bins gave a measure closer to perceptual similarity. Their persuasive argument was

not backed up by any serious image retrieval evaluation.

Zhang and Lu (2003) carried out an evaluation using the MPEG-7 contour shape database (1400

images) and the region shape database (3621 trademarks). They used two Fourier based features of

10 and 36 dimensions. The distance functions tested included all the geometric functions listed above

plus the χ2 statistic. Although a limited test, their results showed that the Manhattan distance and χ2

statistic gave the best retrieval performance.

Puzicha et al. (1999) carried out one of the more thorough quantitative evaluations of dissimilarity

measures. Interestingly they concluded that there was no measure with the consistently best overall
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performance, but that it depended on the specific task. They demonstrated how the selection of a

similarity function based on a large scale evaluation could significantly improve the quality of results for

a range of tasks, including retrieval.

Relevance feedback

Relevance feedback involves the user in the search process by getting them to indicate their preferred

images from the initial results. The similarity function can then be modified to improve the ranking of

the positive images. There are also approaches that modify the query itself. This is a very rich area of

research. Essentially these methods are looking for ways to best combine multiple images, either at the

query stage or by fusing results from individual images. Generally they use standard distance measures

and combine these using a weighting scheme rather than modifying the distance function itself.

It is worth noting that although these methods can be successful they have a significant practical

drawback. They rely on users marking a reasonable number of positive images. In practice users may

not have the patience to do this. Systems that require negative images are even less likely to get a

considered response from the user.

One method that works on the distance function itself was proposed by Ishikawa et al. (1998).

They optimised a generalised version of the Euclidean distance, similar to the Mahalanobis distance.

Their method iteratively optimises the query point and determines the similarity matrix. This is done

by minimising the sum of the distances between the query image and the images marked relevant by

the user. The similarity matrix is calculated from the covariance matrix C of the relevant images as

(det(C))1/nC−1. Unfortunately the performance for this method has been found to be rather unstable

when used with sparse visual features.

Noise model

Sebe et al. (2000) considered what distance metric was justified based on a noise model. The image

retrieval task they considered was one of finding images that were different due to handling and storage

conditions of the original photographs. Thus, the noise was created by relatively small perturbations.

This task is far removed from the image retrieval task tackled by this thesis, however, their work does give

some insight into the behaviour of distance measures. They adopted a maximum likelihood approach.

Given a discrete noise distribution n, the metric which maximises the similarity probability is

∑

i

ρ(ni) ,

where ρ is the maximum likelihood estimate of the negative logarithm of the probability density of the

noise. To investigate the behaviour of the estimate they used a method based on the influence function
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(Hampel et al., 1986). This uses the derivative

ψ(z) =
dρ(z)

dz

of the estimate, to characterise the bias that a measurement has on the solution.

Where the noise is Gaussian, P (ni) ∼ e−n2
i , then ρ(z) = z2 and ψ(z) = z. Thus the optimal metric

is Euclidean. The function ψ shows that points more affected by noise get greater weighting.

With exponential noise P (ni) ∼ e−|ni|, then ρ(z) = |z| and ψ(z) = sign(z), and the best metric is

Manhattan. Points get the same weighting irrespective of their noisiness (deviation from the mean).

By examining real noise distributions they determined that the tails were more prominent than with

the exponential distribution. Therefore the image matching task should be better modelled using a fat-

tailed distribution. They found that the Cauchy distribution closely matched the empirical distributions.

This has the form

P (ni) ∼
a

(a2 + n2
i )

,

where a is the scale parameter, and gives

ρ(z) = log(1 + (z/a)2) and ψ(z) =
z

a2 + z2
.

It is interesting that ψ initially increases before decreasing rapidly, thus outliers are largely ignored.

From this they developed the Cauchy metric

dc(x, y) =
∑

i

log

(

1 +

(

xi − yi

a

)2
)

.

It was demonstrated experimentally that the Cauchy metric achieved the best performance for their

image matching task. Subsequently it was shown the Cauchy metric also performed well with a shape

matching task (Sebe and Lew, 2002). The maximum likelihood approach was taken further by Yu et al.

(2006), who developed a boosted distance metric for supervised classification.

Parametric model

Tarel and Boughorbel (2002) proposed a model of image retrieval and developed a scheme for deriving

the best similarity measure from a set of measures of the form,

S(α,β)(x, y) =
∑

i

|xα
i − yα

i |β .

It is interesting to note that with α = 1, the β parameter is equivalent to the p for the Lp-norms. They

first showed empirically that an α value of 0.3 to 0.4 consistently improved average precision for an image



CHAPTER 5. LOCALISED SIMILARITY FUNCTIONS 89

retrieval task.

They assumed a parametric model of the variability of features within the same class and then

proceeded to model the image retrieval task as a two class problem. R-precision was used as a performance

measure and the goal was to minimise the retrieval error based on this. Their model assumed that each

component of the feature came from the same distribution but was independently chosen. Using the

central limit theorem the distribution for the total distance then converges towards a Gaussian as the

number of components goes to infinity. This simplifies the analysis, as with sufficiently many dimensions

the distributions can be approximately described by their mean and variance.

With α = 1 they found optimal β values for several component distributions. Assuming that each

component was from a Gaussian they showed that L2 was the best distance function. With an exponential

distribution the optimal function was L1. The components of sparse histograms are often approximately

exponentially distributed. Their results therefore concur with what has been found in practice, that L1

generally outperforms L2. The analysis could not be extended to values of β < 1.

Their analysis of optimal α values was more limited. A simulation for the exponential case showed

that an α value around 0.4 gave the best precision.

Partial distance

Li et al. (2002) introduced a dissimilarity measure based on the hypothesis that each image in a collection

may be relevant to a query in a different set of dimensions of the feature space. They called this a dynamic

partial distance function. Given p-dimensional feature vectors x and y, they define

δi = |xi − yi| for i = 1, . . . p

and ∆m as the set containing the m smallest δi values. The dynamic partial distance is then defined as

dδ(x, y) =

(

∑

δi∈∆m

δr
i

)1/r

(5.8)

with parameters, m and r. By setting a value of m < p the function will choose the m dimensions in

which that particular image is closest to the query. The rationale is that the discarded dimensions will

contain little similarity information. This method does not consider the distribution of the other images

in the collection.

They applied this function to a retrieval task based on finding transformed versions of the same

image, using a feature with 144 elements. They found experimentally that the best value of m was 114

and used r = 3. In this configuration the function performed significantly better than the Minkowski

metric, i.e. with m = p. This evaluation was a little unfair on the Minkowski metric as it would almost
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certainly have given better results with a value of r = 1, as shown by Sebe et al. (2000) and my results

in Section 5.5.2.

Summary

Several useful themes can be drawn from this review of distance measures. Both the noise and parametric

models have shown the same optimal distance metrics in two cases. If the noise or distribution of a class

in every dimension is Gaussian then the optimal distance is Euclidean; if the noise is exponential then

the best distance measure is Manhattan. Sebe et al. (2000) went on to show that for the fat-tailed

Cauchy distribution they could define an optimal metric. This implicitly gave less weighting to noisy

points (outliers).

All of this analysis was done in the complete feature space. The underlying assumption was that

similar images were clustered in all dimensions. The partial distance function took the different view

that an image is relevant to a query in a subset of dimensions. With this model the assumption is that

images are clustered in subspaces of the complete feature space.

5.4 Localising similarity

The ideal similarity function for content-based image retrieval would produce meaningful results in a

realistic timescale. It would do this with different feature types and large scale collections. The problems

caused by high dimensionality seem to make this an impossible task.

As discussed in Chapter 3, for a real image retrieval task the meaningfulness of results can only truly

be determined by the user who issued the query. In the query-by-example paradigm, the user has one

or more query images and wants to find other similar images. The relevance of images is based on the

judgement of the user. This problem is much harder to define than other tasks such as image matching

or object recognition. For instance with image matching the relevant images are very similar to the

query, and often they have been subject to some noise or distortion. With CBIR the visual similarity is

usually less obvious and the differences much greater. This makes it difficult to model the distribution

of relevant images in the feature space. Indeed the relevant images for some user queries may have

limited visual similarity. In these cases CBIR tends towards a browsing paradigm rather than one of

query–results. The user then becomes an integral part of the system. It is important that the CBIR task

is understood to put this work in context. The image retrieval task is very different from those normally

associated with computer vision and image understanding. These differences have a significant effect on

the effectiveness of different approaches and and how performance is measured.

The second, and often overlooked, performance measure is search time. This is made up of two main

parts, retrieving the relevant data and computing the similarity. The similarity function can have a
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direct impact on both of these. The amount of data that has to be considered in the search is usually the

dominant factor on the time taken. For a system where the data is stored on disk, loading the data will

be the limiting factor. Similarity functions may lend themselves to efficient indexing or pruning of the

search space. Where the feature database is in memory then the computation time is likely to become

significant. The issue of efficiency is explored more fully in Chapter 6. The experiments later in this

chapter use the proportion of data examined as a crude measure of efficiency.

This section discusses what factors influence the choice of similarity functions for CBIR including

the notion of localising similarity. Fractional dissimilarity and local similarity functions are defined and

related work highlighted. Finally query sensitive selection of feature components is considered. This is

based on finding atypical points in the entire feature space.

5.4.1 Why localise?

The notion of similarity or distance is central to CBIR, and a large number of dissimilarity functions

have been used. It is accepted that the choice of proximity function can have a profound effect on

local topology. This is significant for CBIR as when querying a multimedia database we are normally

interested in a small set of the closest images, rather than the ordering of images a long way from the

query.

The choice of dissimilarity function is often made without much thought. The Euclidean distance

metric has its basis in 2 and 3 dimensional space and in this context it is the physical distance function

in a straight line. For higher dimensions it loses its significance, although it is frequently used without

consideration of its applicability.

If we look at the visual features of images relevant to a query, we find that in a many dimensions the

value of the feature is very different. The relevant images are close to the query in only a small number of

dimensions. Hence, the information about similarity between the images appears to be concentrated in

relatively few dimensions. These close dimensions are likely to vary from image to image even amongst

the set of relevant images (Li et al., 2002).

This situation is very different to the image matching situation, where the similar images have been

subjected to noise. In this case relevant images are likely to form clusters in the full feature space.

This means that a similarity measure that considers all dimensions is likely to perform well. For a

search task the images may well be very different. This means that the noise model used by Sebe

and Lew (2002) is not valid for the CBIR task. In the absence of a particular noise model for specific

visual features, it is noted that amongst all Lp norms, L1 is the one which is most stable, i.e. least

numerically influenced, against outliers and noise. Indeed, it was found in previous experiments that L1

(Pickering and Rüger, 2003), which is equivalent to the histogram intersection for L1 normalised vectors,

consistently outperformed L2, L∞ and the cosine similarity function, which is nearly equivalent to the
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Euclidean distance for small distances. One qualitative explanation for better performance of L1 over L2

is that it is less affected by outliers and therefore by noise in high dimensional data: in Euclidean space

the distant components will dominate the distance measure; using L1 gives near and far components the

same weighting.

Developing this idea further leads to the goal of adding importance to components that are similar

and removes emphasis from those that are different. I therefore propose that the important regions for a

visual feature are those local to the query point in each dimension. In contrast, if an image is not local

in a particular dimension we are not interested in the absolute difference, only that it is not a member

of the local set. This is the essence of localising similarity.

This intuitively makes sense as the human visual system can detect small differences in neighbouring

patches equally as well as large differences. Consider an image that has a colour distribution that is

predominately green. The shade of green would be relevant for ranking similar images. However, the

fact that other images are, for example, mainly red or blue should not affect their relative ranking: they

are just different.

