Bericht 96-29 des Fachbereichs Informatik der Technischen Universitat Berlin

Decimatable Boltzmann Machines

VS.
Gibbs Sampling

Stefan Riger; Anton Weinberger, and Sebastian Wittchen
Technische Universitat Berlin

July 1996

Abstract

Exact Boltzmann learning can be done in certain restricted net-
works by the technique of decimation. We have enlarged the set of dec-
imatable Boltzmann machines by introducing a new and more general
decimation rule. We have compared solutions of a probability density
estimation problem with decimatable Boltzmann machines to the re-
sults obtained by Gibbs sampling in unrestricted (non-decimatable)
Boltzmann machines.

1 Introduction

Boltzmann machines [3] have been the first stochastical neural networks for
which a learning algorithm [1] has been defined. This learning rule is based
upon local interactions of nodes. Generally, their calculation is intractable in
the number of hidden nodes. However, Gibbs sampling with simulated an-
nealing can estimate them sufficiently precise. Many efforts have been made
since then to overcome the —even for modern computers—comparatively
slow Gibbs sampling of a Boltzmann machine. One especially interesting

*Sekr. FR 5-9, Franklinstr. 28-29, 10587 Berlin, async@cs.tu-berlin.de

technique presented by Saul and Jordan [10] is decimation: The interaction
of two nodes can be calculated exactly by reducing the rest of the network
such that the interaction is not disturbed. This cannot be done in arbitrarily
complex networks, but works, e.g., in tree-like structures (Boltzmann trees
and chains), where the calculation time is polynomial in the number of nodes.

The idea of decimation can be applied to an even larger class of deci-
matable Boltzmann machines by a new decimation rule that is introduced
in Section 2. The rest of the paper is organized as follows. In Section 3
we construct a pattern multi-set from a particular belief network that was
introduced by Lauritzen and Spiegelhalter [5] as a didactical example. This
example is not only rich enough to contain most of the interesting aspects
of Boltzmann machines but also small enough to calculate all interesting
properties exactly. In Section 4 we compare and assess several Boltzmann
machines — decimatable and non-decimatable — by their ability to approxi-
mate the probability density given by the belief network. Finally, we discuss
several possible extensions of our work.

2 Decimation in Boltzmann Machines

2.1 Boltzmann Machines

A Boltzmann machine consists of

e an undirected graph (NN, E) without self-interaction, i.e., a set N of
nodes and a non-empty symmetric set £ C N X N of edges with (a,b) €
E = (b,a) € E,and a € N = (a,a) ¢ E,

e a partition of NV into input I, output O, and hidden nodes U,
e symmetric weights w: E — R (wg, = wy, for all (a,b) € E),

e and stochastic bipolar activations s: N — {—1, 1}

. — +1 with probability 0(% Ybein | (am)cE} WabSh)
¢ —1 else

for a # 0, where the special bias node 0 always has the activation 1. o
denotes the Fermi function z +— 1/(1+exp(—=x)). Here, the parameter
T € Rt acts as a temperature, i.e., controls the randomness of s.

The function H:RF x {-1,1}¥ - R

1
H(w,s) = —3 D WabSaSh (1)
(ab)EE

assigns an energy to every state s; the stochastic behavior of the network
favors states of lower energy. When the network is in equilibrium, s follows
a Boltzmann-Gibbs distribution [8]

P = s o SRLHT) o)

where Z,,, also known as the partition sum, is a normalization factor:

Zo= Y exp(-H(w,s)/T) (3)

se{—-1,1}V

The problem to train the Boltzmann machine is one of supervised learn-
ing. After clamping an input pattern to the input nodes, one wants to find
the output nodes in a correlated target state during the equilibrium. Let
v € {=1,1}° be a state of the output nodes, 8 € {—1,1}V a state of the
hidden nodes, and « € {—1,1}! a state of the input nodes. Then the state
s of the Boltzmann machine may be denoted by s := a8y € {—1,1}°V0,
The probability distribution of the visible nodes in equilibrium is given by
the marginal distribution of the Boltzmann-Gibbs distribution with

pw(a7) = Z Pw(a/ﬁ’Y)'
B

Let r be the desired probability distribution. Then, with ¢ = a —
>, r(ay), a suitable cost function is the so-called information gain

