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Abstract

Inference and learning in general Boltzmann machines are NP-hard prob-
lems. Several restricted Boltzmann machines can be handled efficiently with
the decimation technique known from statistical mechanics. A set of thus dec-
imatable Boltzmann machines is defined. We show that the Fourier-Stieltjes
transformation of the probability distribution given by a Boltzmann machine is
closely related to its partition sum. Decimation allows for the efficient calcula-
tion of the partition sum with the help of an adjoint deterministic feedforward
network. We exploit this structure in order to specify powerful algorithms for
exact inference and learning. The original stochastic Boltzmann machine may
be disregarded, since all relevant probability computations can be performed
exactly in the corresponding adjoint networks.

1 Introduction

Boltzmann machines (Hinton and Sejnowski 1983) were the first explicitly stochas-
tic networks for which a learning rule (Ackley, Hinton, and Sejnowski 1985) was
developed. The learning rule has a simple structure and is local in the sense that
only items of neighbouring nodes are used. As an important special case of undi-
rected graphical models (Jordan and Bishop 1997), Boltzmann machines are even
more interesting. They can be implemented massively parallelly and have a strong
theoretical embedding in thermodynamics.



This deserves further comment: thermodynamics, from which statistical mechan-
ics has emerged, remained essentially unaffected by all the revolutions in physics of
this century that radically changed our view of the composition and interaction of
elementary constituents of matter (with one exception: the third axiom of thermody-
namics which became a theorem through the assumption of the validity of quantum
mechanics). It seems as if the thermodynamical description has little to do with the
inner structure of matter and the corresponding interaction, but instead abstracts
basic properties of matter that are not directly coupled to its physical realisation:
the informational properties and the organisational structure.

It was not until the end of the twenties, when Leo Szilard sharpened Ludwig
Boltzmann’s long before given interpretation of entropy as a measure of disorder
by identifying entropy loss with information gain. Since then, information has been
considered as a physical object (one bit being roughly 9.57 - 10724 Joule/Kelvin,
which immediately follows from Boltzmann’s celebrated formula “entropy equals k
times log(phase space volume)”, where k& denotes a universal constant now known
as Boltzmann’s constant). From this point of view it seems more than natural that
thermodynamics, taken as a phenomenological subject, together with the theory of
statistical mechanics supplies tools to examine small, cooperating, and massively
parallel information processing units.

Once in equilibrium, the random variable of activations associated with the
nodes of a Boltzmann machine follows a parameterised Boltzmann-Gibbs distri-
bution, which is already known from the canonical formalism of thermodynamics.
By introducing hidden nodes, a marginal distribution arises at the visible nodes.
These marginal distributions can be used to approximate probability distributions.
The learning rule utilises examples that describe a desired distribution empirically
in order to adapt the parameters of the Boltzmann machine for a better approxi-
mation. Stochastic relations that are given solely by examples can be stored in the
parameter vector, a.k.a. weight vector, w of a Boltzmann machine. The process of
recalling a stochastic relation is called inference.

Section 3 describes the relevance of the weight dependence w — Z,, of the par-
tition sum Z,, of the Boltzmann machine for both inference and learning. This
mapping comprises the Boltzmann-Gibbs distribution and thus the complete be-
haviour of the system. The moments, the correlation functions, and all the relevant
terms for the learning rule can be calculated from partial derivatives of w — log(Z,,).
The obvious advantage is that differentiation is much simpler than the integration
or summation that is otherwise needed to calculate moments.

Traditionally, the relevant quantities for inference and learning are estimated in
simulations using ergodic theory (Gibbs sampling). Many efforts, such as mean-
field approximation (Peterson and Anderson 1987), have been made since then to



overcome the — even for modern computers — comparatively slow Gibbs sampling
of a Boltzmann machine. One especially interesting technique, which has been
transferred from statistical mechanics by (Saul and Jordan 1994), is decimation:
the interaction of two nodes can be calculated exactly by reducing the rest of the
network in such a way that the interaction is not disturbed. This cannot be done in
arbitrarily complex networks, but works in tree-like structures, such as Boltzmann
trees and chains.