Given that there are sets of dimensions where relevant images are local in high-dimensional feature

space, these will be manifested as small clusters in certain subspaces. The set of images relevant to a

query may occupy more than one of these subspaces, with different images within the relevant set often

being in a different group of subspaces. The technique of localising similarity will emphasise membership

of these potentially interesting clusters. The result of this is that, where these clusters exist and are

relevant, retrieval performance should improve. Ideally we would like to be able to detect these subspaces

and focus the search within them.

5.4.2 Fractional dissimilarity

The first approach to localisation is that of fractional dissimilarity functions. Mathematically, all dis-

tances induced by the Minkowski norm Lp, p ≥ 1, defined below in Eq. (5.9) are equivalent in finite-

dimensional spaces in the sense that they result in the same topology for neighbourhoods: they define

continuity of functions in the same way. However, as discussed earlier the performance of different Lp

metrics varies greatly for retrieval tasks.

The Lp norm is usually induced by the distance

dissp
d(x, y) =

[

d
∑

i=1

|xi − yi|p
]1/p

= ‖ x− y ‖p , (5.9)

where d is the dimensionality of the space and p is a free parameter, p ≥ 1. This can be extended by

considering the case where 0 < p < 1. From a mathematical perspective there is nothing new about

this; however, its use in computer vision has been limited. Donahue et al. (1996) first used this function
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for robust shape matching. My work in Howarth and Rüger (2005a) was its first direct application to a

CBIR task.

Functions of this type are often referred to as a quasi-norm or semi-metric. Strictly speaking the

fractional functions defined by dissp with 0 < p < 1 are no longer distances in the mathematical sense

as the triangle inequality is violated. The reason for this is that the ball with radius one under dissp is

no longer convex for p < 1, see Figure 5.3(a). This can have an effect on some indexing and partitioning

schemes that rely on the metric properties. Nevertheless dissp still conveys a sense of closeness, and we

will refer to it as a fractional dissimilarity.

Violation of metric properties, including the triangular inequality, will not necessarily adversely affect

the performance of image retrieval. Tversky (1977) argued that human ideas of similarity do not behave

in the same way as metric geometry. If required it is possible to define a metric for spaces with p < 1 by

applying a concave function. Hence, d(x, y) = (‖ x − y ‖p)
p is a metric defined on the vector space Lp.

A proof of this is given by Jones (2001).

As a simple example of this, consider a two dimensional case with the points a = (0, 0), b = (1, 0) and

c = (1, 1). Now, for a fractional dissimilarity with p = 1/2, d(a, b) = d(b, c) = 1 and d(a, c) = (1+1)2 = 4.

Thus d(a, c) 6≤ d(a, b) + d(b, c) so the triangular inequality is not satisfied. If the concave function is

applied then d(a, b) and d(b, c) are unchanged, but d(a, c) = ((1+1)2)1/2 = 2. So d(a, c) ≤ d(a, b)+d(b, c)

and the triangular inequality holds. Of course changing the function in this way will have an effect on

dissimilarity values and correspondingly retrieval performance may change from that of the non-metric

distance.

Related work

Aggarwal et al. (2001) found several results applicable to both ordinary (p ≥ 1) and fractional (0 <

p < 1) dissimilarities. The first was that the absolute difference between the maximum and minimum

dissimilarities increases at the rate of d
1
p
− 1

2 . Secondly, they found bounds on the relative contrast which

showed that fractional functions should usually have a better relative contrast than Lp norm distances.

They carried out some experiments and showed that k-means clustering and a rudimentary classification

technique performed better with fractional functions. This was using synthetic and real (non-image)

data. It is interesting that they found a value of p = 0.1 to routinely give the best results. This should

be contrasted with the results in Section 5.5.2.

Francois et al. (2005) investigated the effectiveness of fractional functions for image matching in the

presence of non-Gaussian noise and concluded that fractional functions were beneficial. Recently Skopal

(2006) devised an algorithm that finds a function that will enforce the triangle inequality for a general

semi-metric, thus turning it into a metric. The functions are either of the form mentioned earlier, where

the concavity is controlled globally, or a more flexible rational Bezier Quadratic curve. The compound



CHAPTER 5. LOCALISED SIMILARITY FUNCTIONS 94

function was then used to index the data with metric access methods, such as the M-tree index. He

found that it was not possible to use this for exact search with small values of p, below 0.25. However,

if the requirement was only for approximate preservation of similarity ordering then all the fractional

functions tested could be indexed effectively using metric access methods.

5.4.3 Local similarity

The premise for the improved performance of fractional distance functions is that, when comparing

two feature vectors, they emphasise dimensions that are close whilst reducing the noise from distant

dimensions. This results in more meaningful nearest neighbour search when using high-dimensional visual

features as was shown in (Howarth and Rüger, 2005a) and by the experimental results in Section 5.5.

This idea can be naturally extended to similarity functions that consider only the locality of the query

point in each dimension. They are effectively giving a weight of zero to those distant points and selecting

a sample of the least noisy information for the measure.

We can define the following similarity function between two vectors x and y, both belonging to the

set X ⊂ R
n,

Sim(x, y) = g





∑

i∈K(X,x,y,k)

s(xi, yi)

z



 , (5.10)

where the K(X,x, y, k) is the set of dimensions where y is local to the query point x, s(xi, yi) is a

local similarity function on R×R and z is a normalising factor. The function g acts on the result

of the summation and may be varied depending on the form of s(x, y). Defining the function in this

way highlights the flexibility of this approach. There are many options available to vary both the local

similarity function and the selection of the local neighbourhood.

The aim of this similarity function is twofold: to give an effective similarity measure for high-

dimensional features and to only examine a small percentage of the data when doing so. Sim(x, y)

is not aiming to be an approximation to another similarity measure, but a meaningful measure in its

own right.

The local similarity function s(xi, yi) will affect the local topology around the query point and there-

fore the search results. In addition, the complexity of the function will have an impact on the computa-

tional time. There will be a trade-off between these two factors.

Some possible choices of the local similarity function are similarity versions of the Lp-norms or

fractional functions, a ranking from the query point or a voting function. A diagram showing some of

these functions is in Figure 5.2. The voting function allocates a value of one to all objects within the

local set and zero to others. The obvious advantage of this over other measures is simplicity. It is the

outermost function on the figure. The ranking function is not shown, the distance for this is based purely

on the ranking of objects from the query point. With the voting and ranking functions, g will be the
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Figure 5.2: Similarity functions

identity function. For Lp functions it will be g(x) = x1/p. There is no need for this form of g to be

strictly adhered to: it can become another variation in the range of available functions.

The second parameter in Eq. (5.10) is the function K(X,x, y, k), which determines the set of dimen-

sions where y is local to x. It is used to isolate the local set of objects for each dimension. This can be a

selection of the nearest k points, or all the points within a certain distance. The first option was chosen

for the experimental work as it enables the selection of a fixed percentage of the data. It also introduces

another normalisation into the overall function by ensuring that each dimension carries equal weighting.

The choice of the local set will have a major influence on the performance of the function. Consider the

voting function described above in a d dimensional space, and the set of k local points. Each dimension

will have k votes and there will be a total of kd votes cast across all dimensions. An object receives a

vote from a dimension if it is in the set of k nearest objects to the query point in that dimension. If v

is the total number of votes an object receives across all dimension it will be the upper bound on the

similarity for that object whatever local function is used.

The distribution of v across the data set will affect the discriminatory power of the similarity measure.

Consider a data set with N objects. With k = 1 the only objects getting a vote will have to match the

query exactly in that dimension. It is unlikely that many images will get more than one vote so that,

other than exact matches, the results will be close to random. As k increases the number of objects with

more votes, higher values of v, will increase. When k = N , all objects will be found in every dimension

so every object will get d votes. Hence, if using the voting distance function, the discriminatory power

will increase with k to a maximum, and then decrease to random at k = N .

Other similarity functions will have added discriminatory power. However, it is likely their overall

performance will be strongly correlated with the performance of the voting function as the size of the

local neighbourhood is varied.

It is interesting to consider the effect of the dimensionality, d, itself. Each object will get between 0
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Figure 5.3: Unit balls in two-dimensional space

and d votes. As the dimensionality increases the possible variation in number of votes will increase; thus

the contrast between nearest and farthest neighbours will increase. This contrast can be an indicator of

discriminatory power. In this way the method of local similarity can be said to become more effective

as the dimensionality increases. However, we must be careful with this claim as there is not necessarily

a direct link between contrast and meaningfulness of results.

Figure 5.3(b) shows the unit balls for the voting and L1 local functions with an arbitrary local

neighbourhood. The lines on the figure indicate the points in the two-dimensional space that are a

distance of one unit from the centre. For the similarity function, points inside the ball will have similarity

greater than or equal to one, and correspondingly points outside the ball will have similarity less than

one. The neighbourhood is not symmetrical because its absolute size depends on the distribution of the k

points around the query point. From the unit balls it is easy to see the close relationship with fractional

dissimilarity functions. The balls resemble a truncated version of those for fractional functions. The

important parameter is the size of the local neighbourhood that is isolated by the function K(), or for

fractional functions the value of p. From this we can hypothesise that the retrieval performance of local

similarity functions is likely to share characteristics with that of fractional measures.

Related work

Previous work using a form of localised distance includes the iGrid index of Aggarwal and Yu (2000) and

the bitmap indexing method of Cha (2003). Both of these used a fixed number of equally populated par-

titions to define the localities. Interestingly Aggarwal and Yu (2000) use a bin size inversely proportional

to the number of dimensions. For a 500 dimensional feature this means that a locality of 0.2% of each

dimension will be selected. This should be compared with the results in Section 5.5, which demonstrate
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that going below 5% of the data, for a comparable size of collection, can result in a large drop in the

meaningfulness of results. They experimented with a classification task using non-image data. It is likely

that the difference in performance is down to the characteristics of the feature space. The image search

task, using visual features, appears to behave very differently to other data mining applications.

5.4.4 Metric properties of local similarity

It is interesting to note that if the local function is a metric, and subject to a simple boundary constraint,

then the local similarity function can be formulated as a distance metric. This is a noteworthy result as

it makes this local distance function compatible with the many algorithms and indexing methods that

require metric properties.

To prove this by induction, we first to show that the local similarity function can be made a metric

in the one-dimensional case, and that the required product metric can extend this to the n-dimensional

case. The standard definition of a metric is given below.

Definition 5.1. Let X be a set and d be a function d:X×X → R, then d is a metric on X if it satisfies

the following three conditions for all a, b, c ∈ X:

(M1) d(a, b) ≥ 0 with d(a, b) = 0 if and only if a = b

(M2) d(a, b) = d(b, a)

(M3) d(a, c) ≤ d(a, b) + d(b, c)

As part of the proof we need to show that we can construct a suitable metric on the product set

X = X1 ×X2 and, hence, the n-fold product set. We consider the case when g() in Equation 5.10 is the

identity function. This is a standard proof, shown below.

Lemma 5.2. Let (X1, d1), (X2, d2), . . . , (Xn, dn) be metric spaces and let the product space X = X1 ×
X2 × · · · ×Xn. If we define a function e : X ×X × · · · ×X → R, where

e(x, y) = d1(x1, y1) + d2(x2, y2) + · · · + dn(xn, yn)

then (X, e) is a metric space.

Proof. We first consider the case when n = 2 and show that (X, e) satisfies the conditions (M1)-(M3).

(M1) For all x, y ∈ X , d1(x1, y1), d2(x2, y2) ≥ 0 since they are both metrics. Hence e(x, y) ≥ 0.