By =Y q(a)d r(v|a) logm (4)

Gradient descent Awg, = —nV E,, yields the Boltzmann learning rule [1, 8]
N (77— 4
Awab = ﬁ (<Sa$b>a7 clamped <$‘18b>a clamped) : (5)

X" denotes the average of X with respect to r, which in turn is given empiri-
cally by a multi-set of input-output patterns ay. The terms in angle brackets

3

represent expectation values with respect to the Boltzmann-Gibbs distribu-
tion (2); in the first term, both input and output nodes are clamped, whereas
in the second term only the input nodes are clamped and the output nodes
are allowed to equilibrate. Especially in larger networks it is impossible to
compute the expectation values directly from the Boltzmann-Gibbs distribu-
tion. Instead, they can be estimated through Gibbs sampling. However, this
method turns out to be very computation-intensive. In the next section the
technique of decimation [2, 4, 10] will be presented that allows the exact and
efficient calculation of expectation values in certain Boltzmann machines.

2.2 Decimation in Boltzmann Trees

We will describe the decimation rules proposed by [10] in a way that they
are most easily extensible. The basic idea behind decimation is to trans-
form networks into reduced ones without changing their properties. A useful
reduction for Boltzmann machines is to eliminate a node, with the simpler
network retaining the same Boltzmann distribution for the remaining nodes.
This might be possible if all nodes which had an effective interaction medi-
ated by the node to be decimated are connected by an additional edge. This
ansatz is visualized in Figure 1, where node 1 is decimated by inserting addi-
tional edges between nodes that are mediated by the node to be decimated.
It will turn out that this works if node 1 is connected to n—1 < 3 other nodes.
Throughout this article we will consider effective weights v;; := w;;/T. The

!
Va3

Figure 1: Ansatz for decimating a node

effective weights that are inserted by decimation can be computed from the

constraint

Zsz,i)(shsz,s:a,...) :P«gi'i)(smssa---)v (6)
S1

which simply requires that the distribution of the remaining nodes be a
marginal distribution of all former nodes. Consider the case n = 3: three

2 2
V12

1 Vg
V13

3 3

Figure 2: Combining weights in series

nodes 1, 2, and 3 are connected as shown on the left hand side of Figure 2.
This network can be transformed to the simpler one on the right hand side
of Figure 2. Applying Eq. (6), we get

exp(vigsy 4+ v1383) exp(—viase — v1353) exp(vh35253)
0 0)

w’

Note that nodes 2 and 3 might be embedded in a larger network without
changing the result. The partition sum ng) depends on the effective weight
vhs in a subtle way. Considering relative probabilities, Eq. (6) changes into

251 PS)(Sl, S92, 83, . .) . PSP(SQ, S3, ..)

>, PP(s1,1,1,..) PO,)]

from which immediately follows:

cosh(visy + v1353)
exp (vh3(s253 — 1)) = cosh(viz + v13)

(7)

Instantiating all possible values of s5,85 € {—1,1} and observing the
symmetry of cosh, (7) collapses into a system of two equations for vj,, one
being trivially fulfilled. Hence, we have

cosh(vig + v13)
ro_ 1 2 8
V23 = 08 (cosh(vu — v13) /% ®)

5

which is equivalent to the result of [10]: tanh(v);) = tanh(v;y) tanh(v3)
Thus decimation can be used to combine weights in series. The much
simpler case of combining parallel weights is illustrated in Figure 3: the
effective weight is the sum of v; and ve, which is a direct consequence of
the linearity of the energy function in the weights. These two rules suffice

V1 + U2

V2

Figure 3: Combining parallel weights

to compute the expectation values for the weight updates in any tree-like
network. Tree-like means that the output and hidden nodes are arranged
hierarchically in one or more isolated trees. Typically (but not necessarily),
each output node is the root of an isolated tree. An example with three
output nodes is shown in Figure 4a.

