
Performance Evaluation of Feedforward NetworksUsing Computational MethodsStefan M. R�uger Arnfried OssenInformatik, Sekr. FR 5-9Technische Universit�at Berlin10 587 Berlin, GermanySubmitted to NEURAP 1995Abstract. We will demonstrate that the performance evaluation of feedforward neural networksusing computational methods may result in overly pessimistic estimates of the prediction error. Infact, they capture unwanted variability in the distribution of weights, introduced by local maximain the likelihood function in connection with de�ciencies of gradient based learning procedures.An analysis of the in
uence of local maxima is hampered due to a nontrivial algebraic structureof the weight space; we will show that typical feedforward networks exhibit a large number ofsymmetries due to a nontrivial symmetry group acting on the weight space. We will present analgorithm which divides out these symmetries. In the resulting much smaller e�ective weightspace, clustering algorithms may be used to improve the assessment of prediction errors. We willdemonstrate that this method can be successfully applied.1 IntroductionFeedforward networks can be interpreted as a form ofnonlinear regression. They o�er great 
exibility at theprice of a complicated structure. In general, there areseveral approximate methods to estimate the standarderror of feedforward networks.The development of ever more complicated statisticallearning procedures and powerful computers has led tocomputational approaches to statistical inference likejackknife, cross-validation and bootstrap [2]. Recentstudies suggest that computational methods performbest, \partly because they capture variability due tothe choice of starting weights." [6]However, we will argue that their na��ve use can bemisleading.2 Weights and SymmetriesMost learning algorithms for feedforward networks tryto minimize a certain cost function, which dependson a weight vector. In a statistical context (see sec-tion 3.1), equivalently, the likelihood of sample dataof an input-output relation is maximized with respectto the weight vector. Many algorithms inevitably �ndlocal maxima overlooking a global solution. Althoughthis might result in acceptable network functions, mix-ing the results of network functions arising from dif-ferent local maxima (e. g. to estimate the prognosiserror) might lead to wrong insights. It is highly desir-able to separate the in
uences of di�erent maxima.

7 0531
642Figure 1: Symmetry of the Network Function outwInduced by a Certain Weight Permutation.Typical neural feedforward networks have intrinsic re-dundancies. Consider the network of Figure 1: due tothe commutativity of the summation at nodes 5 and6, node 3 might be exchanged with node 4 (togetherwith their respective weights) without changing thenetwork function outw given by the weight vector w.If a hidden layer has n nodes, then n! di�erent weightvectors produce the same network function. Anothertype of symmetry can be induced by a symmetry ofthe activation function f of a hidden node. If, as is thecase for the logistic function, f(x) = 1� f(�x), thena sign change of all weights involving the hidden nodecan be corrected by incrementing all bias weights ofthe next layer by a corresponding weight; see Figure 2for details.
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wo5 7! wo5 + w45wo6 7! wo6 + w46~w(4; 1) 7! � ~w(4; 1)
Figure 2: Symmetry of the Network Function outwInduced by a Symmetry of the Activation Function.A classi�cation of all local maxima of the likelihoodis beyond all hope if the symmetries are ignored. As-sume a standard feedforward network with k hiddenlayers L1; : : : ; Lk, where each layer is fully connectedto the next layer. Let the activation function of eachhidden node exhibit the symmetry f(x) = 1� f(�x).In order to classify all local maxima found so far, wepropose the following algorithm, which will be justi-�ed in the appendix:Let ŵ denote a weight vector resulting from somelearning algorithm (or parameter estimation). Begin-ning with layer L1 apply the symmetry operation ofFigure 2, whenever a bias weight of a hidden nodeis negative until all hidden nodes have nonnegativebias weights. Then for every layer apply symmetryoperations of Figure 1 such that the bias weights ofeach layer are in a de�nite order, say ascending fromleft to right, thus arriving at a \sorted" weight vec-tor s(ŵ). The vector s(ŵ) produces the same networkfunction as ŵ. Di�erent results ŵ1; ŵ2; : : : for weightparameter estimates may result from di�erent start-ing points for the learning algorithm or di�erent datasamples. Create e�ective weight vectors s(ŵi) by theabove procedure. Then use a clustering algorithm ons(ŵ1), s(ŵ2), : : : to classify all weight vectors.Within this paper, maxima ŵ1 and ŵ2 of the likeli-hood for which s(ŵ1) = s(ŵ2) are termed symmetricto each other. Weight vectors, which cannot be iden-ti�ed by such a operation are termed asymmetric.3 Standard Error Estimates forNeural NetworksA commonly used indicator of statistical accuracy ofa learning procedure is its standard error, that is, thesquare root of the variance of the predicted values.We will compare di�erent estimates of standard errorof predicted values in a simple class of feedforwardneural networks. To illustrate the respective perfor-mance, we will use a network with one input unit, one