For all x ∈ X , e(x, x) = d1(x1, x1) + d2(x2, x2) = 0 + 0 = 0. Conversely, if e(x, y) = 0 then

d1(x1, y1) + d2(x2, y2) = 0. Since they are both metrics d1, d2 ≥ 0, so they must both be equal to zero.

Therefore, x1 = y1 and x2 = y2, so x = y.

Thus e satisfies (M1).
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(M2) Again let x, y ∈ X . d1 and d2 satisfy (M2). Therefore.

e(x, y) = d1(x1, y1) + d2(x2, y2)

= d1(y1, x1) + d2(y2, x2) = e(y, x)

Hence, e satisfies (M2).

(M3) Let x, y, z ∈ X . Then using (M3) for d1 and d2,

e(x, z) = d1(x1, z1) + d2(x2, z2)

≤ (d1(x1, y1) + d2(y1, z1)) + (d1(x2, y2) + d2(y2, z2))

= (d1(x1, y1) + d2(x2, y2)) + (d1(y1, z1) + d2(y2, z2))

= e(x, y) + e(y, z)

Thus e satisfies (M3). Therefore e is a metric on X .

Now consider an n-fold product X = X1 × X2 × · · · × Xn. Initially take the product of the first two

spaces, which is a metric space, and then take the product of this with the third getting a new metric

space. This process can be repeated n− 1 times showing that (X, e) is a metric space.

We now redefine the local similarity function, Equation 5.10, as a distance function in one dimension.

Definition 5.3. Let dL:X ×X → [0, 1], where X ⊆ R. Let x, y ∈ X. A local distance metric is now

defined on the set of points local to x, dl:K → [0, 1], where K = K(X,x, k) ⊆ X. The constant k

determines the number of points that are in K. The members of K are the k/2 points closest to x on

either side. If there are fewer than k/2 points on a particular side of x, then all the points on that side

are in K and the number of points on the opposite side of x is not altered. The distance function, dL,

can now be defined as

dL(x, y) =







dl(x, y) if y ∈ K

1 otherwise.
(5.11)

The following boundary constraint also applies to dl. Let a, b, c ∈ X, b, c ∈ Ka and c be at the boundary

of Ka, then the local metric dl must satisfy

dl(a, b) + dl(b, c) ≥ 1 and dl(a, b) ≤ 1 (5.12)

We are now in a position to state and prove our theorem.

Theorem 5.4. Let X ⊆ R. The function dL is a metric on X.
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Figure 5.4: Cases for proof of M3

Proof. To prove that dL is a metric we need to show that it satisfies the conditions (M1)-(M3).

(M1) Let x, y ∈ X . If y ∈ K then dL(x, y) = dl(x, y) ≥ 0 since dl is a metric. If y /∈ K, then dL(x, y) = 1.

Therefore dL ≥ 0.

For all x ∈ X , x ∈ Kx and dL(x, x) = dl(x, x) = 0 since dl is a metric. Conversely, if dL(x, y) = 0,

then dl(x, y) = 0. Since dl is a metric, x = y.

Thus dL satisfies (M1).

(M2) Let x, y ∈ X and the local areas to x and y be Kx = K(X,x, k) and Ky = (X, y, k). From the

definition of K, y ∈ Kx ⇔ x ∈ Ky and y /∈ Kx ⇔ x /∈ Ky.

There are two cases to consider. If x ∈ Ky and y ∈ Kx then since dl is a metric dl(x, y) = dl(y, x)

and dL(x, y) = dL(y, x). If x /∈ Ky and y /∈ Kx then dL(x, y) = 1 = dL(y, x). Hence dL(x, y) = dL(y, x)

and dL satisfies (M2).

(M3) Let a, b, c ∈ X . There are 6 cases to consider, these are shown diagrammatically in Figure 5.4.

Case 1: b, c ∈ Ka, b ∈ Kc From the definition of K, a, c ∈ Kb and a, b ∈ Kc. Using (M3) for dl,

dL(a, c) = dl(a, c) ≤ dl(a, b) + dl(b, c) = dL(a, b) + dL(b, c)
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Case 2: b, c ∈ Ka, b /∈ Kc Using (M3) for dl,

dL(a, c) = dl(a, c) ≤ dl(a, b) + 1 = dL(a, b) + dL(b, c)

Case 3: b, c /∈ Ka, b /∈ Kc

dL(a, c) = 1 ≤ 1 + 1 = dL(a, b) + dL(b, c)

Case 4: b, c /∈ Ka, b ∈ Kc.

dL(a, c) = 1 ≤ 1 + dl(b, c) ≤ dL(a, b) + dL(b, c)

Case 5: b ∈ Ka, c /∈ Ka and c ∈ Kb . This uses the constraint from Equation 5.12

dL(a, c) = 1 ≤ dl(a, b) + dl(b, c) ≤ dL(a, b) + dL(b, c)

Case 6: b ∈ Ka, c /∈ Ka and b /∈ Kc .

dL(a, c) = 1 ≤ dl(a, b) + 1 ≤ dL(a, b) + dL(b, c)

Thus dL satisfies (M3).

Therefore dL is a metric on X .

Theorem 5.5. Let the product space X = X1×X2×· · ·×Xn and x, y ∈ X. We now define the function

dL:X ×X → [0, 1] as

dL(x, y) = dL(x1, y1) + dL(x2, y2) + · · · + dL(xn, yn) .

dL is a metric on X.

Proof. From Theorem 5.4, (X1, dL), (X2, dL), . . . , (Xn, dL) are metric spaces. Using Lemma 5.2 the

n-fold product space of metric spaces is itself metric. Hence dL is a metric on X .

Many of the obvious choices of local distance function, such as the absolute difference (Manhattan

distance), are metric. A ranking function can be made metric as it is a map from the absolute distance.

The voting function would appear not to be a metric as it violates the condition of (M1) that dl(x, y) =

0 ⇐⇒ x = y. However, with a small modification the local function can be changed into the discrete

metric. This will make the compound distance function into a metric. The modified function is defined



CHAPTER 5. LOCALISED SIMILARITY FUNCTIONS 101

as,

dl(x, y) =







0 if x=y

1/2 otherwise.

The value of 1/2 is required so that the constraint in Equation 5.12 is satisfied.

The ability to turn the function into a metric can be useful because a lot of indexing and clustering

algorithms rely on this property. These include the many variants of metric access methods, described

in Section 6.2.3, that can be used to index feature spaces.

5.4.5 Interesting parts of a feature

Local similarity functions allow us to store and manipulate each dimension independently. In effect we

treat each dimension as a different feature. Taking this viewpoint we can select which dimensions are

more important relative to a given query. Keeping this notion of independence of dimensions means we

have to consider each separately. The only information available is the distribution of points and the

position of the query point within the distribution.

Histogram style features occur frequently in CBIR. In fact nearly any feature can be converted into

a histogram. An interesting characteristic of these is that within each feature vector a large number of

bins have zero value, that is, they are not populated. Figure 5.5(a) shows a typical distribution1 for the

RGB feature. This distribution means that zero is a typical value for a histogram bin. If the query has

the same value then the membership of the local neighbourhood has little meaning. It therefore makes

sense to discard the dimensions where the query points are zero and only use those where the query

value is atypical.

We are hypothesising that these atypical dimensions are the interesting ones for a specific query. This

contrasts with some of the common approaches to finding clusters in subspaces. They generally seek high

density areas and combine these to find candidate clusters. My approach takes the opposite approach

by saying that the low density areas are most interesting. For example, the presence of a colour is more

interesting than its absence. We can draw analogies to text retrieval where unusual words in a corpus

have greater discriminatory power and are give more weight in the search.

The Gabor and convolution features are not histograms (see Chapter 3). However, we can take a

similar approach to that used for histograms and focus on the least populated parts of the distribution,

the tails, as these are most likely to differentiate the image. This method can be applied directly to

the convolution feature. However, with the Gabor feature there is an added complication that each

filter is represented by a pair of values, the mean and variance of the filter response. Examples of these

distributions are shown in Figures 5.5(b) and 5.5(c) respectively. It is clear that there is no obvious typical

value, particularly in the dimension representing the mean, so discarding of dimensions in this manner is

1All the distributions in Figure 5.5 have an area of one under the curve, however, note that the axes are scaled differently.
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Figure 5.5: Example distributions of feature values within a dimension

not straightforward. The two values for each filter are not independent. Ideally they should be combined

into a joint distribution to identify the typical and atypical values. This is shown in Figure 5.5(d). By

doing this we can use the variance dimension to select if a pair of dimensions (mean and variance) should

be discarded. Although treating the joint distribution in this way may not optimal, it does provides a

reasonable heuristic approach for discarding data that carries little information.

This discussion highlights how closely the design of the similarity function and resultant index should

be linked to the characteristic of the feature. Also it indicates a potential improvement to our method

as we could use a two-dimensional index, such as the R-tree, for these pairs of dimensions.

It is interesting that a related approach was used by Heller and Ghahramani (2006) to binarize feature

vectors. They considered the skewness of each dimension. If a dimension was positively skewed then

the images with a value above the 80th percentile were assigned 1 and the remainder assigned 0. For

a negatively skewed distribution images with a value below the 20th percentile were given a 1. Their

method finds its atypical values in the tail of the distribution, with the side of the distribution chosen

depending on the skewness.
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5.5 Experiments and results

This section describes experimental work investigating the performance of fractional dissimilarity and

local similarity functions. With the latter the effect of selecting atypical dimensions is also evaluated.

5.5.1 Experimental setup

The experimental framework used was described in Chapter 3. Four collections were employed, Corel,

TRECVID 2003, Getty and ImageCLEF 2004. Five features were used covering the major types. These

were two joint colour histograms (RGB and HSV), the colour structure descriptor (HDS), the Gabor

texture feature and the convolution feature. Average precision was used as a performance measure.

This experimental setup covers a wide variety of the CBIR tasks. If findings are consistent across these

collections and features, then this gives reasonable confidence that they are generally applicable to image

retrieval.

5.5.2 Performance of fractional dissimilarities

The aim of this practical work with fractional dissimilarities was to ascertain if they improve the perfor-

mance of content-based image retrieval systems. The experiments were designed to address the following

questions:

• Do fractional dissimilarities increase retrieval performance for high dimensional visual features?

• How does the performance vary with the fractional parameter p?

• If there is an optimal p for a specific feature is this stable across different image data sets?

• Is it possible to predict the optimal setting for p from any characteristics of the feature or the

resultant dissimilarity distribution?

• Should the features be normalised for the dissimilarity function?

Corel

The first set of experiments, with the Corel collection, were aimed at determining if fractional dissimilarity

functions gave a significant retrieval performance gain across the range of visual features. The query set

of multiple image queries was used. The results are plotted in Figure 5.6, which shows mean average

precision (m.a.p.) retrieval against p.

The first thing to note from this graph is that all the features show an increase in m.a.p. for fractional

dissimilarities (0 < p < 1). The most significant increases are for the RGB, HSV, HDS and convolution

features. The Gabor feature is relatively flat across the graph, showing only a slight improvement in
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Figure 5.6: Retrieval performance using fractional dissimilarity, Corel collection

retrieval performance for fractional dissimilarities. The position of the maxima vary from feature to

feature but all fall between p values of 0.25 and 0.75.

The HDS feature shows the maximum relative gain in m.a.p.. It increases from 18.2% at p = 1 to

23.6% at p = 1/4, a relative gain of 30%.

Effect of dimensionality

To further study the performance of fractional dissimilarity functions over different dimensionalities, RGB

features with 4 to 512 dimensions were generated for the Corel collection. This allowed the examination

of how the optimum p value varied with dimensionality. The results for single image queries are shown

in Figure 5.7; multiple image queries showed the same characteristics.

