
A toolkit and methodology to support the collaborative
development and reuse of engineering models

Zdenek Zdrahal, Paul Mulholland, Michael Valasek,
 Phil Sainter, Matt Koss, Lukas Trejtnar

Knowledge Media Institute,
The Open University,

Walton Hall, Milton Keynes, UK
{ Z.Zdrahal, P.Mulholland, P.Sainter, M.Koss, L.Trejtnar} @open.ac.uk

Faculty of Mechanical Engineering

Czech Technical University,
Karlovo nam. 13, 12135 Praha 2

Czech Republic
valasek@felbr.fsik.cvut.cz

Abstract. Engineering design is a knowledge intensive activity. Design is char-
acterized as comprising a number of phases from requirements to detailed
specification. Transitions between the design phases stem from decision-
making processes supported both by generally available domain and design
knowledge and from unique and original knowledge worth of recording for fu-
ture reuse. The Clockwork project addresses the problems of representing, shar-
ing and reusing knowledge in a collaborative design engineering environment.
The Clockwork knowledge management methodology is supported by a web-
based toolkit that allows designers to share, formally and informally annotate
and reuse engineering models. Reuse is supported through the semantic search
of engineering models and of the design rationale by which the engineering
models were developed. The approach has been successfully deployed in two
industrial organisations.

1 Introduction

Clockwork is a European Union funded R&D project whose aim is to develop meth-
odology and software tools for capturing and sharing valuable engineering knowledge
generated and used in design processes. There is increasing pressure to reuse design
knowledge in order to expedite the design process and reduce time to market. Gener-
ally, design models have to be described and annotated in order that they can be effec-
tively understood and reused. Annotating design models and capturing design ration-
ale imposes additional overheads. It can disrupt the design process, and can require
the designer to spend a significant amount of time off task. Clockwork provides
methodology and supporting tools for efficient, semantic based annotation of design
knowledge focused around crucial decisions in the design process. The Clockwork

toolkit includes a powerful knowledge retrieval mechanism which combines semantic
web technologies with informal description of engineering models.

The Clockwork approach has been tested on two pilot applications: modeling and
simulation of dynamic systems in mechanical engineering and the development and
support of specialized thermal technologies. Both applications have been developed in
collaboration with Clockwork industrial partners, INTEC GmbH and ELOTHERM,
GmbH.

2 Modelling Design Processes

Design is considered to be an ill-structured problem [5], [9]. This means that prior to
the start of the design process the goal specification is not completely known and re-
quirements are often inconsistent. The task specification and its solution are therefore
worked out simultaneously.

For ill-structured problems only “weak” problem solving methods (such as gener-
ate-and-test) exist and weak methods provide only weak results [5]. By applying do-
main knowledge, ill-structured problems can be converted into a number of well-
structured problems - “ the problem is well-structured in the small, but ill-structured in
the large” [9, p.190]. For well-structured problems “strong” problem solving methods
i.e. specialised algorithms exist which offer much better solution. For this reason
knowledge plays a crucial role in design.

In engineering, design processes have been studied [1], [2], [8] with the aim to bet-
ter understand the underlying activities, organize them and, whenever possible, pro-
vide methodological support. Two types of design processes are distinguished in [1]:
• descriptive design processes are focused on the analysis of the tasks and their se-

quences as they typically occur in design processes, and
• prescriptive design processes, which, in addition, attempt to provide a sound meth-

odological guidance for these tasks.
Knowledge plays an important but different role in descriptive and prescriptive

types of design process. The former rely mainly on heuristic knowledge while the lat-
ter ones emphasize the role of logical reasoning as the major inference vehicle for de-
sign reasoning. Though individual types differ, they subscribe to a similar set of con-
stituent tasks which divide the design process into four phases. They are: requirement
specification, conceptual design, embodiment design (preliminary design) and de-
tailed design. Each design phase constitutes a design task, each task results in an en-
gineering model. The tasks are executed sequentially each task refining the model
produced by the previous task. The design process is nonlinear: the designer back-
tracks or iterates in a loop if he or she finds out that the current solution has reached a
dead end. This is a consequence of design being an ill-structured problem and there-
fore search being an appropriate problem solving method. However, regardless of the
sequence of steps taken in the design process the final design must include all phases.