There are no restrictions to the input nodes; they may be connected to
all other nodes. We have chosen to fully connect the input nodes I with the
hidden nodes U, which is indicated by the trapezium symbol in Figure 4a.

Now consider the weight between the nodes ¢ and b in Figure 4a. Ac-
cording to Eq. (5), two different expectation values are needed for the weight
update. Therefore, the expectation values are computed in two phases. In
the first phase only the input nodes of a given pattern from the training
multi-set are clamped.

Clamping a node a means subsuming its weights w,;, under the respective
bias weights wy,. The effect of clamping can be seen in Figure 4b. After
clamping all input nodes, the network can be reduced by iterating the rules
until only nodes a, b, and the bias 0 are left (Figure 5a). The intermediate
stages are shown in Figure 4c and Figure 4d. Solitary nodes linked to the
bias 0 may be simply dropped, as is done with node ¢ in the transition from
Figure 4d to Figure 5a: Imagine an edge with a vanishing weight between
c and q; from Eq. (8) it follows that the weight v/, also vanishes after the
decimation of node c.

dBY,.

O O O Or 0

a) Example of a Boltzmann tree b) Effect of clamping input nodes
b b ¢
a a
0 0
c) After combining serial weights d) After combining parallel weights

Figure 4: Decimation of a Boltzmann tree

The Boltzmann-Gibbs distribution of the equivalent resulting network in
Figure 5a is then tractable: a short calculation using Egs. (2), (3), and (1)
yields

(8a8p) = ZPEa(Sme)Sasb

Sa,Sp
exXP(Vap) CO8h(Voq + Vop) — €Xp(—0ap) COSh(Voq — Vop)
exp(vgp) C0sh(Vog + Vop) + €Xp(—vgp) cOSh (Vpq — Vep)

In the second phase both the input and the output nodes are clamped to
the full network. Since s, of our previous example is now a constant value,
the computation of (s,s;) reduces to (s,)sp. Again, (s,) may be calculated
by decimation of the original network to the equivalent network of Figure 5b.

Here, we have
(sa) =) P2 (84)8, = tanh(vy,).

Obviously, these rules are suitable for hierarchical networks with tree-
like architectures (termed Boltzmann trees by Saul and Jordan). To allow

7

Voa Vob Voa

a) 0 b) 0
Figure 5: Reduced networks for the computation of (s,s;) and (s,)

for more complex, graph-like structures we have established a third rule for
nodes connected to three other nodes.

2.3 Enhanced Decimation Rule

The general idea of decimation may be applied to n = 4 nodes; this situation
is depicted in Figure 6. In analogy to the case of a node connected to two
other nodes, Eq. (7), we get the following system of equations:

h 4 .
Z vl (1 — s48) = log (cos (Ea_2 (1))

4
1<a<b<5 cosh (Eazz U1a8a)

2 2
!
v12 Vhs Y24
V13 V14
O—1-O0—21-0 ,
3 1 4 3 U3y 4

Figure 6: Decimating a node connected to three other nodes

The eight possible combinations of s, s3, 54 € {—1, 1} are reduced to four
combinations by the symmetry (s, s3,S4) <> (—S2, —S3, —S4). The equation
for (sq,s3,84) = (1,1,1) is trivially fulfilled; three linear equations are left

for vis, vi,, and vi,. From these equations the effective weights of the new
edges can easily be determined:

o = log cosh(vig + v13 — v14) cosh(vig + v13 + v14) /4
2 cosh(vig — v13 + v14) cosh(viy — V13 — v14)
cosh (v — v13 + v14) cosh(vis + V13 + v
W, = log (v12 13 14) (v12 13 14) /4 ()
COSh(’U12 —+ v13 — U14) COSh(’U12 — V13 — U14)
o = log cosh(v1g + v13 + v14) cosh(vie — v13 — V14) /4
34 COSh(’U12 —+ v13 — U14) COSh(’U12 — V13 + 1}14)

The careful reader will note that Egs. (9) collapse into the solution (8) for
n = 3 nodes, if one of the effective weights vy, ..., v14 vanishes. Boltzmann
machines that (for every edge (i,j) € E) can be reduced to a system with
three nodes i, j, and 0 by the decimation rule (9) are termed decimatable.

