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Abstract

We present a robust model assessment method for neural-network
models and demonstrate the approach for feedforward networks. In order
to assess a neural-network model, the location of weight vectors after re-
peated learning experiments is analysed in the effective weight space. We
argue that appropriate or underdetermined models clearly show a cluster
structure in the effective weight space whereas too complex models do not
exhibit a proper cluster structure. We achieve robust model assessment
by restricting estimates of network performance to clusters.

1 Introduction

Methods to select the structure and complexity of neural networks come in many
flavours [3, 1], but most of them rely on estimating the network performance
using test set patterns not employed during training. Different candidate net-
works are trained and the respective performances on the test set are compared.
The network with the lowest estimate is then chosen.

However, these estimates can be unreliable because the test set may contain
high-leverage outliers or may be unrepresentative for the true population. More
importantly, standard learning algorithms may fail to converge to the optimal
weight vector. This means that the test set error estimates the performance
(or generalisation error) of a particular learned weight vector, rather than the
performance of a network model.

In order to assess the model performance it seems necessary to run repeated
learning trials, e.g. with different initial weight vectors. Indeed, learning runs
where only the initial weight vector is varied can end up in different local minima,
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Figure 1: 100 test errors of different learning runs for a 4-9-2 network, where
only the initial weight vector was randomly varied

resulting in a considerable test error variability (see Figure 1), and consequently
in unreliable model assessment. Straightforward remedies, such as using the
average test set error will still be inaccurate, as we will demonstrate in Section 2.
We find that the introduction of an effective weight space, together with a
canonical metric, allows us to remove the influence of other local minima and
outliers, i.e. to estimate robustly.

The rest of this paper is organised as follows: In Section 3, we introduce
the technique of weight vector clustering, which is applied to the experiments
described in Section 2. The tree-like graphical representation of the resulting
clusters is studied in Section 4, where we present robust performance statistics
for feedforward networks. We then demonstrate that these robust statistics can
be used for model assessment. Finally, we discuss a number of extensions to our
work.

Throughout this article, the nodes of a network are addressed by symbols, 0
being the symbol for the bias node. All nonbias nodes are divided into one input
layer, £ > 1 hidden layers, and one output layer. Every layer is fully connected
to the next layer, and there is a weight w,; for every pair (a, b) of nodes, a and
b being in successive layers. Hidden nodes and output nodes have a bias weight
termed wyq -

Hidden-layer nodes of feedforward networks use tanh as their activation func-
tion, nodes in the output layer, the identity. All weights of the network form a
weight vector w € RP that parameterises a network function out,,. The term
i-h-o addresses the network model with one hidden layer by describing the num-
ber of nodes of each layer. Approximation tasks may already be accomplished
using networks with one hidden layer: the set of their network functions is dense
in the set of all continuous functions with compact domain [5].

2 Network Performance

To demonstrate the characteristics of the test error, we chose a network that is
not only small enough for concise presentation but also relevant for applications,
e.g., from control engineering or time-series modeling. We generated 2400 data
pairs (z¢,y%) using a 4-9-2 feedforward network with a fixed weight vector w*.
The inputs cover the [—1,1]* cube, and the targets y' may or may not contain
small random perturbations &*:

y' = oty (zf) + £

The data pairs were randomly split into a training and a test set of 1200 pairs
each.

Fitting . = 100 4-9-2 networks with different random initial weights resulted
in the test errors shown in Figure 1. The test error cannot reach zero because



of the small amount of added noise. If the large variance were due to outliers,
more robust estimators like the median could be used. The minimum should be
an even better estimator, because outliers of the test error are expected to be
too large.

Table 1 shows the above test error statistics for different network models,
where the number of hidden nodes varies. For each network the same data were
fitted 100 times using random initial weight vectors.

Model selection based on the lowest value of the test error statistic will
result in too complex networks for the mean (4-12-2), median (4-11-2), and
minimum (4-13-2). These test error statistics are not truly robust estimators of
the generalisation error.

Table 1: Some statistics of the test error
Network Mean & SDV  Median Minimum

4-4-2 20100+ 38% 20400 12020
4-5-2 14200+ 37% 11600 8376
4-6-2 10900+ 51% 8730 4990
4-7-2 7880+ 53% 7180 2058
4-8-2 5000 £ 110% 3860 269.1
*4-9-2 1870+ 160% 268 25.06
4-10-2 1230 £+ 290% 173 25.05
4-11-2 643 + 310% 25.2 25.02
4-12-2 346 £ 590% 25.3 25.06
4-13-2 607 £+ 530% 25.6 24.97

A more sophisticated use of the data, e.g., leave-k-out cross-validation or
bootstrap, cannot improve the situation. Instead, we propose a robust statistic
based on a geometric approach that enables us to restrict the performance es-
timation to a single local minimum, i.e. to remove the influence of other local
minima and outliers.