In Section 4, we will take up this idea and complete it by developing all possible
decimation rules. This leads to a definition of a set of decimatable Boltzmann ma-
chines, which contains tree-like structures as a special case. We will show that
exploiting the process of decimation allows us to compute the partition sum of the
system efficiently: linear in the number of nodes.

The rest of this article shows how this approach leads to simple and powerful
learning rules. The principal idea is to formulate the calculation of log(Z,) as a
feedforward network, where the weight vector w is the input vector. Generalising
the backpropagation algorithm, a simple forward-backward pass in this network
suffices to compute Vlog(Z,), thereby calculating all relevant terms for learning
together. Another benefit of the partition-sum approach is that the cost function
itself can be computed, which in turn allows us to apply any acceleration method for
backpropagation learning, such as quasi-Newton, conjugate gradient, and learning
rate adaptation.

2 The Boltzmann Machine

The underlying structure of a Boltzmann machine is given by a set N = {0,...,n}
of nodes and a set of edges E C {(i,j) € N x N|i < j} together with a weight
vector w € RP. The component wg;, is defined as the weight associated with the
edge (min(a, b), max(a,b)). Usually, N is partitioned into four mutually disjoint sets
I, H, O, and {0} denoting the input, hidden, output nodes, and the bias node.
Let N, := N \ {0}; at every time-step the Boltzmann machine produces a random
bipolar activation vector s € {—1,1}"+, the sequence of which may be viewed as a
Markov chain. Once in equilibrium, s obeys a Boltzmann-Gibbs distribution

exp(—h(w,s)/T)
Zny

P,(s) := with  h(w,s) == — Z 8iW;js;, (1)

(i.7)eE

where h(w, s) is the energy of activation s, and s, := 1 is the constant activation of
the bias node 0. The partition sum Z,, is defined to be the normalisation term, and
the temperature T' € RT characterises the variability of the distribution.



Clamping values £1 to input nodes (and sometimes output nodes) changes the
Boltzmann-Gibbs distribution in an obvious way: clamping a value s; to the node
i corresponds to changing the bias weights w,; by s;w;; of all those nodes with
(i,7) € E or (j,i) € E. At the same time, the node i together with all edges
connected with i can be disregarded. If a complete pattern & € {—1,1}* with
X C N, is clamped, a new Boltzmann machine is created, whose Boltzmann-Gibbs
distribution is the conditional Boltzmann-Gibbs distribution of the original Boltz-
mann machine given £&. We will denote all quantities of the new Boltzmann machine
with the Greek superscript £&: N¢ := N\ X, Pig(sf) = Py, (sl€), etc.

One possible application of Boltzmann machines is in marginalising the Boltz-
mann-Gibbs distribution over all possible activations of the hidden nodes — thus
obtaining a distribution p,, from P, — to approximate a desired distribution r of
activations in {—1,1}/YO. Let a € {-1,1}, B € {-1,1}#, and v € {-1,1}7
denote subvectors of the activation vector s = afy, and let g(a) = 3=, r(ay) be the
probability of an input pattern . Assuming that the distribution of input patterns
is not to be learned, the information gain

1G(r,pw) = 3 g(@) 3 r(y]a) log (M) @)

puw(7])

is a suitable error measure for the deviation of r with respect to p,,; the information
gain is nonnegative and vanishes if p, coincides with r. Note that setting I =
0 reduces the information gain to the Kullback-Leibler distance (Kullback 1959)
of r and p,. In general, the difference of the Kullback-Leibler distance and the
information gain is the Kullback-Leibler distance of the input pattern distributions
g and a +— 3>, py(ay). Gradient descent for (2) results in the learning rule

Awij — _nv(w — IG(T,pw))ij = %((Siijyy - <Si3j>i)’ (3)

where 7 is the learning rate. The brackets (), denote the expectation value w.r.t.
the conditional Boltzmann-Gibbs distribution P§, and = denotes the expectation
value w.r.t. p or, if p is given by samples, the average over the samples.