Each task is self-contained in the sense that it has an associated set of objects from
which the solution is constructed and a language for expressing the solution. The de-
sign process can be viewed as a sequence of transformations between representations
of the design phases, i.e. based on the requirements specification the designer con-

structs a conceptual model which is further elaborated into an embodiment model and
eventually to the final detailed design. Each of these transformations refines the out-
come of the previous phase by imposing additional assumptions and by reasoning
supported by design and domain knowledge. The design result is associated with as-
sumptions and justifications for each individual decision made along the design proc-
ess. A generic model for design reasoning includes a structured account for design
hypotheses, goals, actions and justifications [3].

Though it has been accepted that knowledge plays an essential role in design, sup-
port for knowledge reuse in practical applications is still insufficient. Standard design
packages do not include suitable tools and therefore valuable design knowledge situ-
ated in the context of a concrete problem and solution is usually lost. Despite the ob-
vious benefits, design rationale is rarely recorded. Often, even the results of the in-
termediate design phases, such as the conceptual design, are discarded. Designers
tend not to make their decisions explicit because the design tools usually do not pro-
vide user-friendly facilities for annotation and knowledge capture and without proper
tools and methodology, such activity would distract them from designing and con-
sume their time [7]. However, despite of the obvious lack of support, knowledge re-
use is a standard and widely used design technique.

Attempts have been made to tackle the problem by allowing the designer to carry
on his/her work and to reconstruct the design reasoning in a non-intrusive way.

The Rationale Construction Framework (RCF) project at SRI International aims at
inducing and interpreting design rationale from the trace of designer’s activities when
interacting with the CAD tool [4]. The project is focused on detailed design, i.e. the
last of the design phases. From the design event log, RCF abstracts a symbolic model
of the emerging design which is used to reason about designer’s intent.

The ASSISTANCE system, under development at MIT [6], applies similar ideas at
the other end of the “design phase” sequence. The system interprets designer’s
sketches and spoken comments to derive a causal model of the conceptual design and
allows reasoning about the structure and behaviour of the designed artifact.

Unlike RCF and ASSISTANCE, the Software Integration and Design Rationale
Capture Tool SSPARCY [10] supports only semiautomatic annotation of design ra-
tionale. The tool has been developed to support simulation and modeling of aerospace
design. Similarly as RCF, the system is linked to low level design tools, such as
MATLAB and Excel, from which it extracts, parses and organizes design data and re-
cords the design history. The designer is encouraged to associate textual annotation
with the data as design rationale.

3 Clockwork Knowledge Modeling

Clockwork addresses the problem of sharing and reuse of design knowledge based on
the following philosophy: If professional designers document their reasoning to
communicate their ideas among themselves or to reuse them in the future, they record
only decisions which are valuable. These are for example: new and unique design
“tricks” discovered when solving the case; decisions which are meaningful only
within the specific context; decisions which relate to an assumption made earlier or

which respond to a concrete design requirement imposed by the client or a collaborat-
ing partner. Standard design knowledge which can be found in any textbook is not re-
corded, because it would only increase the complexity of documentation, decrease the
efficiency of information retrieval and take designer’s time. Moreover, this knowl-
edge is implicitly represented in the design and each experienced designer can imme-
diately find it. Clockwork therefore focuses only on important knowledge, and does it
across all design phases.

Design phases are represented by engineering models and transitions between
them. Engineering models are the result of work of design engineers, when designing
cars, complex technologies, control systems or simulation models. They embody an
implicit form of design knowledge. Engineering models often need additional infor-
mation to define their applicability. For example, control systems or simulation mod-
els are designed for certain input and performance criteria. This contextual informa-
tion propagates in the design process and is refined together with the engineering
model. In Clockwork, we introduce the concept of design world which includes the
engineering model and all associated contextual information. Therefore we say we
have a requirement world, conceptual world etc.