This is the most general case, observing that the ansatz described in
Figure 1 cannot be solved for n > 4 nodes. Clearly, Boltzmann trees are
decimatable, since the Saul-Jordan decimation rule (8) is a special case of
Egs. (9). With the help of the enhanced decimation rule it becomes possible
to decimate more complex graphs than Boltzmann trees like the architectures
Dy, ..., Dg of Figure 8.

Decimatability is easily checked by subsuming clamped input nodes under
bias weights and successively reducing the Boltzmann machine by rule (9)
whenever a node has two or three neighbor nodes (including bias node 0)
until nothing can be changed. The exact calculation of (s;s;) is then feasible
by calculation of the Boltzmann-Gibbs distribution of an equivalent system
with three nodes.

2.4 Calculating the Information Gain

Pure gradient descent is certainly not the fastest method of learning. Virtu-
ally any other method outperforms gradient descent, but needs access to not
only the gradient of the cost function but also the cost function itself.
Decimation may help in calculating the information gain (4) in certain
cases. We assume that the desired distribution r is given by m examples
(@'Y, ..., (@™,+™). Sorting these examples lexicographically, it is easy
to determine ¢(«) as the number of examples whose first component is «

9

divided by m. r(y|a) may then be set to the frequency of examples that
coincide with () divided by ¢(«). The evaluation of (4) is then reduced
to the summation over as and s that occur in the training data. This leaves
pw(7|a) to be determined.

Clamping « results in a change of the bias weights. The set UUOU{0} of
nodes remains. If this set can be completely reduced by decimation with an
intermediate equivalent Boltzmann machine N = OU{0} , then p,(v|a) can
be efficiently calculated as described below. Note that not all decimatable
Boltzmann machines can be decimated by decimating the hidden nodes first,
e.g., Dy, Dy, Dy, and Dy of Figure 8 as opposed to D3, D5, and D;. Let
Py(7) = exp(—H(w,7)/T) /) Zg = > Pu(B7|a) denote the Boltzmann-Gibbs
distribution of N. Then we have

log(pw(vlar)) = log(Pa(y)) = —H(w,)/T — log(Z3).

The quantity Zz may now be calculated by decimation, again. Although
decimation was made to leave the interactions between the remaining nodes
invariant, the partition sum changes in every step of decimation. Eq. (6), for
n = 4 written as

. .
()

D exp <51 > U1a8a> = % exp | D vlySase |

51 a=2 Lyt 1<a<b<5

allows to determine the factor Z\/Z @ using the solution (9):

w

(1/4
2 (I cosh(viz + vigss + v14s4)> ifn=4
2 P 2 e
pok {2 (cosh(vig + v13) cosh(vie — v13)) ifn=3
w' 2 cosh(vyg) ifn=2
2 ifn=1

Adding all terms log(Z"/Z®) during decimation of the Boltzmann machine
N until the trivial Boltzmann machine {0} with partition sum 1 is reached
finally yields the quantity log(Zg).

Thus the cost function E,, may be determined in a tractable way. This
allows to exploit many interesting modifications of gradient descent strate-
gies like conjugate gradient, quasi-Newton methods [7] or stable dynamic

parameter adaptation [9] in order to increase the speed of convergence.

10

3 Belief Networks and a Diagnosis Problem

A variable X in a probability space is a set containing mutually exclusive
and exhaustive states. For the sake of clarity we restrict ourselves to two
possible states, true and false. P(A) denotes the probability that the event
A is true. P(—A) =1 — P(A) denotes the probability that A is false.