Inference means the computation of the conditional probability

pw(yla) = ZPw(ﬁ7|a) (4)
B

witha € {—1,1}X, X DI,y € {-1,1}Y,Y C (JUO)\ X, and B € {—1,1}N-\(XUY),
The idea is that all knowledge of the activations is clamped, and the probability of



the activations of interest, here of nodes in Y, is queried. The condition X D I
comes from the fact that the information gain (2) does not model the probability of
input patterns. This is no loss of generality since I = () could have been chosen in
the beginning.

3 The Partition Sum

The partition sum was defined in Section 2 as a normalisation factor, and the specific
value seems to be irrelevant. However, the dependence of the partition sum on the
parameters plays an important role in statistical mechanics. This is the case for
Boltzmann machines as well, and the rest of this section contains a mathematical
justification for this. Less mathematically inclined readers may skip the theorems
and the the proofs in this section.

Let S be a R" valued random variable with probability measure Pg. Then the
characteristic function ¢g:R* — C of S is defined as the expectation value

T — <exp(z’x5)> .

¢s is known to have the following properties, cf. (Feller 1971):
(i) If all moments ([, S;'*) exist for all my,my,...,my € N,, then all partial
derivatives of ¢g exist, and it holds for the r-th moment (r =mi + ... + my) that

mi\ _ (_pr_ 9 ds(@)
<1;[Sk >_( V e om

(ii) The Fourier-Stieltjes transformation Ps — ¢g is injective; hence the name
characteristic function.

(iii) The definition of the logarithm is ambiguous in the complex plane. How-
ever, there is exactly one continuous mapping ®s : R — C associated with each
characteristic function ¢g such that ¢s = exp ©®g and ®5(0) = 0. In this sense, the
cumulant generating function ®g is defined as the logarithm of ¢g. If all moments
of S exist, then both ¢g and ®¢ are expansible into a Taylor series about 0:

=0

9] n :L_Zbk BT@S(.’I))
bg(z) =) Ccr with C = (—1) ——
@=3 2, O Loy vit O =0 g o |umg
mrg=r
Every factor C], is a cumulant of S of the order r = Y~ my with m = (mq,...,my).

Cumulants are functions of the moments (as is easily seen by expanding the loga-
rithm into a Taylor series and comparing the coefficients). Hence, we will also use



the more symbolic notation C(S7*' ...S™") instead of CJ,. Cumulants involving
more than just one component of S are also known as correlation functions. They
are the main reason for using cumulants instead of moments, since correlation func-
tions are able to describe the higher order correlations of the components of S in
the following sense:

(iv) CL, are the expectation values of the components of S, i.e., C(Sg) = (S)-
The second-order cumulants Czn are elements of the variance-covariance matrix of S,
i.e., C(SkS)) = (SkS;) — (Sk) (Sp). If the S1, ..., Sy are independent, the correlation
functions vanish. The components of S are said to be correlated with order r, if
r is the smallest integer such that all correlation functions of an order exceeding r
vanish.

The following theorem establishes a connection between the partition sum of a
Boltzmann machine and the above well-known mathematics.

Theorem 3.1 (partition sum and cumulants). Let E, the set of edges of a
Boltzmann machine N, contain all edges of the form (0,a), a € N,. Let S denote
the random variable associated with the activation vector s € {—1,1}N*. Then, the
cumulant C}, of S with r > 0 is given by

0" (w — log(Zy))
r=1" .
Crm owgit ... wgr

[

Proof. The probability measure of S is defined on the finite set of possible
activations. Hence, not only the cumulant generating function exists, but also all
moments and all cumulants exist. Let the weight vector w be divided into a subvector
w® := (wo1,. .., wo,) and another subvector w' containing all other components of

w. The cumulant generating function ®g was defined as

Dg(z) = log (Z exp ( Zt;‘jsasb/T) exp(z':vs)>

S

= log (Z exp (E(wga/T +ix4)8q + Zw}lbsasb/T)) —log(Zy).

