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Abstract. We will demonstrate that the performance evaluation of feedforward neural networks
using computational methods may result in overly pessimistic estimates of the prediction error. In
fact, they capture unwanted variability in the distribution of weights, introduced by local maxima
in the likelihood function in connection with deficiencies of gradient based learning procedures.
An analysis of the influence of local maxima is hampered due to a nontrivial algebraic structure
of the weight space; we will show that typical feedforward networks exhibit a large number of
symmetries due to a nontrivial symmetry group acting on the weight space. We will present an
algorithm which divides out these symmetries. In the resulting much smaller effective weight
space, clustering algorithms may be used to improve the assessment of prediction errors. We will

demonstrate that this method can be successfully applied.

1 Introduction

Feedforward networks can be interpreted as a form of
nonlinear regression. They offer great flexibility at the
price of a complicated structure. In general, there are
several approximate methods to estimate the standard
error of feedforward networks.

The development of ever more complicated statistical
learning procedures and powerful computers has led to
computational approaches to statistical inference like
jackknife, cross-validation and bootstrap [2]. Recent
studies suggest that computational methods perform
best, “partly because they capture variability due to
the choice of starting weights.” [6]

However, we will argue that their naive use can be
misleading.

2  Weights and Symmetries

Most learning algorithms for feedforward networks try
to minimize a certain cost function, which depends
on a weight vector. In a statistical context (see sec-
tion 3.1), equivalently, the likelihood of sample data
of an input-output relation is maximized with respect
to the weight vector. Many algorithms inevitably find
local maxima overlooking a global solution. Although
this might result in acceptable network functions, mix-
ing the results of network functions arising from dif-
ferent local maxima (e.g. to estimate the prognosis
error) might lead to wrong insights. It is highly desir-
able to separate the influences of different maxima.

Figure 1: Symmetry of the Network Function out,
Induced by a Certain Weight Permutation.

Typical neural feedforward networks have intrinsic re-
dundancies. Consider the network of Figure 1: due to
the commutativity of the summation at nodes 5 and
6, node 3 might be exchanged with node 4 (together
with their respective weights) without changing the
network function out,, given by the weight vector w.
If a hidden layer has n nodes, then n! different weight
vectors produce the same network function. Another
type of symmetry can be induced by a symmetry of
the activation function f of a hidden node. If, as is the
case for the logistic function, f(z) =1 — f(—=z), then
a sign change of all weights involving the hidden node
can be corrected by incrementing all bias weights of
the next layer by a corresponding weight; see Figure 2
for details.
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Figure 2: Symmetry of the Network Function out,,
Induced by a Symmetry of the Activation Function.

A classification of all local maxima of the likelihood
is beyond all hope if the symmetries are ignored. As-
sume a standard feedforward network with k& hidden
layers Ly, ..., Ly, where each layer is fully connected
to the next layer. Let the activation function of each
hidden node exhibit the symmetry f(z) =1 — f(—xz).
In order to classify all local maxima found so far, we
propose the following algorithm, which will be justi-
fied in the appendix:

Let w denote a weight vector resulting from some
learning algorithm (or parameter estimation). Begin-
ning with layer L; apply the symmetry operation of
Figure 2, whenever a bias weight of a hidden node
is negative until all hidden nodes have nonnegative
bias weights. Then for every layer apply symmetry
operations of Figure 1 such that the bias weights of
each layer are in a definite order, say ascending from
left to right, thus arriving at a “sorted” weight vec-
tor s(w). The vector s(w) produces the same network
function as w. Different results w',w?,... for weight
parameter estimates may result from different start-
ing points for the learning algorithm or different data
samples. Create effective weight vectors s(w?) by the
above procedure. Then use a clustering algorithm on
s(w!), s(@?), ... to classify all weight vectors.

Within this paper, maxima @' and @2 of the likeli-
hood for which s(i!) = s(?) are termed symmetric
to each other. Weight vectors, which cannot be iden-
tified by such a operation are termed asymmetric.

3 Standard Error Estimates for
Neural Networks

A commonly used indicator of statistical accuracy of
a learning procedure is its standard error, that is, the
square root of the variance of the predicted values.

We will compare different estimates of standard error
of predicted values in a simple class of feedforward
neural networks. To illustrate the respective perfor-
mance, we will use a network with one input unit, one

linear output unit, and three sigmoidal hidden units.
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where f(z) = 1/(1 + exp(—x)).