Knowledge description is constructed on the following principles:
• Depending on the problem and the available support, engineering models are de-

veloped using different tools, such as CAD packages, MATLAB/Simulink, Solid
Edge or they might be just hand-drawn sketches. However, at the knowledge level
engineering models are represented in a unified way as knowledge models in terms
of ontologies and knowledge bases. Ontology is an explicit conceptualisation of the
domain. It is a dictionary of engineering concepts i.e. formally defines all available
concepts in terms of their properties and relation with other concepts. Concepts are
represented as classes of an object oriented language. Knowledge bases contain in-
stances of classes pertinent to a specific case.

• The association of knowledge models with engineering models allows for reason-
ing about the engineering models. Knowledge models need not describe engineer-
ing models completely, only important model components need to be included.
The selected components are associated with classes in the corresponding ontology
by means of class instances created in the knowledge base. The instances are called
semantic indexes because by associating objects of the engineering model with
concepts in the ontology they assign the meaning to the object.

• Refinement of engineering models can be described as relations between corre-
sponding formal knowledge models.

• Formal knowledge models can be further supported by informal text annotations or
sketches.
An example of a knowledge model and its associations with the engineering model

is shown in Fig. 1. The class ”Lever” has two instances, L1 and L2 and the class
“Joint” has an instance J. These are used as semantic indexes describing the compo-
nents of the lower left arm of the mechanism shown in Fig. 1. Though the drawing is
a non-executable conceptual model, the association with a formal knowledge model
makes it possible to reason about the three model components.

Annotation

General
knowledge

Case
knowledge

Formal

Informal

Knowledge models

Engineering model

Lever

Joint

L1 L2 J1

Conceptual design of
a machine tool

Ontology

Knowledge base

Fig. 1 Clockwork knowledge types.

Based on these principles the Clockwork methodology for sharing and reuse of en-
gineering knowledge has been developed and a support toolkit has been implemented.
Core to our approach is the web-based Clockwork Knowledge Management Tool
(CKMT) that allows designers and other stakeholders such as customers and domain
experts to explain, share, discuss and collaboratively develop engineering models.
Engineering models stored in the CKMT repository can be annotated formally by as-
sociation with domain ontologies or informally using notes or sketches.

For developing ontologies, Clockwork provides the Apollo ontology editor, which
allows the user to define classes, their structure and hierarchies and create instances.
The ontology and knowledge base created by Apollo can be exported into various
formats including XML, RDF, Lisp and Operational Conceptual Modelling Language
(OCML). The current version of Apollo is available at http://apollo.open.ac.uk.

CKMT has been tested on two case studies.

4 Case Study 1: Simulation and Modelling of Dynamic Systems.

The knowledge sharing and reuse framework introduced in the previous section has
been instantiated for the design of simulation models of dynamic systems and imple-
mented using the CKMT. Since this is a typical design problem, the four design
phases introduced in Section 2 have a straightforward interpretation in the simulation
and modeling context. They are:

Requirement analysis. When constructing a simulation model, the real world sys-
tem to be modeled specifies the requirement for the model design task.

Conceptualisation. From the real world system, the conceptual model is elabo-
rated. Conceptual model specifies the components which will be included in the de-
sign, their properties and interactions accompanied by the description of their function
from which causal and functional explanation can be inferred. For example, for the
horizontal machine tool DYNA-M (real world system) the conceptual model shown in

Fig. 1 consists of two arms in the lower part, a spindle in the middle and two moving
screws with drives in the upper part. Drives and moving screws convert rotation to
translation and allow positioning of the spindle.

Modelling. In the next step the conceptual model is converted into the correspond-
ing physical model composed of ideal modelling objects. The physical model is still
independent of the simulation environment which will be used for implementation.

Simulation. Finally, the physical model is implemented in a selected simulation
package such as MATLAB/Simulink or Simpack. The four design worlds shown in
Fig. 2 are called Real World Object (RWO), Conceptual Model Object (CWO),
Model World Object (MWO) and Simulation World Object (SWO).