Since r > 0, calculating C], involves at least one partial differentiation w.r.t. a
component of z. The derivative of the second term vanishes, and only the first
term has to be regarded, which in turn may be considered as the mapping = —
log(Zyoyirz ). Hence,
C:n _ (—’L’)r ar(m = Tlnog(Zwo—l—Tfsz,wl))
Ox" ...0znp™
T 0" (w® — log(Zwo,w1)).

mi m
owjit ... Owy,

=0
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Corollary 3.2 of the proof. The characteristic function of a random variable
following a Boltzmann-Gibbs distribution, whose partition sum is Z,,, is given by the
mapping T v Zyoyirg [ Zw from R* — C. []

Remark 3.3. Although the terms (s;s;), of the learning rule (3) can be calcu-
lated with the help of the above theorem,

8log(Z5) <)

5
ot )

(sisjle =T

is a similarly related possibility calculating (sisj-)g. If one of the nodes, say i, is
clamped, then (s;s;), = si (sj), = s;T0 log(Zig)/ang. []

Fourier transformations may even help to reduce the number of elementary op-
erations needed for the inference computation (4) when few output nodes exist:

Theorem 3.4 (inference 1). Let BT be the random variable that is induced by
the activation vector By in the Boltzmann machine N® = HUO, where 8 € {—1,1}#
and v € {—1,1}9. Let To:RTYO — RO denote the projection By + v, and let I,
be the transposition of the linear mapping llp. Then,

i) = g Y exp(—ire) (droTlo) (). 0
z€{0,7/2}0

Proof. The principal idea is that the characteristic function ¢f of I' = Il °c BT
is given by
¢% = %I‘ ° H,Oa
which immediately follows from the definition of the characteristic function. An
inverse Fourier transformation yields the desired probabilities (4) as is indicated by
the following commuting diagram:

Fourier-Stieltjes

By + P (B7) PRIV — C

transformation

> oTI,

B

inverse Fourier
Y pae(y) = — ¢R7 = C i
transformation

Remark 3.5 (inference 2). The combination of Corollary 3.2 and Theorem
3.4 reduces the computation of (4) to the calculation of the partition sum. An-
other, somewhat more direct, way of computation is given as follows: inserting the



definition of conditional probabilities, it holds that for every 8 € {—1,1}#

Puw(Brla) _ Pye(By)
Py(Blory)  Pyas (B)
exp(=h*(w®, BV)/T)  Zyls
exp(—h® (w®, B)/T)  Zga

pw(’)’|(1) =

zZo
= €xp ( Z 'choc/T +Z wcd’Yc'Yd/T + Z wacaa’)'c/T) Zu; - (6)
ce0 (c,d)EE (a,c)EE w
¢,decO a€l,ce0

wOC + aawac

C C
Wpc
b Wpe
Wob Wae ‘ Wop + QagWab + YcWhe O
b b b
Wab
O,
a) N b) N ¢) Nov

Figure 1: Examples of Boltzmann machines N, N%, and N*Y

Figure 1 explains why the energy difference h*"(w®?,3) — h*(w®, Bv) is inde-
pendent of 8 and except for temperature scaling is given by the argument of the
exponential function in (6). Consider the full Boltzmann machine of Figure 1a with
one input, one hidden, and one output node; first an input pattern « is clamped
resulting in a Boltzmann machine N* (Figure 1b) and then both input and output
patterns are clamped (Figure 1c). The resulting energies h*? and h* can easily
be calculated from the weights, their difference being (woe + @qwac)ye- The gener-
alisation to more weights is straightforward, thereby yielding the argument of the
exponential in (6).