The optimum p value increases from 0.25 to 0.5 as the dimensionality increases. This is perhaps

counter-intuitive as it could be expected that the best p value would decrease as the number of dimen-

sions increases. However, the generic behaviour remains the same across the wide range of dimension-

alities investigated. The optimal p value occurs in a relatively stable interval. Indeed the fractional

functions show a consistent improvement over L1 at all dimensionalities. The largest gain relative to L1

performance was 27%, which occurred at 27 dimensions.
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Figure 5.7: Retrieval performance using fractional dissimilarity with varying dimensionalities of RGB
feature, Corel collection

Normalisation of features

The effect of normalisation of features was also tested with the Corel collection. Histogram features are

routinely normalised to sum to one. This makes them all the same dissimilarity from the origin in L1

space. Euclidean normalisation can be used when employing that distance function. It therefore seems

plausible that normalising with respect to fractional dissimilarities may improve performance.

All the Corel experiments were run with with both normalised and unnormalised features. There was

an absolute increase in m.a.p. of between 1–2% after normalising histogram features with respect to the

distance function. This was statistically significant using a significance level of α = 5%. The effect with

a non-histogram feature such as Gabor was less consistent but overall it showed around a 1% (absolute)

decrease in performance. This is because the average level of the filter response is a significant discrim-

inatory value. It seems clear that a gain in performance can be obtained by preprocessing histogram

features in this way.

Getty

Retrieval based on the soft keyword classification of the Getty collection is a significantly different task to

retrieval from the Corel collection. The results in Figure 5.8 again show improved retrieval performance

for fractional dissimilarity functions. As with the Corel experiments RGB, HSV and convolution show
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Figure 5.8: Retrieval performance using fractional dissimilarity, Getty collection

significant increases, HDS has a slight improvement while the others are flat across the range of p. The

largest gain is for HSV, which is up 25%, from 2.4% to 3.0% m.a.p.. The peak improvements all occur

within the range of p from 0.25 to 0.5. It is interesting to note that, in contrast to the results with other

collections, performance does not reduce at the smaller values of p.

TRECVID 2003

The larger TRECVID collection presents another different challenge for image retrieval. The same set

of features, as for Corel, were generated. The retrieval performance is shown in Figure 5.9. The results

show a marked performance increase for fractional dissimilarity functions.

The overall results are very similar to those for Corel and Getty. RGB, HDS, HSV and convolution

features show increased performance for fractional dissimilarities. Similarly, the performance for the

Gabor feature does not improve, but remains constant down to p = 0.25. The maximum gain in m.a.p.

is shown by the RGB feature which increases from 2.0% at p = 1, to 3.2% at p = 1/2. This is a relative

increase of 60%.

The plots from the experiments have the same characteristic shape as for the other collections, with

the maxima falling between 0.25 and 0.75. However, a detailed examination of the optimum p values

for each feature shows that they have changed. This demonstrates that the optimum value of p is not

independent of the data collection.
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Figure 5.9: Retrieval performance using fractional dissimilarity, TRECVID 2003 collection

ImageCLEF 2004

The same features were used with the ImageCLEF collection for consistency. It would expected that the

colour based features would perform less well with this collection due to its mainly monochrome nature.

The results are plotted in Figure 5.10.

Examining the ImageCLEF results we can see that the general trend is similar to those from Corel,

Getty and TRECVID. The convolution feature shows performance gains for fractional p values: this is

a much larger relative gain than for TRECVID. The three colour features are relatively flat across the

graph, dropping below their L1 values with p < 0.25. The performance of the Gabor feature reduces

slightly with fractional p values.

To explain these results we must consider the characteristics of the collection. It contains a large

proportion of monochrome images, and because of the medical subject, contains groups of near identical

images. For example, X-rays of a specific part of the body will always be composed in exactly the

same way. Texture, shape are layout dominate the information within the image. The tiled Gabor

feature discriminates texture and layout extremely well, hence its excellent performance. Convolution

also detects shapes within an image. The effect of the monochrome images on colour features will be to

reduce the dimensionality. Qualitatively this explains the reduced gain for the colour features.
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Figure 5.10: Retrieval performance using fractional dissimilarity, ImageCLEF 2004 collection

5.5.3 Performance of local similarity

An extensive range of experiments with local similarity was carried out. This Section contains a represen-

tative sample of results. The aim was to determine the effect of varying the size of the local neighbourhood

and the actual local function used. In addition experiments were carried out to determine the impact of

using only the dimensions where the query value was atypical.

The results graphs are of mean average precision retrieval against the fraction of data selected by

the similarity function. This is the proportion of the entire data set that would need to be loaded from

disk and can be taken as an indicator of the speed-up in query time. In the implementation each sorted

dimension is stored contiguously on disk. This enables the retrieval of the minimum numbers of disk

blocks required. Implementation and efficiency are discussed fully in the next chapter.

The region of the mean average precision graphs covering less than 40% of the data are most inter-

esting as this level will give a significant speed-up. For proportions of data above 50% it was found that

boundary and normalisation effects caused very variable performance. Some heuristics were developed

and tested with the aim of smoothing out these variations. These were partially successful. However,

results in this region have been excluded as they are misleading and are of no real importance when

considering the goal of speeding up search. With 100% of the data boundary effects no longer occur.

However, at this point the results may also be misleading. For example, a local L1 function may give

results very different from the usual L1 distance because of the normalisation that occurs in the local
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Figure 5.11: Retrieval performance using local L1 function, Corel collection

similarity function.

Corel

Figure 5.11 shows the performance of the local similarity function, across the different features, using a

Manhattan local distance function. These are averaged for a range of multiple and single image queries.

From the graphs we can see that — although there is some variation — the retrieval performance remains

the same down to 5–10% of the data. After this point m.a.p starts to drop off. For several of the features

performance actually increases as less data is examined. Overall this is an exciting result as it means

that up to 95% of the database can be ignored while maintaining retrieval performance. The absolute

performance is not as good as the best achieved with fractional dissimilarities. However, it is between

that obtained with an L1 and L2 metric.

TRECVID 2003

Figure 5.12 shows the results for TRECVID using a Manhattan local function. The results are similar

in form to those obtained with Corel. Performance is maintained around L1 levels down to 5–10% of the

data, expect for the Gabor feature which shows a reduction in performance.

The graph in Figure 5.13 shows the retrieval performance with a range of local functions using

the RGB feature. The most interesting thing to draw from this is, that with 0–50% of the data, the
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Figure 5.12: Performance using local L1 function , TRECVID 2003 collection

performance of all the functions have the same characteristic shape. This indicates that the dominant

factor is the membership of the local neighbourhood, rather than the form of the local function. As

expected from 50–100% the performance of the voting function degrades rapidly as each dimension votes

for all the objects. This is not a problem as this is not a region of interest.

Further experiments with other features and collections confirmed that they all exhibit the same

characteristic. This is another exciting result as it means that the simplest local voting function will

perform at a similar level to the more computationally intensive functions. This gives another avenue for

increasing efficiency as there is no need to retrieve and process accurate distances. It therefore appears a

good candidate for the fastest search method. There is still potential to exploit varying the local function

in an image retrieval system but the voting measure is a good baseline that will be a challenge to beat

consistently.

ImageCLEF 2004 and Getty

Figure 5.14 shows the results obtained with the ImageCLEF collection using a ranking local function.

Again performance was maintained down to 5–10% of the data. The performance of all the features,

except Gabor, is comparable with that obtained using a Manhattan metric.

Finally, with the Getty collection results are shown using the voting function, Figure 5.15. Perfor-

mance above 40% drops off rapidly to random at 100%. However, between 5 and 20% performance is just
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Figure 5.13: RGB performance for all local functions, TRECVID 2003 collection

Feature Proportion non-zero (%)
RGB 22
HSV 49
HDS 16

Table 5.1: Proportion of non-zero elements in typical histogram features

below the maximum obtained with fraction dissimilarity functions and comparable with the Manhattan

metric.

Selection of dimensions

An experiment was run with histogram features to compare the performance of either using all dimensions

or only those where the query has a non-zero value. This was done using the Corel collection. The results

were conclusive. The dimensions where the query was zero could be discarded with no loss in performance.

Indeed in all cases there was an absolute improvement of around 1% in mean average precision. The

effect on the amount of data looked at is significant. Table 5.1 shows typical proportions of non-zeros in

the colour histogram feature vectors. These statistics were obtained using the Corel collection.

With non-histogram features experiments initially showed the effect to be similar. Dimensions were

selected on the basis of how atypical they were. A large proportion of the dimensions, around 30%, could

be discarded with a slight increase in performance. The proportion is less than that with histogram
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Figure 5.14: Performance using local ranking function, ImageCLEF 2004 collection
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Figure 5.15: Performance using local voting function, Getty collection
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features, but is still significant.

The same experiment was then performed but this time random dimensions were discarded. Interest-

ingly a similar effect occurs: randomly discarding around 20% of the dimensions was not detrimental to

performance. As the proportion of dimensions discarded was increased the performance gap between ran-

dom and atypical selection widened. With the histogram features, randomly choosing which dimensions

to discard caused a significant drop in performance.

The work by Indyk and Motwani (1998) on approximate nearest neighbours and Bingham and Man-

nila (2001) on dimensionality reduction, both use random projection in Euclidean space. They show that

this method is an effective dimensionality reduction approach in high-dimensional space. Our results

with random dimension selection in local similarity space concur with their findings. However, we have

shown experimentally for CBIR that random selection is always beaten by an atypical selection method

when used with localised similarity functions.

The consequences of these results are that further reductions can be made in the amount of data

examined. Using a 10% width neighbourhood with histogram features we will only need to look at 1.6

– 4.9% of the data. With non-histogram features this rises to 7%.

Multiple image queries

Using several images as a query can commonly occur, for example, where a user selects several positive

images from an initial set of results. The results in the previous section used multiple image queries

where these were available. Presentation of these aggregated results hides some interesting behaviour

that is revealed when single and multiple image queries are considered separately.

Section 3.4 describes two approaches to multiple image queries. In general, performance improves

with multiple image queries where the images are visually similar. A multiple query can be compared

to a query expansion. Each image is potentially within a cluster of relevant images in the feature space:

different images can be in the same or different clusters. Pickering and Rüger (2003) showed that in an

image retrieval context the k-nn approach outperformed the VSM model. K-nn uses both positive and

negative images. In the experiments positive images come from the query and the negative images are

randomly selected from the collection. This process makes k-nn results more expensive to compute than

those using the VSM method.

The Corel collection has six sets of queries. Each set contains 630 n-image queries where n takes

the values between one and six. Table 5.2 shows results for query sets using one, three and six images.

The table shows mean average precision for the HSV feature using the different similarity functions. As

a contrast to the previous results these were computed using the VSM approach. These results show

the typical behaviour of the localised similarity function. The mean average precision for single image

queries is below that of both L1 and L2, however it responds well to multiple images. For both three



CHAPTER 5. LOCALISED SIMILARITY FUNCTIONS 114

Method Number of images
1 2 3

Local - L1 13.4 18.9 21.2
Local - vote 13.2 18.5 20.8
L1 16.4 21.1 23.0
L2 12.9 15.4 17.2

Table 5.2: Mean average precision (%) for multiple image queries using HSV feature – Corel collection

and six image queries the performance sits between that of L1 and L2.

5.5.4 Summary of results

Table 5.3 brings together the results for each method and collection. From this we can see that fractional

dissimilarity functions outperform the other similarity functions in nearly all cases. The increase in mean

average precision is largest when fractional functions are used with the colour histogram features. In a

similar manner L1 distances consistently outperform L2. The Lp, p > 0, functions are all based on the

same underlying formula. It would be expected that there would be a gradual change in performance as

p is varied. This relationship can be clearly seen in the graphs in Section 5.5.2.