linear output unit, and three sigmoidal hidden units.outw(x) = wo5 + 4Xh=2wh5f(woh + w1hx)where f(x) = 1=(1 + exp(�x)).The data are generated using a \true" model (itsgraph is shown in Figure 3) with a certain �xed weightvector w?. In the regression context, we assume \mea-surement" errors, so the actual data are modeled us-ing: yi = outw?(xi) + "iwhere the errors "i are independent and identicallyN(0; �2 = 0:12) normal distributed.The training multiset D is f(x1; y1); : : : ; (x33; y33)g(see Figure 3).3.1 Likelihood ApproachThe classic approach of standard error estimation fol-lows likelihood theory [6]. The log-likelihood functionfor n = jDj data pairs islD(w) = � 12�2 nXi=1(yi � outw(xi))2 � n2 log(2��2):The result of learning or estimation, e. g., using gra-dient ascent, is given byŵ = argmaxw (lD(w)):Then, the observed information matrix Î is the nega-tive Hessian matrix of the log-likelihood with respectto the weights evaluated at ŵ. Using the delta method[2], we obtain an approximation of the standard errorestimation ŝe(outŵ(x)) by�rwout(x)jT̂w � Î�1 � rwout(x)jŵ�1=2:There are e�cient algorithms, which exploit the feed-forward structure of the network, to compute the Hes-sian and the inverse Hessian of the log-likelihood[1, 3].3.2 Bootstrap ApproachThe bootstrap method [2] is based on re-estimationsof the parameter vector on B bootstrap samples ofthe training set. The bth bootstrap sample is a ran-dom multiset D�b = f(x�b1 ; y�b1 ); : : : ; (x�bn ; y�bn )g drawnfrom the training data with replacement , i. e., someof the original data pairs will not appear, and somewill appear multiply. A regression line is obtained byaveraging outB(x) := 1B BXb=1 outŵ�b(x)
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Figure 3: True Model (Solid Line), Data, Maximum-Likelihood Regression Line (Dotted) and StandardErrorswhere ŵ�b is the estimated weight vector according toŵ�b = argmaxw (lD�b(w)).Then the standard error is approximately� 1B � 1 BXb=1 �outŵ�b(x)� outB(x)�2�1=2:
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Figure 4: True Model (Solid Line), Data, Maximum-Likelihood Regression Line at Weaker Local Maxi-mum (Dotted) and Standard Errors4 SimulationsIn this section, we will demonstrate that bootstrapand likelihood approaches to standard error estima-tion yield quite di�erent results. Figures 3 and 4 showtwo estimates based on the likelihood approach. The

respective regression lines (dotted) are also quite dif-ferent and correspond to asymmetric local maximain the likelihood. Note that given a gradient basedlearning procedure the local maximum will be reacheda signi�cant number of times even if the number ofavailable data points will become large. Asymptoticnormality does not seem to help to close the gap be-tween the likelihood and bootstrap approaches.
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Figure 5: True Model (Solid Line), Bootstrap Regres-sion Line (Dotted), Data and Standard Errors
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Figure 6: True Model (Solid Line), \Clustered" Boot-strap Regression Line (Dotted), Data and StandardErrorsFigure 5 shows the average bootstrap regression lineand | in comparison to the likelihood-based esti-mates | rather large standard errors. It is obviousthat bootstrap has to average over di�erent local max-ima resulting in large standard errors.In Figure 6 the bootstrap distribution of weights isrestricted to one maximum of the likelihood: The es-timated weight vectors were transformed in order torepresent their orbit under the symmetry group S as



