
Semantic Layering with Magpie
John Domingue

Knowledge Media Institute
The Open University
Milton Keynes, UK
+44-1908-655014

J.B.Domingue@open.ac.uk

Martin Dzbor
Knowledge Media Institute

The Open University
Milton Keynes, UK
+44-1908-858524

M.Dzbor@open.ac.uk

Enrico Motta
Knowledge Media Institute

The Open University
Milton Keynes, UK
+44-1908-653506

E.Motta@open.ac.uk

ABSTRACT
Browsing the web involves two main tasks: finding the right web
page and then making sense of its content. A significant amount
of research has gone into supporting the task of finding web re-
sources through ‘standard’ information retrieval mechanisms, or
semantics-enhanced search. Much less attention has been paid to
the second problem. In this paper we describe Magpie, a tool
which supports the interpretation of web pages. Magpie acts as a
complementary knowledge source, which a reader can call upon
to quickly gain access to any background knowledge relevant to a
web resource. Magpie works by automatically associating an on-
tology based semantic layer to web resources, allowing relevant
services to be directly invoked within a standard web browser.
The functionality of Magpie is illustrated using examples of how
it has been integrated with our lab’s web resources.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Semantic Web – navigation and
architecture, ontologies, semantic services, entity annotation.

General Terms
Algorithms

Keywords
Semantic web, semantic services, ontology, smart browsing.

1. INTRODUCTION
Browsing the web involves two main tasks: finding the right web
page and then making sense of its content. A significant amount
of research has gone into supporting the task of finding web re-
sources, either by means of ‘standard’ information retrieval
mechanisms, or by means of semantics-enhanced search [13, 19].
Much less attention has been paid to the second problem, sup-
porting the interpretation of web pages. Annotation technology
[17, 23, 27] allows users to associate meta-information with web
resources, which can then be used to facilitate their interpretation.
While this technology provides a useful way to support group
discussion and shared interpretation, it is nevertheless very lim-
ited. Annotation is normally carried out manually, which means
that the quality of the sensemaking support is dependent on the
willingness of stakeholders to provide annotation and their ability
to provide valuable information. This is of course even more of a
problem, if a formal approach to annotation is assumed, based on
semantic web technology [1].

In this paper we describe Magpie, a tool supporting the interpre-
tation of web pages. Magpie acts as a complementary knowledge
source, which a reader can call upon to quickly gain access to any
background knowledge relevant to a web resource. Magpie fol-
lows a different approach from that used by the aforementioned
annotation technology: it automatically associates a semantic layer
to a web resource, rather than relying on manual annotations. This
process relies on the availability of an ontology [12], an explicit,
declaratively specified representation of a domain of discourse.
Ontologies are the cornerstone of the emerging semantic web:
they provide conceptual interoperability needed to allow semantic
agents to make sense of information on the web and to collaborate
with other semantically aware agents. Magpie uses ontologies in a
similar way: they make it possible for Magpie to associate mean-
ing with the items of information found on a web page and then,
on the basis of the identified meaning, to invoke the relevant
services, or offer the user the appropriate functionalities.
The Magpie-mediated association between an ontology and a web
resource essentially provides an interpretative viewpoint or con-
text over the resource in question. Indeed the overwhelming ma-
jority of web pages are created within a specific context. For ex-
ample, the personal home page of a member of the Knowledge
Media Institute would have normally been created within the
context of that person’s affiliation and organizational role. Of
course, some readers would be very familiar with such context,
while others would not. In the latter scenario the use of Magpie is
especially advantageous, given that the context would be made
explicit to the reader and context-specific functionalities will be
provided. Naturally, because different readers have differing lev-
els of familiarity with the information shown in a web page and
with the relevant background domain, they require different level
of sensemaking support. A semantic layer in Magpie is conse-
quently designed with a specific type of user in mind.
In a seminal study of how users browse the web, Tauscher and
Greenberg [26] found the following statistics on the types of ac-
tions users typically carry out:

 58% of pages visited are revisits,
 90% of all user actions are related to navigation,
 30% of navigation actions are through the ‘Back’ button,
 less than 1% of navigation actions use a history mecha-

nism
A fairly obvious conclusion of these statistics is that web users
need support in capturing what they have seen previously. Current
history mechanisms, ‘Back’ button aside, are of little help. Mag-
pie, automatically tracks interesting items found in a browsing
session within a semantic log. The semantic log allows trigger
services to be created, which are activated when a specific pattern
of items has been found. One type of trigger service offered in

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

Magpie is a collector, which collects items from a browsing ses-
sion using an ontology-based filter. Some example collectors are
shown in the following section.
The rest of this paper is structured as follows. In the next section
we give an overview of the functionality of Magpie through a
scenario. Sections 3 and 4 describe the Magpie design principles
and architecture in detail. We then describe the different types of
semantic services available in section 5. In section 6, we briefly
mention pre-requisites for a successful deployment of Magpie,
especially the population of ontologies. Finally, in sections 7 and
8, we review related research and draw the main conclusions from
this research.

2. A MAGPIE USAGE SCENARIO
Imagine a journalist is writing an article on the Knowledge Media
Institute (KMi) for a magazine. One of her tasks is to collect in-
formation about the most important projects led by senior KMi
staff. Using a web browser with a Magpie extension, she starts
with a visit to the home page of the lab’s director Enrico Motta.
After loading the page, she wants to highlight interesting concepts
denoting researchers, collaborating organizations, projects and
research areas in the page. These concepts draw upon an existing
ontology of academic and research organizations that has been
populated with instances representing the people and projects and
research areas of KMi and the organizations that we collaborate
with. Figure 1 shows the journalist’s browser with the concepts of
interest highlighted using the Magpie toolbar. A key requirement
for Magpie design was that any web page viewed through the
system should look the same as when viewed through a standard

web browser. This constraint reduces the confusion, which can
occur when the content and/or appearance of a web page are al-
tered. The Magpie toolbar (see close-up in Figure 2) allows users
to toggle background highlighting for the specified types of enti-
ties. The ‘Services’ button in the toolbar activates a context de-
pendent Semantic Services menu, which replaces the standard web
browser’s right-click menu.
On the right-hand side of Figure 1 are three Magpie collectors.
These are automatically filled by Magpie trigger services as the
user browses. During a browsing session, all entities found on
accessed web pages are asserted into a semantic log knowledge
base (KB). Collectors are set up to show a particular, semantically
filtered view of the semantic log. For instance, the top two col-
lectors in Figure 1 show the people and projects that have been
recognized. So far, only one person and five projects have been
explicitly mentioned. The bottom collector shows the projects
associated with any people recognized during the session. Note
that these projects have not been mentioned explicitly on any
page. Rather, they originate from the populated domain ontology.
As we can see from Figure 1, Enrico Motta is associated with six
additional projects not mentioned on his web page.
From the content of the web page our journalist can see that the
ScholOnto project might be one of the sought-after projects to be
included in her report. Hence she wonders if any related projects
could be included in the same section. She right-clicks the
‘ScholOnto’ term, and the semantic services menu shown in
Figure 3A appears. The choices in the menu depend on the class
of the selected item/entity within the selected ontology. In our
case, ‘ScholOnto’ is classified as a project, so project-related op-

Figure 1. Enrico Motta’s home page viewed through Magpie. Known people, organisations, projects and
research areas are highlighted using the Magpie toolbar (marked by ‘∗∗∗∗’). On the right-hand side are

three Magpie collectors – the top two log the people and projects found in the browsing session. The bot-
tom one shows the (not explicitly mentioned) projects associated with the people found.

∗∗∗∗

tions are displayed. The journalist selects an option labeled
‘Shares Research Areas With’ to get an answer to her question.
Magpie responds to this request by displaying projects that share
one or more research areas with ScholOnto. The results are or-
dered – by the number of common research areas and alphabeti-
cally (as shown in Figure 3B, foreground window). The journalist
notices that two of the projects related to ScholOnto – Climate
Prediction and Magpie, appear also in the third collector, and are
therefore related to Enrico. She decides to view the Climate Pre-
diction project’s web page by selecting ‘Climate Prediction’ in the
collector, and selecting the ‘Web Page’ option in the displayed
menu. Selecting items in collectors brings up the same semantic
services menu as when items are selected on a web page.