4 Decimatable Boltzmann Machines
Equations (6) and (5) link the important quantities for inference (4) and learning

(3) to the partition sum; the transformation is polynomial in |N| in both cases.
These and all other results of the preceding sections are valid for general bipolar



Boltzmann machines. In principle, Z,, can be calculated by summing all 2/V+| terms
exp(—h(w,s)/T), which is arguably intractable in |N|: (Cooper 1990) has proved
that inference in the related belief-networks is NP-hard, and this proof can be trans-
ferred to Boltzmann machines. We conclude that research should be directed away
from the search for efficient inference and learning rules in general Boltzmann ma-
chines, and toward the design of special case algorithms.

An attractive special case are networks, where one node after the other can
be replaced by edges and weights in such a way that in each step the probability
distribution of the remaining network’s activation vector coincides with the marginal
distribution of the original network’s activation vector. Figure 2 shows the removal
of a node a; # 0 with all corresponding edges and the insertion of all edges (a;, a;)
between the neighbour nodes of a;. The aim is to calculate the new weights wgiaj
such that

Z P22(54,, 805, Sags - --) = P2 (Say, Sags---), (7)
sap €{—1,1}

where a2, a3, and a4 may be embedded in an arbitrarily complex network. This
ansatz for decimation leads to the following theorem; here and throughout the fol-
lowing text v := w/T denotes an effective weight vector.

23 2b

PvT Pv’T
Vajas
1 a azak
'Ua1ak
/ asak
Ualag
a3 Ce ak

Figure 2: Ansatz for decimation of the node a

Theorem 4.1 (decimation). Let a be an enumeration of nodes of a Boltzmann
machine with effective weight vector v. Let ay; # 0 be connected with exactly k — 1
neighbour nodes as, ..., ar (one of which may be the bias node).

(i) Ansatz (7) can be solved for k = 4 with

v

' _ cosh(va,a, + Varas — Varas) €0Sh(Vaias + Varas + Vasas
cosh

( (
a26e (Uala2 - Ualag + Vaiaa COSh(
( (
( (

i _ (COSh Vaiaz — Vajas + Uala4) cosh Vaiaz + Vajas + Vaiaq
a4
cosh(vg,a, + Varas — Varas)

Ja®

)

Vaias — Vajaz — va1a4)

y )
)

Ve

cosh(va;as — Varas — Varas



o — log (COSh(Ualaz + Vajas + Vajas) C08h(Va ay — Vajas — 'Ua1a4)) /4, (10)

aza4
cosh(va,ay + Vajas — Varas) COSh(Vayas — Varas + Vajas)

and the partition sum is changed by the factor

Z2a 1/4
Z;Jb =2 H COSh('Ualag + 'Ua1a33a3 + 1004111480/4) . (11)
w' SagsSay

The cases in which k < 3 are special cases of k = 4: vg,0y = 0 if kK = 3, Vgy03 =
Vajay = 0 if kK =2, and V4,6, = Vaja3 = Vajay, =0 if k= 1.

(i) In general, ansatz (7) cannot be solved for k > 4.

(i) If necessary, a new effective weight Ugia], arising from (i) must be added to
an ezisting effective weight vo,q; (parallel rule). Otherwise, a new edge (a;,a;) has
to be inserted.

Proof. (iii) The energy (1) is the central defining quantity determining the
Boltzmann-Gibbs distribution. The parallel rule is a simple consequence of the
linearity of the energy in the effective weights.

(i) Decimating the node a; changes the partition sum, which in turn depends on
the effective weights. In order to avoid considering this dependence, ansatz (7) may
use relative probabilities

ZSal Ps%(salasaza Sagy -+ ) . Pg?,w(saw Sazy- - )
Yoy Pt (801,11, Pip(11,...)

as well. The respective denominators P2P(1,1,...) = s, P?(s,,,1,1,...) do not
vanish if the temperature 7T is positive and the weights are finite. Using the definition
(1) of the Boltzmann-Gibbs distribution and by cancelling all terms interacting
between nodes ay, ..., a, that are independent of s,, the above equation yields

4
COSh (Ei:Q IUa.1a7;)
4
cosh (Zi:Q Vaya; Sa;

) = exp ( Z vaiaj(l - Saisaj))- (12)