Local similarity functions are computed quite differently to the Lp functions, so it is interesting to

consider their relative performance. In most cases their performance falls between that of L1 and L2.

However, it is notable that with the TRECVID and ImageCLEF collection the mean average precision

using the Gabor feature is significantly below all others. On the positive side, with the TRECVID

collection the performance of local similarity with the RGB feature is well above that of L1. In general

there is a degree of variation in relative performance across collections and features. We can conclude

that the performance of local similarity functions is comparable with that achievable using Manhattan

and Euclidean distances.

5.6 Conclusions

This chapter has investigated and evaluated the idea of localising similarity. That is, in each dimension

giving more weight to points that are close to a query point. Two classes of similarity function that have

this characteristic were investigated using a content-based image retrieval task. These have the common

property of contractive behaviour, that is, they emphasise the membership of small clusters that exist

in subspaces of a complete feature space. The experiments showed that these similarity measures can

improve retrieval performance and indexing efficiency within high-dimensional visual feature space.

The first approach was fractional dissimilarity. The results show that these functions give a significant

improvement, in mean average precision retrieval, over the commonly used Euclidean and Manhattan
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Collection Method Feature
RGB HSV HDS Gabor Conv.

Corel Fractional 28 28 24 18 18
Local 19 20 18 15 13
L1 24 23 18 17 14
L2 18 17 15 15 11

TRECVID Fractional 3.3 2.6 1.7 4.0 1.8
Local 2.6 1.8 1.6 2.0 1.6
L1 2.0 1.8 1.6 3.9 1.6
L2 1.2 1.2 1.5 4.1 1.6

Getty Fractional 3.1 3.0 2.7 2.7 2.0
Local 3.1 2.8 2.6 2.3 2.0
L1 2.6 2.4 2.6 2.3 2.0
L2 2.4 2.1 2.5 2.2 2.0

ImageCLEF Fractional 21 17 17 30 21
Local 17 16 17 22 15
L1 18 16 18 33 17
L2 17 14 17 32 13

Conv.=Convolution

Table 5.3: Mean average precision (%) for each similarity function and collection

distance metrics. The performance gains were consistent when using high dimensional visual features

over four different image collections.

By experimenting across very different data sets it was shown that for fractional dissimilarity the

optimum value of p for a feature cannot be determined by training on a single collection. It is linked

to the combination of both feature and data set. The greatest gains in performance were achieved with

sparse histogram features. These also benefited from normalisation of the feature with respect to the

dissimilarity measure. Qualitatively there appears to be a link between the sparsity of the feature vector

and how much a fractional dissimilarity function improves retrieval performance.

It was also demonstrated that a choice of p ∈ (0.25, 0.75) improves mean average precision across

most feature and data set combinations. To find the optimum p the dissimilarity function would need

to be learnt for each collection. However, experimentally it was shown that a value of p = 0.5 can be

expected to improve retrieval performance in nearly all circumstances. This is a robust choice for the

parameter in circumstances where it is not possible to tune it to the specific collection and feature.

In the second approach I generalised a class of local similarity functions that are designed to address

the problems associated with indexing high-dimensional feature space. The features are stored and

indexed component-wise. For each dimension only those objects close to the query point are retrieved

and then a local distance function is applied to this subset. Thus, the amount of data looked at can be

dramatically reduced. Results showed that the performance of local similarity functions was at a similar

level to that obtained using a Manhattan or Euclidean metric in the full feature space.

A local neighbourhood of 10% gives robust results in most situations, with the collections tested. It
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was shown that it is the membership of the local neighbourhood that drives the performance of this mea-

sure. This means that a simple voting function can give excellent retrieval performance. Alternatively,

the local function can be varied at query time to squeeze the last bit of performance out of the system.

The local similarity function can be turned into a distance metric with use of a suitable local distance

function. This was proved in Section 5.4.4. This result means that the metric can be applied to indexing

and clustering methods that rely on this property.

With histogram features it was found an improvement in retrieval performance could be obtained

by ignoring dimensions where the query value was zero. For non-histogram features, such as Gabor,

selection of atypical dimensions gave a similar improvement. On average for histogram features 16–49%

of the dimensions need to be considered and with non-histogram features 70%. This means that, for

content-based image retrieval with the collections and features used, we can prune 93% to 98.4% of the

data and still get comparable results to a full sequential scan.

Overall, the best fractional dissimilarity function will beat the retrieval performance of a local sim-

ilarity function. However, as the size of an image collection grows the much greater search efficiency of

local similarity may be a worthwhile trade-off for a small loss in average precision. In the next chapter

we describe the practical implementation of a local similarity index. Using this implementation we can

then investigate the retrieval performance and search speed of the local similarity index with much larger

image collections.



Chapter 6

Searching large collections

6.1 Introduction

This chapter describes the implementation and evaluation of a local similarity index for CBIR. Different

implementation strategies are discussed. The choice of which option is best will depend on the charac-

teristics of the collection: particularly its size and how frequently it changes. A test implementation is

described and then evaluated with large image collections. The aim of these experiments is to determine

how both the retrieval precision and the time taken for an individual query vary, as the size of the

collection is increased.

The next section reviews some alternatives for indexing feature spaces. These are considered and

their strengths and weaknesses discussed. The review is not exhaustive, but aims to highlight the main

ideas of high-dimensional search and indexing. This enables us to draw some conclusion as to what

methods may be suitable for CBIR.

6.2 Indexing feature vectors

The practical issue with indexing high-dimensional spaces is how to reduce the amount of the data

searched. If we can do this successfully it will have two benefits: reducing the number of distance

computations and the amount of data loaded from disk or memory.

A single Euclidean distance calculation, for a p dimensional feature, will have p multiplications and

(2p−1) additions. These operations will take some time. However, the most significant bottleneck when

searching any large database is the time taken to load the data from disk or memory. Accessing data

that is in memory will be much faster than loading it from disk. Memory is becoming cheaper, and this

has resulted in an increase in the amount usually available on a PC: 1GB is common. Many data sets

are small enough to be loaded into this amount of memory. However, if we want to truly scale up CBIR,

117
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using multiple features, then it will be necessary to store the features on disk.

This remainder of this section gives an overview of indexing methods. In the conclusion we explain

the reasoning behind approach we have taken for a CBIR search task.

6.2.1 Dimensionality reduction

It is likely that a real feature space may have an intrinsic dimensionality lower than the apparent data

space. Often we make this so by building high-dimensional features. In certain cases it may be that not

all elements of the feature are relevant. Dimensionality reduction methods aim to extract the significant

information, within a feature, into a lower dimensional space. This is often used as a first stage in

indexing, to reduce the data to a dimensionality to a degree that is manageable by a traditional indexing

method.

Ideally a dimensionality reduction method should preserve proximity. That is for the mapping f ,

d(x, y) ≤ d(x, z) implies d′(f(x), f(y)) ≤ d′(f(x), f(z)). Although this holds for translation and scaling

in any Minkowski metric space, it only holds for rotation in a Euclidean space.

The most popular dimensionality reduction methods are based on singular value decomposition

(SVD). These are transforms in Euclidean space and therefore preserve proximity. However, they are

not proximity preserving for other distances measures such as L1. SVD and its other versions (PCA,

KLT) are effective and used widely as a pre-processing step. However, they are global methods that aim

to preserve the main structure of the feature space. This means that a lot of the local detail, which may

discriminate between images, is lost.

Several local dimensionality reduction techniques have been introduced to get round the problems of

global SVD-based methods. The approach of Chakrabarti and Mehrotra (2000) finds locally correlated

clusters and then performs dimensionality reduction on these. Other methods take a non-linear approach,

aiming to find a lower dimensional manifold that the data lies on (Belkin and Niyogi, 2003). Another

dimensionality reduction approach is to employ space filling curves. Lawder and King (2000) implemented

a system using these for indexing multi-dimensional spaces. This was shown to be effective in spaces

with up to eleven dimensions.

Although dimensionality reduction methods have been used with great success for some image search

domains, such as face recognition, they have not been widely adopted for CBIR. A significant drawback

for indexing large collections is that they are computationally intensive. Also, the transform to lower

dimensional space can be sensitive to changes in the image collection, and hence require recomputing if

there are updates to the data.
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6.2.2 Hierarchical structures

A significant family of methods partition the feature space or data points into hierarchical structures.

This section gives a brief view of the proliferation of these methods. A wider review is given in the survey

by Böhm et al. (2001), while the recent book by Samet (2006) gives more detailed descriptions.

We first consider a class of methods that work well in relatively low-dimensional spaces. The simplest

of these is the grid. This divides the space into squares, each then having a list of points within it.

Developing this slightly we get the Quadtree of Finkel and Bentley (1974). This combines the grid and

a binary search tree. The grid is no longer of equal squares but each block is decomposed when they

contain more than a set number of points. The fanout of a quadtree is high, 2p for a p dimensional

space. This restricts its usefulness to low dimensionalities. The final variants of this type are based on

the K-D tree of Bentley (1975). These partition the space dependent on the value of a single attribute

(dimension) so can be represented by a binary tree.

The second class of methods are based on minimum bounding rectangles (MBR). These are a partition

of the space defined by the minimum and maximum values in each dimension. The original index of the

type was the R-tree developed by Guttman (1984). As points are added the space is split into nesting

MBRs. In this way points are grouped into hierarchies and then stored in a disk based structure. As

the structure develops the MBRs will start to overlap. A point will have a single MBR, but the area

that this spans may be in several MBR’s. This is the drawback of these structures – that they are not a

disjoint decomposition of the space.

There have been many variants of these approaches that have proved successful in different circum-

stances. To make them more effective the bounding box overlap needs to be minimised and the fanout

managed. Various algorithms have been developed to do this. They generally look at the increase in

overlap following an insertion and minimise this. In addition the algorithms calculate the optimum axis

and position to split a node when it overflows. Beckmann et al. (1990) developed the R∗-tree, which

aims to do this by minimising the overlap with the adjacent MBR’s. It carries out forced reinsertion

when the leaf node overflows, rather than splitting it. The X-tree of Berchtold et al. (1996) takes an

different approach. Where splitting an overflowing node would create too much overlap, it instead creates

a supernode of two disk blocks.

White and Jain (1996) developed the SS-tree. This is based on minimum bounding hyperspheres

(MBS) rather than rectangles. The idea behind this is that in Euclidean space query regions are also

hyperspherical. The SR-tree (Katayama and Satoh, 1997) aims to reduce the volume of the minimum

bounding boxes, and thus reduce node overlap. This is done by defining the bounding boxes by the

intersection of MBRs and MBSs.

An alternative partitioning method is the Pyramid Technique (Berchtold et al., 1998). The hypercube

is subdivided into pyramids with their tips at the centre of the data space. The pyramids are two
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dimensional and have one of the faces of the hypercube as their base. The data space is then subdivided

by peeling off hypervolumes close to the boundary. This method works well with high-dimensional spaces,

but is adapted only for the maximum metric, L∞. The maximum metric returns the maximum value

from the set of distances from the query point in each dimension. This is not a suitable metric for search

using high-dimensional visual features as this maximum value is likely to contain little discriminatory

information.

6.2.3 Distance metric indexing

Another major class of indexing methods is based on using the triangular inequality property of metric

spaces to prune the search space. These methods identify a set of pivot (or vantage) points, and sort

the other objects based on the distance from the pivots. This forms the index and can then be used to

prune the search space. There are then two general methods: hyperplane partitioning as used in the

Geometric Near-neighbour Access Tree (GNAT) (Brin, 1995), and ball partitioning used in the vantage

point tree (vp-tree) (Yianilos, 1993).