W12

W13

W14

Figure 7: A Projection of a Sample Weight VectorDistribution after Maximizing the Log-Likelihood ofthe Data With Di�erent Starting Valuesdiscussed in section 2 (visualized in Figures 7 and 8for a sample weight distribution). A simple k-meanscluster algorithm was applied to those representativeweight vectors. A bootstrap average over weight vec-tors from a cluster with \good" likelihood was thenapplied in order to achieve the results of Figure 6.The regression line and the distribution of standarderrors is much closer to the likelihood-based standarderrors than the original bootstrap estimate.5 DiscussionLocal maxima in the likelihood function have a nega-tive e�ect on the accuracy of estimated standard er-rors of predicted values. Not only could this lead toa misjudgement of the models, but also to the fail-ure of procedures based on the precise assessment ofstatistical accuracy, e. g., dynamic pattern selectionalgorithms. We have shown that typical feedforwardnetworks exhibit a large number of symmetries due toa nontrivial symmetry group in weight space. In orderto improve the accuracy of estimation these symme-tries have to be divided out, e. g., by using the algo-rithm given at the end of section 2. The assessmentcan be signi�cantly improved if standard error estima-tion is con�ned to local regions of the weight space.We have given an example using k-means clustering.Appendix: Symmetry Group of theWeight SpaceThe symmetries of the network function, which arisein section 2, are best described and analyzed in terms
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Figure 8: : : : and Corresponding Representatives oftheir Orbits under S.of their corresponding groups, see e. g. [5]. Let �(M)denote the permutation group of a setM . Recall thatevery permutation can be written in terms of trans-positions. The transposition �(a; i) of a node a 2 Liwith its right neighbor node induces a certain permu-tation �(a; i) of the weight vector components, whichleaves the network function outw invariant. This per-mutation �(a; i) may be viewed as a linear operationon the weight space RE , and thus is an element of thegroup GL(E;R) of all linear functions RE ! RE .Fix i; the mappings �(a; i) 7! �(a; i) with varying a in-duce a monomorphism (i. e., injective homomorphism)from �(Li) to GL(E;R). Let �i denote the image ofthis monomorphism. �i can be identi�ed with thegroup generated by �(a1; i); �(a2; i); : : : Further stud-ies show that �i commutes with �j element by ele-ment if i 6= j (check this in Figure 1 for the exchangeof �rst node 5 with 6 and then node 3 with 4 and viceversa). It turns out that the group � which is gener-ated by �1; : : : ;�k is isomorphic to the direct prod-uct of �1; : : : ;�k. Particularly, � has jL1j! � : : : � jLkj!elements.Let ta:RE ! RE denote the linear operation of Fig-ure 2, which leaves outw invariant by exploiting thesymmetry f(x) = 1� f(�x) at hidden node a. Notethat ta is idempotent and thus the group induced byta is the cyclic group Ta := f1; tag with two elements.Verify that ta commutes with tb for all hidden nodesa; b and that no ta can be expressed by any combina-tion tb1 : : : tbn of other operations when all bi 6= a.From this it can be deduced that the subgroup Twhich is generated by all the operations ta is abelianand isomorphic to the direct product of all Ta. Par-ticularly, T has 2jL1[:::[Lkj elements.



Let S � GL(E;R) denote the group generated by �and T . By de�nition, T is a subgroup of S. T turnsout to be normal, yielding the result S = T� = �T .It follows that each element s of the symmetry group Shas a unique representation s = �k : : : �1t with �i 2 �iand t 2 T . S acts on RE in a natural way: Distinctorbits S(w) := fx 2 RE jx = s(w) for some s 2 Sg(with respect to the natural group action) partitionRE .There is an interesting convex set W of weight vec-tors which contains a representative of each orbit. Letai1; : : : ; aijLij denote the nodes of hidden layer Li. Let~w(b; i) denote a subvector of w, containing all weightswhich involve the node b 2 Li. ~w(4; 1) of Figure 2might be constructed as (wo4; w14; w24; w45; w46). Thelexicographic comparison ~w(b; i) � ~w(c; i) of two vec-tors, as usual, means that either ~w(b; i) = ~w(c; i) orthe �rst nonzero component of ~w(c; i)� ~w(b; i) is pos-itive. ThenW := nw 2 RE j 0 � ~w(ai1; i) �: : : � ~w(aijLij; i) for all 1 � i � kois such a set. Note that W is a cone with apex 0 (i. e.,cw 2 W for all w 2 W and c > 0). It su�ces to lookfor a maximum of the likelihood in W instead of themuch larger space RE , since S(W ) = RE . Indeed ap-plying T onW allows each �rst nonzero component ofall subvectors ~w(b; i) to change its sign and then ap-plying � creates all possible orders of the �rst nonzerocomponents thus removing any restriction given tospecify W . There have been attempts to study thealgebraic structure of weight spaces [4]; our analysisis more general and the above search set W is muchsmaller than the one given in [4]. In a certain senseWrepresents a possible way to de�ne a minimal searchset with respect to S.The space RE of weight vectors is highly redundant.Ideally RE should be replaced by the space RE =Sof distinct orbits, but then the problem arises ofhow to de�ne learning algorithms or statistics in themanifold1 RE =S, which has completely di�erent geo-metric properties than RE . Instead of bothering withthese questions, we propose to learn in the 
at spaceRE and map the learning result to W .Those, who carefully read this subsection, might wishto replace \bias weight of node b" with \�rst nonzerocomponent of the subvector ~w(b; i)" in the algorithmproposed in section 2. They would implement a mini-mal search setW . The algorithm proposed works witha slightly larger search set W 0 � W . The di�erenceto the minimal one has Lebesgue measure zero.1Strictly speaking, points w with a vanishing subvec-tor ~w(a; i), or with two coinciding subvectors of nodes inthe same hidden layer must be removed in order to get amanifold; they represent singular points.
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