1<i<j<5

(12) is invariant under the operation (Sq,, Sas, Say) <> (—Say> —Sas, —Sa, ), Which re-
duces the eight possible combinations of the activations $4,, 843, Sa, € {—1,1} to
four combinations, e.g., (1,—1,—1), (1,—1,1), (1,1,—1), and (1,1,1). One of the
three nodes, say a9, could have been chosen to be the bias node. so = s3 = s4 triv-
ially fulfills (12) leaving three equations for three variables v}, ,., v},4,, and v}, -
Taking the logarithm makes (12) a system of linear equations with the unique solu-

tion (8)—(10). Replacing node a1 with new weights v[,, ., vq,q,, and vg,,, mediates
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between honeycomb and triangle spin lattices in physics (Onsager 1944; Syozi 1972),
where this operation is termed star-triangle or Y-A transformation. In the context
of Boltzmann machines we prefer the name star decimation.

The case k£ = 3 can be solved in the same way resulting in one equation with one

variable vy, ., whose solution is

h(vay0, + Varas)
Vasasz 08 COSh(’Ualag_'ans) / ( )

The same result is achieved with £ = 4 and v,,,, = 0; the additional effective
weights v}, ,, = vl,,, = 0 are irrelevant owing to the parallel rule (iii). In the same
way k = 2 can be regarded as a special case of £ = 3 with v,,4, = 0: there is no
need to compensate for the removal of node a;. The same is true for the trivial case
k = 1. Using (8)—(10) in ansatz (7) and cancelling all identical terms on both sides
of (7) finally results in Equation (11).

(ii) Ansatz (7) leads to a linear system of — 1 equations (k — 2 bipolar

activations minus one trivially fulfilled equation) in (kK — 1)(k — 2)/2 variables (the

2k—2

pairwise weights between the nodes ag, as, ..., ax). This system of equations is
overdetermined in the case K > 4 and, in general, cannot be solved unless the
weights 4,44, - - -, Vaia;, Underlie certain restrictions. [

Corollary 4.2 (Saul and Jordan 1994). If node a1 # 0 is only connected with
node as and node ag, then node ai can be decimated, and the interaction mediated
by a1 is replaced by the insertion of the effective weight vy, ,, with tanh(vg,,,) =
tanh(vg,q,) tanh(vg,as)-

Proof. By the definition of tanh, the claim is equivalent to Eq. (13). [

Figure 3a shows an example of a Boltzmann machine whose partition sum Z? can
be computed by decimating the Boltzmann machine step by step until the trivial
Boltzmann machine {0} of Figure 3f with partition sum Z' = 1 is reached. The
factors Z2/Z°, ZP/Z¢, ..., Z¢/1 are computed according to (11) in the corresponding
decimation steps; their product is the partition sum Z? of the initial network.

Here, the partition sum can be factorised into |N,| factors in a way that each
factor depends on one or more weights. Although the last factor Z° depends indi-
rectly on all the original weights, the calculation of the partition sum involves only
| N.| operations, none of which are more complicated than the evaluation of Egs.
(8)—(11). These Boltzmann machines seem to be ideal candidates for a sufficiently
interesting class of tractable networks.

Definition 4.3 (decimatable Boltzmann machines). A Boltzmann ma-
chine, which — after clamping an arbitrary pattern in {—1,1}* — can be trans-
formed into the trivial network {0} by successive applications of Theorem 4.1, is
termed decimatable or — more precisely — decimatable with respect to X. []

11
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d) star decimation of 3 e) decimating node 4 f) trivial network

Figure 3: Decimation of a Boltzmann machine

Remark 4.4 (decimation order). It is easy to construct a straightforward
algorithm that (in a continuing loop over all remaining nodes of a Boltzmann ma-
chine) decimates all non-bias nodes that have fewer than four neighbours until no
further nodes can be decimated. If only the bias node is left, then obviously the initial
Boltzmann machine was decimatable. The converse, however, is not true: if this
algorithm gets stuck with a nontrivial network, the original Boltzmann machine may
have been decimated by choosing another order in which the nodes were decimated
(when, for example, at a certain step of the algorithm more than one node has fewer
than four neighbours). The reason for this is that star decimation may increase the
number of neighbours of a remaining node. One pragmatic peace of advice would be
to prefer decimating the node among several possibilities whose decimation results
in the fewest number of edges. The complexity of the corresponding algorithm does
not exceed O(|N|?).