As another convention we use a comma, instead of the intersection symbol
N. For example P(—A|B,—C) is the probability that A is not true when we
know that B is true and C' is false. Our variables will be nodes in a directed
acyclic graph and we are able to define a belief network:

Definition (belief network) Let X; denote the event that node i rep-
resents a certain value x; in a directed acyclic graph (DAG). For each X; let
par(X;) be the set of events assigned to the parent nodes of i. The graph is a
belief network, if the joint probability P(X) is the product of the probabilities
for every event given its parents:

n

P(Xy,...,X,) = H P(X;|par(X;))

7

That means, if one knows the conditional probability distribution of each
variable given its parents, one can compute the joint probability distribu-
tion of all the variables in the network. This can enormously reduce the
complexity of determining the distribution.

Now we introduce a fictitious medical example based on a belief network
from [5]: Tuberculosis and lung cancer may be indicated by a positive chest
X-ray. Both can cause shortness of breath (dyspncea). The same is true for
bronchitis. A recent visit to Asia increases the probability of tuberculosis,
while smoking is a possible cause of both lung cancer and bronchitis. This
situation is depicted in the DAG of Figure 7. We can create a belief network
from this graph by assigning probabilities. For those who are interested
in the details, we have used the following set of conditional probabilities:
P(a) = 0.01, P(bla) = 0.05, P(b|-a) = 0.01, P(c|b,e) = 1, P(clb,—e) = 1,
P(c|=b,e) = 1, P(c|-b,—e) = 0, P(d|c) = 0.98, P(d|—c) = 0.05, P(e|f) =
0.1, P(e|=f) = 0.01, P(f) = 0.5, P(g|f) = 0.6, P(g|—~f) = 0.3, P(h|c,g) =
0.9, P(hlc,—g) = 0.7, P(h|-¢, g) = 0.8, P(h|-¢,—g) = 0.1

Because each variable has two alternatives, only one alternative has been
listed. For example P(—a) is 0.99, P(—c|b,e) is 0 and so on. We can retrieve

11

b = tuberculosis present
¢ = lung cancer or tuberculosis
d = positive X-ray

e = lung cancer present

f = person is a smoker
/ g = bronchitis present
@ @ h = dyspnea present

/ :\ a = person visited Asia

Figure 7: Dyspncea example

all 28 = 256 joint probabilities from the 18 numbers above by calculating

P(A,B,C,D,E,F,G,H) =
P(A) P(B|A) P(C|B, E) P(D|C) P(E|F) P(F) P(G|F) P(H|C,G).

In medical practice, it is often difficult to decide whether a variable is the
cause or the symptom of a disease. For an easier construction of a pattern
multi-set for Boltzmann learning, we have divided the variables into input
and output variables. We define A, D, F' and H as input variables because
they can be observed easily; moreover, they might be causes for a disease.
B, F and G are our output patterns — the possible effects. C is neither a
cause nor an effect; we model this variable by hidden nodes in the neural
network. As opposed to many other pattern sets, we can not determine the
output values exactly for given input values. For example, when we know
that D, F', H appears and A is not present, we, e.g., know that the patient
will have E and not both B and G with a probability of around 0.0134.

We will construct a pattern multi-set in the following way: The symptoms
and causes are modeled by nodes with the state 1 when present. When they
are not present, they are modeled by nodes with the state —1. The frequency
of the patterns is determined by joint probabilities. For example the pattern
(a,d, f,h;b,e,g9) = (—1,1,1,1; —1,1, —1) should appear with a frequency of
around 0.0134 when we randomly draw a pattern from our pattern multi-set.

12

4 Simulations

Usually, a belief network models very precisely a joint probability density.
However, in many real world applications, a good model of the probability
distribution does not exist. Instead, we have a more or less large multi-set
of examples. Imitating this, we have generated an artificial pattern multi-set
from a precise model as described in the previous section. Our goal was to
use Boltzmann machines to approximate the probability density given by the
pattern multi-set.

We have used different types of architectures—decimatable as well as
non-decimatable —in order to minimize the information gain (4). Depending
on the architecture, the gradient of the information gain was either calcu-
lated exactly or estimated by Gibbs sampling with simulated annealing (the
annealing schedule being 22 geometrical steps from 7' = 10 to the working
temperature of 7' = 1).