As with the hierarchical methods the number of algorithms using distance based indexing has prolif-

erated. The survey paper by Chavez et al. (2001) provides a good overview of these methods, and again

the book by Samet (2006) provides more, in depth, details.

6.2.4 Sequential scan and compression

The methods described in the previous sections were all shown to perform well in the original papers.

The evaluations were with different collections (usually non-image) and feature dimensionalities. They

performed well up to medium dimensionality levels (10-20). In Section 5.2 we discussed the effects of

high dimensionality on indexing methods that partition the feature space. Weber et al. (1998) showed

that above a certain dimensionality all tree structures collapse to a point where every disk page must be

accessed. When this happens a sequential scan of the data will be much more efficient as the I/O cost

will be reduced (see Section 6.3.1 for a discussion of disk access times).

They established that for every clustering and partitioning method there is a dimensionality above

which a simple sequential scan performs better. At this point the complexity of these methods will be

O(n), but added to this the disk access will be random. In their practical evaluation, they found that a

sequential scan outperformed the X-tree and the R∗-tree for dimensionalities greater than ten. This led

them to develop the VA-file, which accepts the fact that the linear scan is inevitable and attempts to

optimise it using quantisation to compress the data. Using this they achieved search times of 12.5–25%

of a full linear scan.

The VA-file was improved by using a better quantisation method (Ferhatosmanoglu et al., 2000).

This method, the VA+ file, uses PCA to transform the feature space into new orthogonal dimensions.
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The number of bits used for quantisation is varied depending on the significance of the dimension, and

then clustering is used to determine a non-uniform quantisation scheme.

The compression of data to reduce the space requirement is an attractive proposition for indexing.

Several researchers have combined compression with other techniques. The IQ-tree, introduced by Berch-

told et al. (2000), is a hybrid of the R-tree and VA-file. It uses a set of MBRs pointing to leaf nodes

containing compressed data. These can be thought of as VA-files for the data within the MBR. Below

this level are pages containing the uncompressed data. By identifying the relevant MBRs for a query,

the amount of compressed data scanned can be reduced when compared to the full VA-file. The A-tree

(Sakurai et al., 2000) stores a compressed representation of bounding boxes of child nodes in its inner

nodes. The children are defined relative to their parents, thereby allowing quantisation with fewer bits.

These methods often perform better than the similar methods that do not use approximations.

6.2.5 Inverted files

Another group of methods take the approach of vertically decomposing the feature space into separate

dimensions: Each dimension is stored and indexed separately. This gives a very flexible structure as

dimensions can be treated differently depending on their significance.

Müller and Henrich (2004) created the inverted VA-file. This stores each compressed dimension at

different quantisation levels, and only retrieves at the accuracy needed dependent on the query. They

used this to significantly speed up searches using the histogram intersection measure.

The Branch-and-bound on Decomposed Data (BOND) system was developed by De Vries et al.

(2002). It maintains a separate table for each dimension, containing all the vectors in the repository.

The distance between a query point and the data points is accumulated by scanning the dimensions

in turn. As partial distances of each vector are built up the lower and upper bounds on the complete

distance can be computed. Those vectors that can no longer be in the nearest neighbour set are discarded,

thus pruning the search space. This process is applied iteratively until the required number of nearest

neighbours is obtained. One drawback of their method is that the pruned set will not necessarily be

stored contiguously on the disk, so there may be a degree of random disk access.

Aggarwal and Yu (2000) introduced the iGrid index which uses the concept of local similarity. The

function defined in Equation 5.10 is a generalisation of their approach. In the iGrid index the feature space

was vertically decomposed and each dimension split into bins. The amount of each dimension selected

for a query was inversely proportional to the dimensionality of the feature space. They demonstrated

that for a non-visual classification task the results from the index showed improved meaningfulness over

using the Euclidean distance. Cha (2003) also used a type of localised similarity function, but instead

of storing dimensions independently used a bitmap representation. Evaluation of this showed improved

speed of search but no results showing the meaningfulness of the search were presented.
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6.2.6 Summary

This section has reviewed indexing methods for high-dimensional vectors. Efficient indexing is the key

to scaling up CBIR, and for the search of high dimensional features in general. The main bottleneck for

very large collections is the time taken to access the data. A selection of the huge number of hierarchical

partitioning and clustering methods proposed for high-dimensional indexing have been reviewed. Al-

though these are very effective for medium dimensionalities, it has been shown that for high-dimensional

spaces they all will perform worse than an optimised sequential scan. It should also be taken into account

that with CBIR we are interested in returning a ranked list of the nearest neighbours, not just finding

a single nearest neighbour. This is likely to degrade the indexing performance of these methods even

faster.

The sequential scan is the most stable method, giving repeatable performance. For this reason

sequential scan is often used as a benchmark for other systems. It has the added benefit in this respect

that it is easy to implement correctly and efficiently. Similarly the VA-file, which optimises a linear scan,

can be regarded as a target that other indexing methods should aim to beat.

The implementation tested in this chapter uses an approach based on localised similarity functions.

These store and index each dimension separately allowing the data searched to be pruned drastically.

In addition, this data structure has intrinsic flexibility as each dimension can be treated differently at

query time. In the previous chapter we showed that this method produced good retrieval results for a

range of CBIR collections and features. In the remainder of this chapter we aim to demonstrate how

effectively it can be applied to the task of searching large collections.

6.3 Implementation of an image search system

Image retrieval is a practical discipline driven by the requirements of users. When implementing a real

system there are lots of issues that appear. This section explains what is important when working with

localised similarity measures in a practical context. The aim is to give some alternative choices of data

structures and algorithms that are available to the implementer of a CBIR system. These choices are

driven by the characteristics of the collection, primarily its size and changeability. Within the discussion

the implementation of the test system, used for scalability experiments, is described.

6.3.1 What slows down search?

From Figure 2.2 in Chapter 2, we can see that to perform a search a CBIR system needs to, compute

features for the query image, compare these with the features in the database and then rank the images

in order of relevance.
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The generation of features for the query image takes a fixed time, so will not vary with the size of

the collection. Complex features may take longer to compute, but this is not an issue considered in this

chapter. It is the actual search time that increases with the size of the database. The search comprises of

three stages: loading the features, performing the similarity comparison and ranking the output. Which

of these components dominates the time taken will depend directly on the size of the collection.

To discuss this, we first need to consider the relative speed of components of PC hardware. CPU

technology has continued to advance rapidly since its introduction. On new home computers CPUs have

clock speeds of several GHz. Within the CPU itself there is a hierarchy of memory including registers,

L1 and L2 caches. These operate together to make computation very fast. The on-processor memory is

limited in size so there is often a requirement to fetch or save data to the main memory. This is normally

random access memory (RAM). Here memory latency becomes a limiting factor; the speed of RAM is at

least an order of magnitude slower than processor memory. As the data storage requirement increases it

becomes necessary to utilise a secondary store, normally a hard disk. These are mechanical devices and

their transfer rates are much slower than RAM. There is an added issue because data on disk is stored

and retrieved sequentially. The retrieval time for a given disk page will consist of the seek time, where

the disk head moved to the required block, and the transfer time. This means that randomly accessing

data on disk may be up to ten times slower than retrieving data sequentially from contiguous disk blocks.

More detailed discussion of these issues can be found in the latest edition of the classic undergraduate

text by Hennessy and Patterson (2006).

If we restrict these discussions to the search of high-dimensional features routinely used in CBIR

systems, we can discount the use of hierarchical indexing techniques. As described in Section 6.2 they

can often be much slower than a sequential scan of the entire feature space.

So when considering a search of high-dimensional feature space, we have a large amount of data that

needs to be compared. Computation of the relatively simple similarity measures is fast, so the most

significant factor will be the time taken to access the data. Small collections can be loaded into memory

in their entirety. Under these circumstances memory latency will be the limiting factor in the search

speed.

As the number of images in the collection increases, it will get to a size when disk storage of features

is the only option. Disk access is one to two orders of magnitude slower than main memory and this

will now become the bottleneck for search speed. The simplest approach in these circumstances is to

save the feature database in a single contiguous file and perform a sequential scan. Although this may

appear naive, it can often be fast enough because disk access of contiguous disk blocks is much faster

than when they are spread around a disk.

The local similarity index will reduce the amount of data that needs to be loaded. However, this will

be at the expense of some additional search operations that also lead to the need for a degree of random
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Figure 6.1: Local similarity index

disk access. In the next subsection the implementation of a test system is described.

6.3.2 The local similarity index

Local similarity functions consider each dimension of a feature independently. This means that the

feature database can be decomposed vertically and each dimension indexed separately, Figure 6.11. This

structure has two advantages: there are very effective methods of indexing one-dimensional vectors, and

the underlying data for each dimension can be stored sequentially.

To compute local similarity we need to find the objects that are within a certain range around the

query point in each dimension. There are two stages to this, find the query point and retrieve the range.

At an abstract level, because of the need to retrieve ranges, the best data structure is one where

the actual data for each dimension is stored contiguously. This can be indexed by a tree that provides

O(log n) search. For a static collection we can achieve this by either storing the data in contiguous disk

blocks or in memory. This was the design of the system used for the experiments in this chapter.

The implementation was kept simple to minimise the factors that may influence results. Each dimen-

sion consists of a set of points sorted by the element value. Each point was a tuple of a value and image

id. The value was stored as a 4 byte float, and the id as a 4 byte integer. For the size of collections tested

it would be possible to store the image id in three bytes, however, for simplicity this was not done. With

histogram features we have already shown that it is beneficial to ignore zero valued elements. There is

no need to store these at all. Similarly with the other feature types there is no need to store the points

with “typical” values. Doing this saved considerable storage space. Each dimension was sorted by the

feature value and then saved as a separate file on disk. These files were mapped into memory using the

sys/mman library2. The loading and caching of the files into main memory was left to the hardware and

1Interestingly the Nobel Prize winning work of Hubel and Wiesel showed that the V1 cells of the visual cortex are
organised in hyper-columns. The structure of the local similarity index resembles this orientation within the brain

2This library is specific to Linux, memory mapped files can be created on Windows using the CreateFileMapping function
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operating system.

To find the query point, a binary search tree was constructed for each dimension file. These were

stored in memory rather than on disk to enable rapid search. The leaf nodes of the tree were pointers

to each page of the dimension file. This reduced the size of the binary tree needed. Each disk page of

4KB3 can store 512 points (value/ id pairs). Once the required pages had been loaded into memory a

binary search was performed to find the exact query position. As each dimension file was static it was

easy to ensure that the associated binary tree was balanced.

Alternatives and extensions

The test implementation was based on indexing a static feature database. This would need to be rebuilt

each time changes to the collection were made. If the collection changes frequently then it would be

better to use a data structure that would allow easy insertions and deletions. A disk-based data structure

that fits these requirements is the B+ tree. This is a type of B tree, which is a multilevel index with

multiple keys stored at each node (Bayer and McCreight, 1972; Comer, 1979). The nodes are stored on

individual disk blocks enabling efficient access. The B+ tree has all data stored in the leaf nodes, and

has pointers between the leaf nodes so that they form a linked list. This is useful for range search. The

algorithms that insert and delete points in the tree ensure that each node will be at least half full (except

for the root). There will almost always be some space that is not utilised. This overhead is the trade-off

for being able to easily update the collection.