5 Algorithms for Efficient Inference and Learning

The decimation of a Boltzmann machine factorises the partition sum in a way that
in each decimation step one factor can be computed. One natural way to do the
bookkeeping for the computation of the total partition sum is to formulate this
process as a mapping network:

12



log(Z°¢/1) O identity node
. decimation (8)—(10)
() Eq. (11)

og(2/2°)
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O
>O/
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Figure 4: A mapping network for the computation of the log partition sum

Figure 4 shows an example network for the computation of partition sum Z?
of the Boltzmann machine of Figure 3a. The input of the network comprises of
all effective weights of the initial Boltzmann machine. Decimating node 1 means
replacing the weights vp; and vi15 by an additive correction of the weight vgs that
is given by Corollary 4.2. All other weights remain invariant, which is indicated
by identity nodes (which do nothing but copy the input value). Eq. (11) specifies
the factor Z2/ZP by which the partition sum changes. In the same way all other
factors can be computed from the weights. Finally the output node of the mapping
network yields the logarithm of the total partition sum by adding the logarithms
of all factors. This mapping network is clearly a deterministic feedforward network
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with O(|N|) nontrivial nodes: the redundant identity nodes in Figure 4 were only
inserted for the sake of visualisation. Usually, neural feedforward networks employ
sigmoidal activation functions and weights associated with the edges. In this case,
however, the mapping network of Figure 4 employs activation functions that arise
from Egs. (8)—(11), and no weights are associated with the edges.

Definition 5.1 (adjoint network). Given a Boltzmann machine N together
with an order in which the nodes can be decimated, there is a uniquely defined
mapping network N that computes the log partition sum from the effective weights
of the Boltzmann machine. This mapping network is called adjoint network. []

The biggest advantage of adjoint networks is that a generalisation of the back-
propagation algorithm allows the computation of the gradient V(v — log(Z,r)),
which is needed for the learning rule (3), in a simple forward-backward pass. This
is the subject of the following theorem.

Theorem 5.2 (chain rule for mapping networks). Let N¢ be a decimatable
Boltzmann machine that arises from clamping a pattern &. Let N¢ and E¢ be the
set of nodes and the set of edges of a corresponding adjoint network. L, = {b €
N¢|(b,a) € Ef} defines the set of predecessor nodes of node a and R, = {b €
N¢ | (a,b) € E&} the corresponding set of successor nodes. Every input node (i,7) €
N¢ of the adjoint network is characterised by L= 0 and by (i,§) € E; the input
value is given by the effective weight Ufj of the Boltzmann machine N¢. Every non-
input node a of the adjoint network computes a certain function value fq(hg) of its
input vector hy. Let b € Ly; the b-component hqy of the input vector hy of node a is
inductively defined as output of the predecessor node b:

hoy = vg if Ly =0
¢ op := fp(hy) otherwise

A forward pass, i.e., the calculation of the values op in topological order of the di-
rected acyclic graph (N¢, Ef), eventually computes the desired output o, = f,(h,) =
log(ngT) of the output node z.