It is possible to calculate the information gain F,, exactly in some net-
works in a tractable way as described in Section 2.4. However, in networks
of small size, the information gain E,, can be calculated with brute force,
too. Hence, in order to assess different architectures and in order to improve
the overall speed of learning, we have used conjugate gradient utilizing the
exact E,,. Our investigations have shown that this saves much learning time
as opposed to pure gradient descent.

In all experiments the maximal number of iterations was 40. Most experi-
ments settled in a local minimum of the information gain in considerably less
than 40 epochs. In order to obtain significant statistics, we have repeated
each type of experiment with different (random) starting weight vectors.

4.1 Training Results with Decimation

Table 1 shows some statistics of the training results, i.e., the information
gain E,, for nine different decimatable architectures (see Figure 8; Dg and
Dy have the same architecture as D5 and D; except that the inputs are
also connected to the outputs). A small information gain indicates a good
approximation, 0 being a perfect fit.

Many architectures exhibit a large variance of the information gain as
can be seen, e.g., by a relative root mean square error of around 100%.
This indicates a deficiency of the learning algorithm in connection with this

13

architecture. As we can expect by the high empirical standard deviation, the
median seems to be a more robust statistical measure than the mean.

A second hidden layer as in architecture Dy and architecture Dg reduces
the number of outliers but worsens the information gain. The best results
were obtained from architecture D5 and architecture D7, Dg, and Dy with
six decimatable hidden nodes in one layer (to keep these architectures dec-
imatable, each hidden node is connected to no more than two nodes of the
output layer). Not only the information gain achieved was minimal but also
its variance was very small indicating that these architectures yield a consis-
tent learning result. Surprisingly, additional edges between input and output
nodes did not improve the information gain. We conjecture that six hidden
nodes are enough to model the correlations between the visible nodes.

Table 1: Statistics of E,, obtained by exact learning (decimation)

| Architecture | Median | Mean + RMSE |
D, 0.034 0.078+0.089
D, 0.168 0.127+0.089
Dsy 0.046 0.102+0.097
Dy 0.033 0.044+0.047
Ds 0.015 0.015+0.004
Do | 0.074| 0.132%£0.116
D, 0.017 0.01740.001
Dy 0.016 0.016+£0.002
Dy 0.018 0.018+0.001

4.2 Training Results with Gibbs Sampling

Table 2 shows twelve different architectures that have been trained with
Gibbs sampling. Among those are architectures with 2, 3, 4, 5, and 6 hidden
nodes in one layer: D; = Ay, A3, A4, As, and Ag; as indicated in Figure 8,
neither the output nodes nor the hidden nodes have been connected with each
other. Hj is very similar to As except that the hidden nodes are mutually
connected. Finally, the architectures F; (i = 0,...,5) represent the most
typical kind of Boltzmann machine, where the set of four input, ¢+ hidden,

14

Table 2: Statistics of E,, obtained by Gibbs sampling

‘ Architecture ‘ Median ‘ Mean += RMSE ‘
D, = A, 0.040 0.07440.082
As 0.037 0.052+0.056
Ay 0.024 0.029+0.018
As 0.021 0.023+0.007
Ag 0.022 0.023+0.006
H; 0.067 0.148+0.146
F, 0.118 0.115+0.051
F 0.081 0.101+0.053
F, 0.099 0.106+0.050
F; 0.077 0.081+0.033
F, 0.086 0.112+0.066
F; 0.102 0.103+0.047

and three output nodes are fully connected (except irrelevant edges between
the input nodes).

The only decimatable architecture of Table 2 is D; = A, that also ap-
pears in Table 1. As expected, the results for this architecture obtained by
decimation and Gibbs sampling agree within statistical significance. This is
a strong indication that Gibbs sampling estimates the gradient of the infor-
mation gain sufficiently precise.