The cache-oblivious B tree could be an alternative to using a B+ tree for storing and indexing

dimensions. The details and benefits of these were explained by Bender et al. (2005). They are not

dependent on any system-specific parameters and have been shown to be very efficient. In addition they

use a packed-memory array to store the actual data. This would be ideal for the range search required

for the local similarity index. This structure may give a speed advantage over the linked list of leaf pages

in the standard B+ tree.

On a different note a ”filter and refine” approach could be adopted. This is where the top ranked

results from the local similarity index are re-ranked using another similarity function with the full feature.

This could be the fractional function, as described in Chapter 5, which may potentially give better results.

6.4 Experiments

The aim of the experiments described in this section was twofold: firstly, to determine how the retrieval

performance varies for different local neighbourhoods and collection size; secondly, to measure search

times for each configuration as the collection size is increased.

3This was the actual page size for the disk used. A larger page size may make disk transfer more efficient.
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For these experiments it was necessary to construct a large, variable size, image collection with ground

truth. The Web Collection described in Section 3.2.3 was created for this purpose. To provide queries

and ground truth it was combined with the Corel collection. The test subdivision of Corel (4644 images)

was included in each sub-collection, together with the required number of web images added to make it

up to the desired size. Collections of 16, 32, 64, 128, 256, 512 and 1024 thousand images were created.

The design of this collection has its limitations. It is the combination of a fairly homogeneous

collection (Corel) with one that is heterogeneous. This may make it easier to find relevant images than

in a truly heterogeneous collection. As the size of the collection increases the proportion of relevant

items to non-relevant will decrease. Each query has, on average, 69 relevant images. For the smallest

collection the proportion of relevant images is 0.4%, this decreases to 0.007% for the largest collection.

This variation does not necessarily mirror what would occur for a real query. These characteristics must

be remembered when interpreting results obtained using this collection.

The choice of performance measurements should reflect the needs of a person doing a search. The

user is likely to be most interested in what is returned on the first page of results, say twenty images.

They may look deeper into the results, but are unlikely to go beyond five pages, or one hundred images.

Under this assumption results beyond this point become irrelevant. We have therefore decided to use

precision at twenty (P20) and one hundred (P100) returned images as evaluation measures. If a system

returns relevant images in these ranges then the user’s search may be satisfied. Alternatively, they will

be able to refine their query with more suitable pictures, perhaps building a multiple image query. This

search scenario may not fit all circumstances, but it gives a reasonable reference point.

Evaluation of response times was discussed in Section 3.3.3. The measure used was a wall clock time

averaged over one hundred searches. Times for a linear sequential scan are given as a baseline. A time

of one second is used as a target for an acceptable response time. Ideally we would want to be able to

complete a multiple image query with several features within this target time.

Results are shown for the RGB feature. This is a joint colour histogram with 512 dimensions, see

Section 3.5. Performance with other features showed the same general characteristics.

6.4.1 Retrieval performance

The set of 630 single image queries were run using local neighbourhoods of 10%, 5%, 1%, 0.5% and 0.1%

of each dimension. The P20 and P100 results for collection sizes up to 1,024,000 images are plotted in

Figures 6.2 and 6.3 respectively.

As expected the absolute results decrease with increasing collection size. With the smaller collections

there are large differences between the precisions for different neighbourhood sizes. The largest neigh-

bourhood of 10% gives the best results. This reflects the results in the previous chapter. If we consider

that a 0.1% neighbourhood will only include 16 images out of 16,000 then it is not surprising that the
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precision is low.

As the collection size increases the P20 results tend to the same value. What is interesting is that the

0.1% neighbourhood gradually overhauls the others. By one million images it is giving the best precision

of 4%. It should be noted, however, that the differences in precision at this point are not statistically

significant. A P20 of 4 percent equates to an average of 0.8 of an image in the top twenty.

The P100 results show similar behaviour, except in this case precision for the 0.1% neighbourhood

leaps above the others by a collection size of 256,000 images. It keeps an advantage of over 0.6% up to

the maximum collection size tested. At this point there is an average of 2.3 images in the top 100. This

performance is achieved using a neighbourhood of 1,024 points in each dimension.

Considering the P20 and P100 results together we can see that, in general, relevant images are

retrieved near the top of the results list. Detailed examination of the results showed that with the

largest collection size an average of one relevant image was retrieved in the top 30 results.

The use of averaged query precisions does mask some interesting details. For a collection size of

1,024,000 images the median query of the result set returns just one image in the top 100. A significant

proportion of queries return no relevant images in the top 100. However, this is a common occurrence

with all CBIR systems. There are “hard” queries where CBIR is unable to find relevant images. Overall,

the performance of the local similarity index with large collections is good, and it should be able to

satisfy a real user search need.

6.4.2 Speed of search

Measurements of search speed are not as precise and repeatable as precision measurements. There are

many variables including the hardware, operating system, collection and queries. For example, caching

occurs at disk, operating system and CPU level. The resultant behaviour is complex and difficult to

predict. Therefore we have tried to interpret the results to determine general trends rather than treat

them as precise measurements.

Experimental set-up

The experiments were run on a standard desktop PC with an AMD Athlon 64 3700+ 2.2GHZ processor

and 1GB of RAM. The system had a single Maxtor 6L200SO disk. The specification of this was as

follows: 8MB buffer, ATA-150 interface, 9ms seek time and 150Mb/s (18.75MB/s) data transfer rate.

The operating system was Linux 2.6.19 and programs were compiled using gcc 4.1.

As discussed in the previous section the RGB feature was used for testing. An individual feature

comprises of 512 floats (each taking up 4 bytes) thus has a size of 2KB. So a collection of 1,024,000

features will take up 2GB. This will be the size of the corresponding linear scan file.
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Collection size Sequential scan Local index
in (’000) L1 L1/2 10% 1% 0.1%
16 0.097 0.13 0.016 0.0058 0.0026
32 0.19 0.29 0.027 0.0052 0.0047
64 0.39 0.41 0.054 0.012 0.0063
128 0.77 0.82 0.10 0.018 0.0084
256 1.5 1.6 0.18 0.031 0.015
512 27 28 0.32 0.057 0.028
1024 53 55 0.71 0.27 0.19
2048 – – 2.8 0.79 0.62
4096 – – 8.2 2.0 1.05

Table 6.1: Search time in seconds for sequential scan and local index

With the local index there is a storage overhead of a four byte integer id with each feature element.

This doubles the storage requirement for each point. If all points were saved then the feature database

would take up 4GB. However, zero values are not stored. This reduces the total file size to 0.9GB for a

1,024,000 image collection (on average 22% of each feature is non zero, see Table 5.1). To ensure that

the test included cases where the file size exceeded the amount of main memory the maximum collection

size was increased to 4,096,000 images. This was done by simply duplicating the feature database twice.

A set of 100 queries was used for speed testing. The results shown are averaged times for a single

search. The queries were shuffled so that images of the same class did not appear consecutively. This

ensured that the likelihood of a disk page being in the cache was minimised. This configuration should

represent the worst case of each query being very different. In reality, if a user is browsing through the

collection they may well search repeatedly with similar images.

Linear scan

The main component of the linear scan test system was a memory mapped feature file. All caching was

left up to the operating system and hardware. During the tests the memory usage reached a maximum

of 80% (0.8GB). The results are shown in Table 6.1 and graphically in Figure 6.4. They were broadly

as expected. The time taken for a search increased linearly up to a collection size of 256,000. By

interpolation we can see that the target search time of 1 second is reached with approximately 168,000

images. Beyond a collection size of 256,000 images the entire feature file could no longer be loaded into

main memory. This meant that the speed bottleneck moved from being the latency of the RAM to the

transfer rate of the disk. Correspondingly, the search time increased dramatically to 27 seconds for a

collection of 512,000 images. Using the specified transfer rate for the disk of 150Mb/s, 1GB can be

transferred in 56 seconds. The times recorded are half of this. Allowing for caching in main memory

these results seem realistic. It should be noted that the additional computation needed for fractional

dissimilarity functions, as opposed to the Manhattan distance, has a relatively small impact on the search
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Figure 6.4: Search time in seconds for sequential scan and localised index

time. This means that the choice of Lp distance function can be made based on retrieval effectiveness

rather than speed.

Local index

The implementation of the test local similarity index is described in Section 6.3. It is based on each

dimension being stored in a separate memory mapped file. As before, caching was left to the operating

system and hardware drivers.

From the tabulated results (Table 6.1) we can see that the local index is one to two orders of magnitude

faster than the linear scan method. For a collection size of up to 512,000 images the dimension files fit

in memory and the search times increase linearly.

Above this point the number of features becomes too large to fit them entirely in memory. They will

therefore be loaded from disk as needed. There is a resultant jump in response time. For example, the

search time for the 0.1% index increases from 0.028s to 0.19s. This is an increase of around six times for

a doubling in collection size.

To interpret the results we need to consider the various bottlenecks that influence the search speed.

On average, each query will have 113 non-zero elements and therefore needs this number of dimensions

to be loaded. The seek time for each random disk access is 9ms, making a total seek time for a query of



CHAPTER 6. SEARCHING LARGE COLLECTIONS 131

around one second. For a collection size of 1,024,000 features and a 1% neighbourhood a total of 9MB4

needs to be loaded. Using the disk transfer rate of 18MB/s this should take 0.5s. For a neighbourhood

of 0.1% the data transfer time is 0.05s and for the 10% locality it is 5s. Doubling the collection size will

double the data transfer time but the random access time should remain constant.

The preceding discussion ignored the effect of any caching of the files in main memory. The results in

Table 6.1 are considerably below those predicted for the collections of 1,024 and 2,048 thousand images.

For the largest collection the time for the 0.1% locality search is around that of the total seek time. This

indicates that a random disk access is needed for each dimension. For the 1% and 10% index the data

transfer time has more influence. The total times are again less than those predicted, presumably due

to efficient caching of data.

It should be noted that these results are averaged times. There was a significant variation in speed

for individual queries. They could be up to double the average. It was seen that search times gradually

reduced as the set of queries was run. When the query set was sorted by image class the average search

time was roughly halved. These effects were due to caching of the dimension files.

Overall these results were in line with expectations. They demonstrated that for small collections

RAM latency is the bottleneck, while for large collections the limitation becomes hard disk access and

transfer times. With collections of one to four million images, and a local neighbourhood of 0.1%, we

can see that the factors that dominate search time are the seek time of the disk and the number of

dimensions. In effect the complexity of the search time is linear with the number of dimensions. For

the test system it happens that the seek time for 113 dimensions equates to 1 second. With the effect

of caching this allows the search time to meet the target of 1 second with up to four million images. In

this way the performance of the system has exceeded the original goal.

6.5 Conclusions

The implementation of a test system and subsequent evaluation with large collection sizes has shown

some interesting results. It should be noted that these results were from experiments with a single

collection. The general trends should be informative, but any conclusions should be tempered by the

lack of more exhaustive experiments.

The retrieval performance of the local index with larger collections, indicated that relevant images

should be retrieved in the top 100 results. Therefore, the user should be able to find images of interest in

the first few pages of results. With smaller collections the larger neighbourhood sizes gave better results.

However, as the size of the collection was increased the performance of the various neighbourhood sizes

tended to the same level. Indeed, the smallest locality of just 0.1% of each dimension gave the best

41,024,000 elements × 113 dimensions × 8 bytes × 1%
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precision at 100 for collection sizes over 256,000 images.

In terms of search speed, the test system could search up to four million images in an average time

of just over one second. This was on a fairly normal home computer using a 512 dimensional colour

feature. When the feature database could not be held in memory, the experiments showed that for a

1% or 0.1% neighbourhood, the bottleneck in search speed was the seek time of the disk. The test

implementation required that for each dimension a particular page needed to be found on disk. Once

this point in a file had been found retrieval of adjacent blocks was much quicker. As the size of local

neighbourhood was increased, the amount of data needed to be transferred from disk also increased. For

a 10% neighbourhood this becomes the dominant factor influencing speed.