3 Clustering in Weight Space

The basic idea of clustering in weight space is that an experiment, e.g., the
approximation of a data set, is repeated with small changes like different initial
weight vectors, different artificial noise in the data set (jitter), etc. Then, the
resulting weight vectors are grouped by a suitable cluster algorithm in order to
assess the typical results of the experiment.

Initially, clustering in weight space is hampered by symmetries s: RE — RY
which leave the network function invariant: out,, = outg(,), €.g., by relabeling
nodes within a hidden layer. Consider the subvector of weights that start or
end at a certain hidden node. Changing their signs is another invariance, owing
to the symmetry of the tanh activation function. Both transformations are



bijective and linear; they form a certain symmetry group S that acts on the
weight space. The problem is that networks with the same network function
may have numerous different weight vectors. This may be overcome by applying
a sign-change operation to all subvectors of hidden nodes whose bias weight is
negative, and by relabeling the hidden nodes such that the bias weights are
nondescending in every hidden layer. Thus every weight vector w (except for a
set with zero Lebesgue measure) has a unique representative r(w) in an effective
weight space W := r(R¥) C RF that is reduced in size by a factor of h! - 2" for
an i-h-o network.

The next problem is that r is discontinuous: consider two weight vectors
v g W and w € W that are very close to each other; their representative
vectors r(v) and w = r(w) may nevertheless be separated. Thus W should be
endowed with a metric that respects the symmetry group S. Let dg(v,w) be
the metric in R” that is induced by the maximum norm. We propose using

d(v, w) := rsnelg dg(s(v),w)

as a canonical metric in W; then r: (RF,dg) — (W, d) is a continuous mapping.
This enables us to work in the effective weight space knowing that similar net-
work functions out, and out,, should have a small distance d(v,w). Although
the calculation of d(v,w) turns out to be intractable in the number of hidden
nodes [4], we were able to implement an approximation based on efficient and
sufficiently precise solutions of the Traveling-Salesman Problem.

Weight vectors w',... ,w™ resulting from repeated runs of an experiment
can now be clustered. A good starting point for doing this is hierarchical clus-
tering, where an arbitrary distance matrix D, e.g., D;; = d(r(w'),r(w?)), can
be supplied without the need to specify a number of clusters or cluster cen-
ters. Initially, each substructure contains a single vector. At each stage, the
two closest substructures are combined to form one bigger substructure, the
distance between substructures being defined as the maximal distance between
its elements (a.k.a. complete linkage method). After m — 1 steps, all m weight
vectors have been merged into one big structure. Dendrograms like in Figure 2
display this process as a tree, where the junction height indicates the distance
between substructures.

Clusters, in our sense, are now represented by subtrees with a small height,
and we require that a cluster have at least /m elements in order to be statisti-
cally significant.

4 Robust Estimators

Usually, dendrograms reveal a great deal about the nature of the underlying
learning algorithm. The presence of more than one cluster may indicate local
optima. Singleton weight vectors with large distances to clusters can even in-
dicate other types of deficiencies. Since cluster representatives are the typical
results of an experiment, it is natural to compute the statistics of the test error
per cluster. The deviation of the test error is negligible within a cluster. Hence,
the mean, median, and minimum statistics almost coincide.
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The absence of clusters suggests an arbitrariness in the weight vector esti-
mates, allowing discretionary components that are compensated by other com-
ponents —in other words, the presence of overfitting.

We generated dendrograms for the weight vectors of the respective experi-
ments (see Figure 2). Dendrograms 4-7-2 and 4-8-2 display compact clusters.
The cluster structure begins to decay in dendrogram 4-9-2, and has completely
disappeared in 4-10-2 and the following dendrogram.

Table 2: Per-cluster statistic
Network Mean N/m Nd

4-4-2 12000 13%  0.117
4-5-2 9000 16%  0.498
4-6-2 7690 9%  0.374
4-7-2 4380 10% 0.0603
4-8-2 269 24% 0.0683
* 4-9-2 25.1  19% 0.0394

Table 2 shows the average test error per cluster, the relative cluster size
N/m, and the geometrical property Nd of cluster size N times the average
distance d within the cluster.

Given the per-cluster statistic, we would clearly prefer the model 4-9-2.

5 Discussion

The proposed method is able to eliminate weight vectors that arise from de-
ficiencies of neural-network learning procedures. We have used it to improve
statistics that form the basis of model selection. It is, however, a general tech-
nique for improving the robustness of estimators. We have, e.g. successfully
used it for improving confidence interval estimates for network outputs [2].

It is not necessarily restricted to feedforward networks. The same model
selection method can, e.g. be applied to Boltzmann machines.

In our opinion, if a series of weight vectors does not contain a single cluster of
similar solutions, the experiment setup (data set, learning algorithm, or network
model) is likely to be inadequate. We conjecture that a purely geometrical
approach might be sufficient to select adequate models (see Table 2). Defining
a suitable measure for the presence and compactness of clusters might eventually
lead to an algorithm that autofocuses to an appropriate network structure. One
advantage would then be that the full data set could be used for training. These
issues and others require further research.
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