The data are generated using a “true” model (its
graph is shown in Figure 3) with a certain fixed weight
vector w*. In the regression context, we assume “mea-
surement” errors, so the actual data are modeled us-
ing:

yi = outy, (z;) + &
where the errors ¢; are independent and identically
N(0,0? = 0.1%) normal distributed.

The training multiset D is {(z1,y1),.-.,(%33,¥y33)}
(see Figure 3).

3.1 Likelihood Approach

The classic approach of standard error estimation fol-
lows likelihood theory [6]. The log-likelihood function
for n = |D| data pairs is

n

Z(% — outy ()% — glog(%’a?).

i=1
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The result of learning or estimation, e.g., using gra-
dient ascent, is given by

W= argurflax(ln(w)).

Then, the observed information matrix I is the nega-
tive Hessian matrix of the log-likelihood with respect
to the weights evaluated at «@. Using the delta method
[2], we obtain an approximation of the standard error
estimation se(outy(z)) by

R 1/2
(V“,out(m)\g N A V“,011t(.7:)|“3) .

There are efficient algorithms, which exploit the feed-
forward structure of the network, to compute the Hes-
sian and the inverse Hessian of the log-likelihood[1, 3].

3.2 Bootstrap Approach

The bootstrap method [2] is based on re-estimations
of the parameter vector on B bootstrap samples of
the training set. The bth bootstrap sample is a ran-
dom multiset D** = {(23%, y;®),..., (b, y2’)} drawn
from the training data with replacement, i.e., some
of the original data pairs will not appear, and some
will appear multiply. A regression line is obtained by
averaging

B
- 1
outB(.?:) =5 ; out«s ()



Figure 3: True Model (Solid Line), Data, Maximum-

Likelihood Regression Line (Dotted) and Standard
Errors

where 10*" is the estimated weight vector according to
w*? = argmax(lpss (w)).
w

Then the standard error is approximately
1/2

(ﬁ i (out v (z) — ﬁB(az))Q)

b=1

Figure 4: True Model (Solid Line), Data, Maximum-

Likelihood Regression Line at Weaker Local Maxi-
mum (Dotted) and Standard Errors

4 Simulations

In this section, we will demonstrate that bootstrap
and likelihood approaches to standard error estima-
tion yield quite different results. Figures 3 and 4 show
two estimates based on the likelihood approach. The

respective regression lines (dotted) are also quite dif-
ferent and correspond to asymmetric local maxima
in the likelihood. Note that given a gradient based
learning procedure the local maximum will be reached
a significant number of times even if the number of
available data points will become large. Asymptotic
normality does not seem to help to close the gap be-
tween the likelihood and bootstrap approaches.

Figure 5: True Model (Solid Line), Bootstrap Regres-
sion Line (Dotted), Data and Standard Errors

Figure 6: True Model (Solid Line), “Clustered” Boot-

strap Regression Line (Dotted), Data and Standard
Errors

Figure 5 shows the average bootstrap regression line
and in comparison to the likelihood-based esti-
mates — rather large standard errors. It is obvious
that bootstrap has to average over different local max-
ima resulting in large standard errors.

In Figure 6 the bootstrap distribution of weights is
restricted to one maximum of the likelihood: The es-
timated weight vectors were transformed in order to
represent their orbit under the symmetry group S as
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Figure 7: A Projection of a Sample Weight Vector
Distribution after Maximizing the Log-Likelihood of
the Data With Different Starting Values

discussed in section 2 (visualized in Figures 7 and 8
for a sample weight distribution). A simple k-means
cluster algorithm was applied to those representative
weight vectors. A bootstrap average over weight vec-
tors from a cluster with “good” likelihood was then
applied in order to achieve the results of Figure 6.
The regression line and the distribution of standard
errors is much closer to the likelihood-based standard
errors than the original bootstrap estimate.

5 Discussion

Local maxima in the likelihood function have a nega-
tive effect on the accuracy of estimated standard er-
rors of predicted values. Not only could this lead to
a misjudgement of the models, but also to the fail-
ure of procedures based on the precise assessment of
statistical accuracy, e.g., dynamic pattern selection
algorithms. We have shown that typical feedforward
networks exhibit a large number of symmetries due to
a nontrivial symmetry group in weight space. In order
to improve the accuracy of estimation these symme-
tries have to be divided out, e.g., by using the algo-
rithm given at the end of section 2. The assessment
can be significantly improved if standard error estima-
tion is confined to local regions of the weight space.
We have given an example using k-means clustering.