Further improvements in search time could be achieved by distributing the index over several disks

and processors. The decomposition of features into independent dimensions means that the local index

lends itself to parallelisation. In this way, the local similarity index could easily be scaled up for larger

collections and multiple features.



Chapter 7

Conclusion

7.1 Summary of thesis achievements

The aim of this thesis was to research methods that allow CBIR to be scaled up to large collections,

while maintaining retrieval performance. To do this three core components of CBIR were investigated:

features, similarity functions and indexing. Throughout the work the nature of image retrieval was

kept to the fore when developing methods or interpreting results. The task of image retrieval is full

of ambiguity and approximations. Images can have multiple meanings, and the relevance of results is

driven by a user information need that cannot be precisely defined. By exploiting the vagueness of the

task, this thesis shows that combining straightforward methods produces excellent retrieval results.

In the first phase of work a detailed evaluation of texture features was carried out. Three exemplar

texture features were chosen for experimentation: co-occurrence matrices, Gabor filters and Tamura

features, based on statistical, signal processing and psychological paradigms, respectively. Each feature

was adapted and tuned for the CBIR task. Some novel modifications to the Tamura texture features

were proposed, evaluated, and found to be beneficial. As a consequence of this work we were able to

determine general guidelines for constructing texture features for image retrieval. Interestingly, it was

found that it is important to find the correct level of selectivity in features used for image retrieval.

Refining features to be very detailed did not necessarily produce better retrieval results. For example,

the Gabor filter is commonly used with a filter bank of 6 orientations and 4 scales for classification tasks.

However, for image retrieval 4 orientations and 2 scales performed better. The important discriminators

for CBIR turn out to be the micro-textures in images rather than the larger scale objects. In images

of real scenes interesting textures occur at smaller scales. By using our own guidelines we were able

to produce some robust and effective texture features that have performed well with a wide range of

retrieval tasks.

133
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The second part of the thesis focused on similarity measures for visual features. It was found that

emphasising what was similar, and disregarding the very different, worked well. We referred to this type

of approach as localising similarity. It characterises the two classes of functions investigated: fractional

dissimilarity and local similarity.

The work presented in this thesis includes the first application of fractional dissimilarity functions to

CBIR. These functions extend Lp-norm distances, by using values of p ∈ (0, 1). This emphasises points

that are local to the query in each dimension and reduces the noise from distant points. This makes the

functions exhibit a contractive behaviour, which may reveal the membership of potentially interesting

subspace clusters. A thorough evaluation across a range of collections and features showed that, for image

search, fractional dissimilarity functions outperformed all other Lp-norm distance measures. Although

an optimal value of p could be learnt for a particular collection and feature combination, we found that

value of p = 1/2 gave robust performance in nearly all circumstances.

We also introduced a generalised local similarity function. This only considers a neighbourhood local

to the query point in each dimension, thus selecting a subset of the least noisy data. It was found that,

with commonly available test collections, this method achieved retrieval performance comparable to Lp-

norm distances whilst using only 5–10% of the feature space. We also considered ways of selecting a subset

of dimensions to search in. It was shown that an improvement in retrieval performance was obtained by

choosing only the dimensions where the query has an atypical value. For histogram features this meant

ignoring dimensions where the query value was zero, and for non-histograms it meant favouring the long

tail of a skewed distribution. This finding allows the pruning of more data. In addition we proved that

by imposing certain (nonrestrictive) constraints, a localised distance function can be made into a metric.

Our experiments with local similarity functions showed that it is the membership of the local neigh-

bourhood that carries most of the similarity information. This result leads to the possibility of using a

simple voting function as the basis for a fast search system. We implemented this type of local index and

tested it with collections of over one million images. The results were gratifying in two ways. Firstly,

it was found that, with large collections, contracting the size of the neighbourhood actually improves

performance (measured as precision at 20 and 100 objects retrieved). A neighbourhood of one tenth of

a percent of each dimension gave the best results. The average retrieval performance with one million

images showed 2.3 relevant images retrieved in the top 100. This level of performance should satisfy a

user given the tiny proportion of relevant images1. They are likely to find images that they are interested

in within the first few pages of results. Secondly, by using this neighbourhood size it meant that the

index was able to search four million images in just over one second. This satisfies the speed requirement

for a real-time search (Section 3.3.3).

Overall, this thesis has investigated and brought together methods and ideas from three areas of

1random search would return 0.007 images in the top 100
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content-based image search. We have shown that these approaches have a synergy. The combination

of these strands of research has culminated in the implementation of a local similarity index that is an

effective image search system for large image collections, in the order of several million images.

7.2 Implications for search index design

In practical terms, the end result of this work was a set of features and similarity functions that have

been shown to perform well across a wide range of image collections. In this way we have produced the

key elements of the CBIR tool chain. The experience gained through this work means that we can make

some clear recommendations to implementers of query-by-example CBIR systems. The precise approach

to take depends on the characteristics of the collection being indexed together with the user need. Our

recommendations are:

• For a small collection, of less than 100,000 images, a full sequential scan can be run within a

realistic user response time. A choice of a fractional dissimilarity function with p = 0.5 will give

the best performance with most features. Histogram features should be normalised relative to the

dissimilarity function.

• A larger static collection should be indexed using the local similarity index. The dimensions from

the vertically decomposed features should be stored in memory or contiguously on disk as needed.

A local region of around 0.1% should be used for collections of greater than 250,000 images. The

number of dimensions used can be cut down by only considering those where the query has an

atypical value, as defined in Section 5.4.5.

• A large dynamic collection should again be indexed using the local similarity index. However, the

dimensions should be implemented using a data structure that allows insertions and deletions, such

as a B+ tree. This will enable changes to be made to the collection more easily.

7.3 Limitations

There are several limitations on the results presented in this thesis. Many of these stem from the nature

of content-based image retrieval and the construction of an evaluation environment.

Although we have made every effort to use a range of varied collections, see Chapter 3, we cannot

test for the true randomness of generic image search. The results presented will always be biased by

the collections used. This is particularly the case with the large collection used for the experiments in

Chapter 6. This was a contrived collection, being built from two different collections. It is possible that

the images from each collection are so different that they occupy different parts of the feature space.
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This would have a consequential effect on retrieval performance. However, in mitigation, with these

experiments, we are concerned with the trend of results with increasing collection size rather than the

absolute performance level.

On a similar note, there is an argument against using diverse collections, in that they will make our

methods too general, and thus end we will up with a mediocre result. If we concentrated on a particular

domain then we could use much more sophisticated techniques and fit them to the problem. By aiming

at a generic search task we may end up finding the “lowest common denominator”.

The use of average precision as a performance measure can be misleading. In some situations, changes

in a few high performing queries can cause the averaged result to change a lot. Significance testing will

capture this when comparing two results. With low average precision, a lot of individual queries may

actually have zero precision. This situation was highlighted in Chapter 6. In some ways this stems from

an inherent limitation with CBIR: queries and ground truth that are not visually coherent can never be

satisfied by a content-based search.

Finally, in Chapter 6 we noted an important result: for optimal retrieval results, the proportional

size of the neighbourhood decreases with increasing collection size. This behaviour may continue as the

collection grows further, or this result may be specific to the experimental collection and its size. I feel

that this point is very significant, and therefore have suggested future work to investigate this in the

next section.

7.4 Future work

This thesis has covered a broad range of the content-based image retrieval landscape. Perhaps the most

significant contribution has been to enable effective real-time search with collections of over one million

images. I feel that the most interesting future work would be in areas that can improve and use this

capability.

The work in Chapter 6 showed that as the collection size was increased to one million images the

optimal size (as a proportion of dimension) of neighbourhood decreased. It would be interesting to see

if this behaviour was repeated as the collection was increased further. If this is the case then this would

be an important result as it would indicate that the complexity of the search is sub-linear. Investigating

this would require careful construction of very large test collections.

Another important area is how to select dimensions based only on the information available in the

query and collection. The approach taken so far was to select atypical dimensions in a relatively unso-

phisticated fashion. This worked well, but further gains in retrieval performance may be possible. Some

preliminary work has been done using blind relevance feedback. A initial query was used to produce

a candidate set of interesting images. These images were used to select dimensions that emphasise the
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membership of this set. These dimensions were then used to repeat the search. The initial results from

this work were promising, but inconclusive.

There are several engineering approaches to speeding up search. For the test implementation, the

factor limiting the speed of search was the time required for random disk access to each dimension.

We have already suggested parallelisation of the index across several disks and processors to alleviate

this. Another alternative is the use of solid state memory, such as flash drives. These do not have the

mechanical components of a hard drive, hence have no penalty for random access. As this technology

improves and becomes more affordable it may become a useful hardware solution. Although these

approaches will almost certainly allow the further speeding up of search, they are, from a research

perspective, not themselves that exciting. However, they would enable the experimentation to be moved

to another level. The speed of retrieval should then be fast enough to allow complex methods to be

applied to much larger collections than before.

One area worthy of study is how to best combine multiple features and images for a query. With the

additional speed available it would be possible to employ many more techniques other than a straight-

forward linear combination of dimensions. This area is closely linked to a core component of CBIR that

has been overlooked by this work: relevance feedback (Figure 2.2). Very large collections pose their own

problems in this respect. For example, query expansion is a well known technique that has been effective

for image search. Using it with the local similarity index will increase the number of localities utilised,

this has the potential to either improve performance or simply add noise.

In Chapter 2 we discussed different search scenarios and how CBIR can be applied to these. I believe

the future of CBIR will lie in the combination of content with context. That is, taking the visual

relevance from a content-based approach and combining this with available contextual information2 that

is attached to or around the image. The local index will allow a content based search to be applied to a

large collection. There are many alternatives for combining content and metadata searches. This could

be done by either merging them into single index or combining the rankings from separate searches. The

efficiency and effectiveness of the local index will allow these methods to operate on an entire collection

rather than on small subset. Some interesting alternatives are given below.

• An appealing method would be to perform a metadata search and then use a large number of the

top ranked results as an expanded query. In this situation the neighbourhoods could be kept small.

This would ensure the search would be fast, and hopefully improve the results. It would require

research into the best ways to execute multiple image queries. This method could be applied to

the scenario in Chapter 2 where a collection has been partially annotated.

• Another approach that could be used to combine visual and contextual information is a filter and

2This refers to explicit information, for example filenames, URLs, EXIF tags, text around an image on a web page, etc.,
rather than implicit contextual information in the image itself such as scenery or cultural references.
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refine method. This was mentioned in Section 6.3.2 as a way to combine two visual searches. It

also has a huge potential for combining visual and metadata dimensions. The most straightforward

method, from an implementation perspective, would be to use the local similarity index to perform

a visual search on the complete collection. This would return a subset of the collection which could

then be re ranked using metadata.

• Alternatively, the order of the searches in the filter and refine approach could be reversed. This

case poses more questions. It would not be practical to build a new local index from the results

of a metadata search. We would need to consider ways to use the existing data structure. One

approach would be to incrementally increase the size of the neighbourhoods until a proportion

of the metadata results were covered in each neighbourhood. This could be done simultaneously

across all dimensions, so that when a target proportion was achieved in a number of dimensions,

the search would be complete. This approach would mean that the size of the neighbourhood was

chosen at query time dependent on the distribution of the metadata search.

Overall the prospects for content-based image search look promising. The ability to apply CBIR

to large collections, as demonstrated in this thesis, opens up lots of exciting opportunities for further

research that may improve the usefulness of CBIR.
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