Components Ideal objects Simulation code

CWO MWO SWO

can-be-modelled-as
can-be-implemented-as

Worlds

Ontologies

Knowledge base
(semantic indexes)

is-modelled-as is-implemented-as

is-a

Conceptual
model

Annotation

Physical
model

is-a is-a

Annotation

Simulation model
(Simulink)

Informal
knowledge

Engineering
models

AnnotationAnnotation

RWO

Problem types

is-a

Real world system

is-conceptualised-as

Fig. 2. Four-world simulation and modeling framework

Developing knowledge models

Each world includes additional information needed as a context for model develop-
ment: The question to be answered by the modeling experiment, is associated with the
Real World Object, converted into the modeling objective at the conceptual level and
further refined as input and output specification for the physical model. Results of the
simulation experiment are interpreted in terms of the physical and conceptual models
and the real world system. Assumptions under which the model has been elaborated
are associated with each world.

Fig. 2 also shows relations between pairs of knowledge models. Relation is-
conceptualised-as is one-to-many, relations is-modelled-as and is-implemented-as can
be in general many-to-many, though the model refinement usually means that one ob-
ject of conceptual/physical model is modeled/implemented as several objects of
physical/simulation world and therefore these relations are one-to-many. Other prede-
fined relations included are is-part-of for membership of an object to the model and
has-status to indicate whether the model was a success or failure. The user can define
additional relations for problem description.

Relations across worlds capture important modeling knowledge. For example, we
may express that a shaft of the conceptual model is-modelled-as three masses and two
ideal springs in the physical model. When the designer builds a model of any of the
worlds, he/she selects the object which carries interesting design knowledge, gives it a
name and associates it with the corresponding class in the ontology, i.e. creates a se-
mantic index. Then the object becomes a part of the knowledge model, can be in-
cluded in relations and can be used by the reasoning algorithm. An example of the
annotation of a revolute joint in a physical model is shown in Fig. 3.

Fig. 3. Defining semantic index in the physical model

In accord with Fig.1 and 2, CKMT also allows the designer to provide informal
annotation in the form of plain text or sketches. The annotation is included as one of
the documents associated with each world and text can be accessed by keyword
search.

Querying knowledge models

CKMT query engine offers a number of options which can be combined. The simplest
query is the keyword search which can be applied to all annotations and assumptions.
However, this mechanism is usually not powerful enough and therefore does not pro-
vide good results. For this reason CKMT introduces semantic search which exploits
ontologies, semantic indexes and inter-world relations described above.

Semantic indexes and ontologies allow the query engine to reason in class hierar-
chies and use relations as executable rules. For example, the query “Show me an ex-
ample of modelling kinematic joint” will retrieve the model of DynaM shown in
Fig.3, because the semantic index for a revolute joint has been created (see the arrow
in Fig.3) and a revolute joint is a kind of kinematic joint. The underlying representa-
tion of knowledge models in OCML allows for defining complex relations. For ex-
ample, the user can define a new relation successful-simulation-of-component for
models ?x and component ?y as follows:

?x is-successful-simulation-of-component ?y
if

 component ?y is-part-of conceptual model ?z, and
 ?z is-modelled-as ?w, and
 ?w is-implemented-as ?x, and
 ?x has-status success.

If the variable ?y is instantiated to an object describing a shaft, the relation returns

all available successful simulation models of a shaft. If ?y is left uninstantiated, the
query returns all successful simulation models of all components. The CKMT query
tool is shown in Fig. 4.

Fig. 4. Query tool

5 Developing New Clockwork Applications

Though the underlying processes of design problems have much in common, the ap-
plications differ depending on the engineering domain, goals, the range of activities
which need to be supported and other factors. In order to seamlessly support existing
work practices the new application must include existing knowledge management
tools and legacy tools of the company. The same knowledge modeling technology
used for semantic search can support the development of a new application. The
analysis of the design process identifies the number of worlds and their structure
needed to represent the problem. A model of the design process is constructed in
terms of a backbone ontology and serves as an input for the CKMT generator which

designs the client and server component of the CKMT tool. An application developer
then integrates these components with existing knowledge management and legacy
tools. The overall architecture is shown in Fig. 5.

Apol lo CKMT
generator

Additional
KM Tools

Legacy
Tools

CKMT
server

CKMT
client

CKMT

Problem
analysis

Backbone
ontology

Fig. 5. Ontology driven generation of CKMT application

By introducing the modeling approach this methodology significantly simplifies
and speeds up the application development. This approach has been used to develop
customized CKMT’s in a number of applications including the one described in Case
Study 2.