The three architectures A3 C Hs C Fj are contained in each other; one
striking result is that the most special architecture Az yields the best result,
although —in principle — the same result could have been obtained by the
largest architecture Fj by setting some weights to zero. Probably, additional
weights create more local non-equivalent minima of the information gain.

The A-series of architectures yields its best results with five or six hidden
nodes, while the F-series shows optimal behavior with three hidden nodes.
Unfortunately, using a fully connected network with many hidden nodes does
not seem to help in finding a good architecture. Weights that are not useful
are not automatically set to zero. This is in accordance with the observation
that, in general, the task of finding an optimal architecture is NP-hard [6].

15

5 Conclusions

Technically, decimation is much simpler to handle than Gibbs sampling: the
interactions of nodes are simply calculated with an algorithm that is designed
to yield exact results. With Gibbs sampling, parameters for the annealing
schedule and for the sampling itself have to be determined. In practice, it
can be a lengthy process to verify that a certain parameter set will help to
estimate the interactions of nodes sufficiently precise. From our own expe-
rience, we conjecture that even the time needed for the actual process of
Gibbs sampling with adequate parameters does not scale very well with the
problem size.

The problem we have studied can be solved with several decimatable
Boltzmann machines (D5, D7, Dg, and Dy), probably owing to special prop-
erties of the desired joint probability given by the underlying belief network.
Any missing edge implies a certain stochastic conditional independence of
the resulting Boltzmann-Gibbs distribution. One open question is, whether
one can always find additional sparsely connected hidden nodes such that the
Boltzmann machine remains decimatable and such that they help in approx-
imating the desired probability distribution (as is the case when changing
D3 to Ds). Although the task of finding an optimal architecture may be
intractable, as suggested by [6], one would like to have an algorithm that
finds a sufficiently good decimatable Boltzmann architecture. These issues
are left for further studies.

References

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A
learning algorithm for Boltzmann machines. Cognitive Science, 9:147—
169, 1985.

[2] T. P. Eggarter. Cayley trees, the Ising problem, and the thermodynamic
limit. Physical Review B, 9(7):2989-2992, 1974.

[3] Geoffrey E. Hinton and Terrence J. Sejnowski. Optimal perceptual in-
ference. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 448-453. IEEE, 1983.

16

[4] C. Itzykson and J. Drouffe. Statistical Field Theory. Cambridge Uni-
versity Press, 1991.

[5] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to expert
systems (with discussion). Journal of the Royal Statistical Society B,
50:157-224, 1988.

[6] Jyh-Han Lin and Jeffrey S. Vitter. Complexity issues in learning by neu-
ral nets. In R. Rivest, D. Haussler, and M. Warmuth, editors, COLT89,
pages 118-132. Morgan Kaufmann Publishers, 1989.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C. Cambridge University Press, 1988.

[8] Stefan M. Riiger. Ausgewdhlte Kapitel der Theorie neuronaler Netze.
Lecture notes, Technische Universitat Berlin, 1996.

[9] Stefan M. Riiger. Stable dynamic parameter adaptation. In D. S. Touret-
zky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems 8, pages 225-231. MIT Press, 1996.

[10] Lawrence Saul and Michael I. Jordan. Learning in Boltzmann trees.
Neural Computation, 6(6):1174-1184, 1994.

17

N
O O Oo O O o)
S N\ VY
O Ovu ONONGO) U
= ™~ N\ N\
O O OO0Or O O O0OOr OO OO0Or
a) D1 = Ay b) D, c) D3
(0]
5L, 2
U
U U
Z N\ ~_ Z N\
OOOOI O OOO0Or O OOOr
)D5 f)D6
OOOO O O Oo
1
-O—O—O-U O O OQOv
Z N\
OOOOI OOOOI O OO0OOr
g)D7 h)H3 1)A3
O O Oo O O Oo O O Oo
N\ = ~.
OCOO0O0Or OO0OO0OOO0Or OOOOOO0U
[1] ~____ 7 ~—__ -
O OOOr O O O0OOr O O OO0Or
j) Ay k) As 1) Ag

Figure 8: Some architectures (Dy,... , D7 are decimatable)

18