Appendix: Symmetry Group of the
Weight Space

The symmetries of the network function, which arise
in section 2, are best described and analyzed in terms
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Figure 8: ... and Corresponding Representatives of
their Orbits under S.

of their corresponding groups, see e.g. [5]. Let (M)
denote the permutation group of a set M. Recall that
every permutation can be written in terms of trans-
positions. The transposition 7(a,i) of a node a € L;
with its right neighbor node induces a certain permu-
tation m(a,i) of the weight vector components, which
leaves the network function out,, invariant. This per-
mutation 7(a,i) may be viewed as a linear operation
on the weight space R, and thus is an element of the
group GL(E, R) of all linear functions RE — RE.

Fix i; the mappings 7(a, i) — 7w(a,i) with varying a in-
duce a monomorphism (i. e., injective homomorphism)
from X(L;) to GL(E,R). Let II; denote the image of
this monomorphism. II; can be identified with the
group generated by w(ay,4),7(as,1), ... Further stud-
ies show that II; commutes with II; element by ele-
ment if i # j (check this in Figure 1 for the exchange
of first node 5 with 6 and then node 3 with 4 and vice
versa). It turns out that the group II which is gener-

ated by II;,... Il is isomorphic to the direct prod-
uct of Iy, ... ,II;. Particularly, IT has |Lq|!-...- |Lg|!
elements.

Let t,: RE — RF denote the linear operation of Fig-
ure 2, which leaves out,, invariant by exploiting the
symmetry f(x) =1— f(—z) at hidden node a. Note
that ¢, is idempotent and thus the group induced by
tq is the cyclic group T, := {1,t,} with two elements.
Verify that t, commutes with ¢, for all hidden nodes
a,b and that no t, can be expressed by any combina-
tion tp, ...tp, of other operations when all b; # a.
From this it can be deduced that the subgroup T
which is generated by all the operations ¢, is abelian
and isomorphic to the direct product of all T,. Par-
ticularly, T' has 2/71Y-UExl elements.



Let S ¢ GL(E,R) denote the group generated by II
and T. By definition, T" is a subgroup of S. T turns
out to be normal, yielding the result S = T1II = IIT.
It follows that each element s of the symmetry group S
has a unique representation s = my ... 7t with 7; € II;
and t € T. S acts on RP in a natural way: Distinct
orbits S(w) := {z € R |z = s(w) for some s € S}
(wFith respect to the natural group action) partition
R™.

There is an interesting convex set W of weight vec-
tors which contains a representative of each orbit. Let
aj,... ,a"Li‘ denote the nodes of hidden layer L;. Let

w(b, i) denote a subvector of w, containing all weights
which involve the node b € L;. @w(4,1) of Figure 2
might be constructed as (wy4, w14, Wog, Was, wag). The
lexicographic comparison w(b,i) < w(e,) of two vec-
tors, as usual, means that either w(b,i) = w(c,i) or
the first nonzero component of w(c, i) — w(b,4) is pos-
itive. Then

W= {weREmjw(ai,i) <

<. X (aly,, i) forall 1 < i < k}

is such a set. Note that W is a cone with apex 0 (i.e.,
cw € W for all w € W and ¢ > 0). It suffices to look
for a maximum of the likelihood in W instead of the
much larger space R” | since S(W) = RF. Indeed ap-
plying T on W allows each first nonzero component of
all subvectors w(b,i) to change its sign and then ap-
plying II creates all possible orders of the first nonzero
components thus removing any restriction given to
specify W. There have been attempts to study the
algebraic structure of weight spaces [4]; our analysis
is more general and the above search set W is much
smaller than the one given in [4]. In a certain sense W
represents a possible way to define a minimal search
set with respect to S.

The space R” of weight vectors is highly redundant.
Ideally RF should be replaced by the space RF /S
of distinct orbits, but then the problem arises of
how to define learning algorithms or statistics in the
manifold! RF /S, which has completely different geo-
metric properties than R” . Instead of bothering with
these questions, we propose to learn in the flat space
RF and map the learning result to W.

Those, who carefully read this subsection, might wish
to replace “bias weight of node b” with “first nonzero
component of the subvector w(b,4)” in the algorithm
proposed in section 2. They would implement a mini-
mal search set W. The algorithm proposed works with
a slightly larger search set W' > W. The difference
to the minimal one has Lebesgue measure zero.

!Strictly speaking, points w with a vanishing subvec-
tor w(a,), or with two coinciding subvectors of nodes in
the same hidden layer must be removed in order to get a
manifold; they represent singular points.
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