6 Case Study 2: Design and After-Sale Support of Thermal
Technology

This application has been developed at the site of Clockwork industrial partner
ELOTHERM. The company’s products are industrial thermal technology, developed
for customers, and installed and maintained at customer sites. The company use simu-
lation and modelling to support the design, selection and tuning of these products
prior to product implementation.

The ELOTHERM application can be described by the following four worlds:
Requirements world: ELOTHERM in collaboration with the customer develop

requirements for the thermal machine, covering productivity, cost and relevant tech-
nological parameters.

Initial design: Requirements are used to construct or select a conceptual model for
the design. The conceptual model takes the form of an abstracted physical model of
the machine. For example, the designer may think, a machine is required of the type
‘20 coil inductor’ .

Detailed design: For the detailed design components and their parameters are se-
lected. This step may raise further questions (e.g. acceptable range in the rate of heat-
ing) to be discussed with the customer. ELOTHERM have a set of available models
and simulation and modelling software. The proposed model is then tested. A range of
parameters are then tried and the values which ensure that the model functions satis-
factorily are selected.

Product world: The thermal technology has been designed, manufactured and in-
stalled at the customer site. Details of the installation procedure are recorded in the
Product World. ELOTHERM provide maintenance for the machine in the long term.

Fault reports are used to document this process and provide additional feedback to the
design department.

7 Conclusions

Design is characterized as comprising a number of phases from requirement specifica-
tions to detailed design. In Clockwork, these phases are described as “worlds” . Cru-
cial design knowledge supports transitions between the worlds. The Clockwork tool-
kit makes it possible to record important knowledge concerning the construction of
each world and its transformations. In addition, the toolkit allows the user to analyze
the design process, describe it in terms of a backbone ontology and use the knowledge
model to generate the structure of the tool.

The Clockwork knowledge modelling approach produces a minimal design history
but provides a sufficient level of description to support its reuse. Engineering models
such as sketches, diagrams and executable simulation models are integrated with
knowledge models described in terms of knowledge bases, ontologies and text anno-
tations. Recorded knowledge is used to guide semantic search in retrieving relevant
engineering models which can be reused in a new design task.

Clockwork can be contrasted with many previous design rationale approaches
which impose too high an annotation burden to the designer. The methodology and
tools have been successfully tested in two industrial applications.

References

1. Cross N.: Engineering Design Methods. John Wiley & Sons. (1989).
2. Hubka V. and Eder E.W.: Design Science : Introduction to the Needs, Scope and Organiza-

tion of Engineering Design Knowledge. Springer-Verlag Berlin and Heidelberg. (1995)
3. Louridas P. and Loucopoulos P.: A generic Model for Reflexive Design. ACM Transactions

on Software Engineering and Methodology, Vol.9. No.2. pp. 199 – 237, (2002)
4. Myers K.L., Zumel N.B. and Garcia P.: Automated Capture of Rationale for the Detailed

Design Process. In Proceedings of the Eleventh Conference on Innovative Applications of
Artificial Intelligence (IAAI99). Pp. 1-8. (1999)

5. Newell A.: Artificial Intelligence and the Concept of Mind. In Computer Models of Thought
and Language (R.C.Schank and K.M.Colby eds.). W.H.Freeman and Company. San Fran-
cisco. 1973. pp. 1-60. (1973)

6. Oltmans M. and Davis R.: Naturally Conveyed Explanations of Device Behavior. PUI 2001
Orlando FL, USA (2001)

7. Ormerod T.C., Mariani J., Ball L.J. and Lambell N.: Desperado: Three-in-one indexing for
innovative design. Proceedings of Interact ’99. Edinburgh. (1999)

8. Schön, D. A.: The Reflective Practitioner: How Professionals Think in Action. New York,
Basic Books. (1983)

9. Simon H. A.: The Structure of Ill Structured Problems. Artificial Intelligence 4 (1973). pp.
181-201. (1973)

10. Yeung J.: SSPARCY: A Sofrware Integration and Design Rationale Capture Tool. Space
System Policy Architecture Research Center. MIT. Bitstream (2002)