A backward pass

1 if Rp=0,i.e,ifb=2z2
0y = Z Oa aJ;l}Eha) otherwise
a€Ry ab h»a|U§

computes all partial derivatives

dlog(Z5p) /00 = 8 j)

together. [
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Proof. (Riiger 1997, lemma 1.1.8) |

Figure 5 summarises how the gradient of the cost function IG can be computed.
The adjoint networks N® and N®', which are constructed at the outset, represent
all important quantities of the original Boltzmann machine, which then may be
disregarded. Note that the adjoint network N¢ depends on the set X of nodes
rather than on the actual £ € {—1,1}*. Inference — even learning — with respect
to arbitrary node sets poses no problem once the corresponding adjoint networks
have been constructed.

learning
Vo IG(T, py) averaging: Eq. (3)
(8i)q > (8i85) 4 (81 oy (8i85) 0, | Ea. ()
? cost function (2) ?
Ve log(Z2.T) 1G(r, pw) Vyer log(222, )| | DAckward pass
ve (08 Lo P ver 208 o) || ppaorem 5.2
? Na j& ? Na’y
inference
1
forward pass in
log(Z%)  H—= = log(2%
0g(Zg) Puw(7]a) 0g(Zyah) adjoint network

T T

v vy clamping
ae{-1,1}1 vT =w € RF v e {-1,1}°
input pattern weight vector output pattern

Figure 5: Inference and learning using the adjoint networks N and N

The learning rule (3) was given by gradient descent in the cost function (2). It
is well-known that pure gradient descent is not optimal for learning. Either certain
minima of the cost function cannot be found if the learning rate is too large, or
learning takes a long time if 7 is too small, c¢f. (Riiger 1996, trade-off-theorem).
Virtually every convex-optimisation method utilises cost function values for efficient
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optimisation.

Usually, the desired probability distribution r is given empirically by m pat-
terns (at,v1), ..., (@™,y™). Sorting these examples lexicographically, it is easy to
determine ¢(«) as the number of examples whose first component is « divided by
m. r(y|a) may then be set to the frequency of examples that coincide with (a, )
divided by g(a). The evaluation of (2) is then reduced to the summation over as
and s that occur in the training data. This leaves p,(y|a) to be determined, which
can easily be computed using (6) and the forward pass in the adjoint networks.

Since the values of the cost function are available now, all established convex-
optimisation methods (Press, Teukolsky, Vetterling, and Flannery 1988) can be used
or, e.g., stable dynamic learning-rate adaptation (Riiger 1996) that uses compara-
tively few but well-chosen evaluations of the cost function.

6 Discussion

We have studied the decimation of bipolar Boltzmann machines exhaustively. The
decimation of tree-like structures, which was presented in (Saul and Jordan 1994),
has been generalised using the star-triangle transformation from statistical physics.
We have shown that no other decimation rule exists. Hence, we have been able to
give a definition of a set of Boltzmann machines that can be addressed by decimation.

This article emphasises the role of the partition sum in general Boltzmann ma-
chines. As a result, both inference and improved convex-optimisation learning can
be expressed in terms of the partition sum. The computation of the partition sum is
intractable in general. In decimatable Boltzmann machines, however, the partition
sum can be calculated with a complexity that is linear in the number of nodes,
once the deterministic adjoint network has been constructed. What is more, the
gradient of the log partition sum can be computed in a simple forward-backward
fashion. Decimatable Boltzmann machines have all benefits of recurrent and sto-
chastic networks — and that with the costs of a deterministic feedforward network!

Small applications (Saul and Jordan 1994; Riiger, Weinberger, and Wittchen
1996) have demonstrated that decimatable Boltzmann machines can be used to
approximate probability distributions, to store knowledge about stochastic relations
given by examples, and to do inference in such databases even in the presence of
missing values. One interesting question is how this approach can be extended to
previous work (Saul and Jordan 1996; Nijman and Kappen 1996) exploiting tractable
substructures in sparsely connected networks.

Future research includes the application of the presented techniques to multival-
ued Boltzmann machines. Their decimation rules are somewhat different, and the
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star decimation can only be applied if one of the neighbour nodes is a bias node.
Nevertheless, decimatable multivalued Boltzmann machines are a rich superset of
hidden Markov models (Saul and Jordan 1995; MacKay 1996). As hidden Markov
models play a big role in speech recognition (Juang and Rabiner 1991), interesting
applications of multivalued decimatable Boltzmann machines can be expected. This
issue and others remain for further studies.
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