3. MAGPIE DESIGN PRINCIPLES
The overall goal in designing Magpie is to support the interpreta-
tion of arbitrary web documents through the addition of an ontol-
ogy-derived semantic layer. Let us now unpack this overall goal
into a set of design principles. These principles may be treated as
high-level functional requirements for a tool providing ontology
based sensemaking support for navigating the web. The imple-
mentation of the individual principles is detailed in sections 4 and
5. Each principle is listed below together with an applicable part
of the scenario that provides a justification for it:

• Magpie should run in and extend a standard web browser –
we want to minimize the steps that users go through to use
our tool; also many large organizations mandate a specific
web browser.

• Magpie should preserve the appearance of a web page –
users would quickly get confused if web pages browsed
through a semantic browser did not look the same as when
browsed traditionally.

• Magpie should separate the mark-up (the populated ontol-
ogy) from the documents – this enables different viewpoints

(from different communities) to be layered on top of the
same web resources.

• Magpie should work with any web page – this means that it
should work without the aid of manual pre-processing or re-
lying on richly marked-up content (e.g. XML or RDF).

• Magpie users should not incur any significant time penalty –
downloading a web page through Magpie should take only
one or two extra seconds.

• Magpie should support the interactive mediation of semantic
content through customizable semantic services – in effect
the populated ontology becomes an auxiliary knowledge
source, which supports the user in interpreting web docu-
ments and in information gathering tasks.

4. MAGPIE ARCHITECTURE
The architecture of Magpie is shown in Figure 4. Magpie acts as a
bridge – a mediator between formally structured ontology-based
descriptions and semantically unstructured HTML documents.
The Magpie server provides HTTP access to a library of knowl-
edge models consisting of domain ontologies, populated knowl-
edge bases, semantic services and a semantic log KB. HTTP ac-
cess is handled by a customized web server [25], which offers a
library of high-level functions to reason about the content and
dynamically generate appropriate HTML pages. Magpie accepts
ontologies represented in RDF(S) [2], DAML+OIL [5], Ontolin-
gua [10] and OCML [20]. The latter is the representation used
internally by Magpie to perform reasoning. Within the forthcom-
ing year, we intend to include ontologies represented in OWL
[24]. The services, such as those shown in Figure 3A and Figure
3B, are defined in a Services module of the Magpie server. The
semantic log KB – the last component of the server, is used by the
Magpie trigger services, which are described in section 5.2.

♠♠♠♠

Figure 2. Details of the Magpie toolbar after selecting ‘People’ and ‘Project’ entity types (classes). The button
labeled ‘Services’ (marked by ‘♠’) toggles a right-click ‘Semantic services’ menu in the browser.

Figure 3. A. Specific ‘semantic services’ menu associated with the selected concept ‘ScholOnto’.

Choices displayed depend on the class of the item selected – in this case a ‘Project’.
B. Results of the ‘Shares Research Areas With’ semantic query for the ‘ScholOnto’ project.

A B

A set of techniques (populators) is used to populate the ontology
from heterogeneous data stored in web accessible RDF docu-
ments, ODBC compliant databases and from standard web pages.
Details of the ontology population process are given in section 6.

4.1 Magpie Plug-In
We will now describe the Magpie plug-in in detail. As can be seen
in Figure 5, the architecture of the Magpie plug-in is broadly
composed of three main parts:

 The Magpie Proxy – this component is responsible for
parsing HTML-based web pages and annotating them ac-
cording to an ontology-derived lexicon. All this takes
place on the fly, before a document is displayed in a user’s
browser.

 The Magpie Browser Extension – this part of the plug-in
sits in the browser and controls all the interactions with
Magpie. Specifically, it contains the user interface com-

Ontologies
On-demand
service(s)

WWW

RDFs DBs
Web

pages

Populators and
acquisitors

Web
browser

userMagpie plug-in

User requests
public web page
(intra-/extranet)

Magpie acts as “proxy”,
displays an enriched layer of
the web page, and provides
additional services

Domain ontologies
serve as a basis for
structuring data

Resources/data
accessible online

Extraction from raw
knowledge sources

HTTP-based
data download

Magpie uses a populated KB
& knowledge of applicable

services to enhance & extend
the user’s experience

“unstructured” space

“formally-structured” space

Domain(s)
Populated
domain KB

Magpie ServerSemantic log KB

Trigger
service(s)

Figure 4. Overall architecture of the Magpie framework for semantic browsing

User Interfaces
(web browser)

HTML Parser

HTML Annotator Semantic Log Updater

KB assert interface

Trigger Services

On-demand Services Interface Trigger Services Interface

Magpie Proxy

Magpie Browser/Server Interface

Magpie Server

Legend:

original
web page

context menuvisual
highlight

Magpie Browser Extension

Matched entities

collector / summarizer
/ visualizer

(B)

(C)

(A)

On-demand Services

Populated
domain KB

Semantic Log KB

Figure 5. Interaction model of the Magpie plug-in architecture

ponents which visualize entities found in a web page and
enables users to interact with the semantic services

 The Magpie Browser/Server Interface – this component
mediates between the Magpie Browser Extension and the
Magpie Server. It handles both user-requested (from a
right mouse click) and trigger semantic services.

The Magpie proxy has two parts. The HTML parser parses in-
coming web pages and applies pre-defined tag-specific parsing
rules to each HTML tag type. The content of the web page is
matched against an ontology-derived lexicon residing on the
Magpie server. Simple generic transformation rules generate lexi-
con entries from the instances within the populated ontological
knowledge base. Additionally, ontology specific transformation
rules can be defined. The scenario shown in section 2 uses the
AKT reference ontology1, an ontology, which describes academic
life. The top-level classes in this ontology have pretty-name
and variant-names slots, which are used to generate the lexi-
con, and consequently, to recognize the concepts of interest on a
web page. In addition, some common-sense variants to peoples’
names are generated, for example “Motta, E.” from “Enrico
Motta”. We are currently investigating how robust named entity
extraction mechanisms, such as those found in Amilcare [4], can
be incorporated into the parser to enhance its capabilities.
Once an entity has been recognized in the web page, the second
component of the Magpie proxy – the HTML annotator, embeds it
in a customized <SPAN…> tag identifying the relevant instance
and its class within the chosen ontology. Following the principle
of not altering the appearance of web pages the new tags are ini-
tially not visible. If the user moves the mouse over a semantically
layered tag, or if the class of entities is selected in the Magpie
toolbar (see Figure 2), the corresponding text on the page is high-
lighted. Our approach to visualizing the semantically layered tags
means that users remain in control of the types of entity that are
visible at any time. We strongly believe that this improves navi-
gation through the content. Recognized entities are then passed to
a Semantic Log Updater (a component from the Magpie
browser/server interface), where, through the KB Assert Interface,
they are asserted into the Semantic Log KB that resides on the
Magpie server. The purpose of semantic logging is addressed later
in section 5.2.
The Magpie Browser Extension incorporates user interface com-
ponents, which allow users to interact with the semantic services.
First, the Visual Highlighter highlights the matched entities found
in web pages. Second, the semantic services menu (shown in
Figure 3A) is generated by the context component that closely
liases with the Services module of the Magpie server. Finally, the
Magpie trigger services are provided by the Collector, Summar-
izer and Visualizer components of the browser extension. Trigger
services and these components are described in section 5.2. The
Magpie Browser Extension also includes the main Magpie toolbar
shown in Figure 2.
The Magpie Browser/Server interface handles all interactions
between the Magpie server, which holds the ontological semantic
knowledge (including knowledge of available semantic services),
and the user interfaces in the Magpie Browser extension. We
should emphasize (again) that within Magpie the ontology pro-
vides a specific viewpoint onto the web. We envisage that users
will select a particular ontology depending on their current task.

1 More information available at http://www.aktors.org

For example, the same set of web resources may cater for the very
different interests of a graphic design community or a JavaScript
programming community. Obviously, these two groups would
have different viewpoints onto the ‘shared’ web resources.

4.2 Dealing with Lexical Clashes
As we mentioned earlier the lexicon used for matching against
items in a web page is generated from an ontology during a setup
phase. We will now discuss how Magpie deals with lexical
clashes – when two distinct entities within an ontology generate
the same lexical term. The Magpie toolbar contains the names of
the important or interesting classes for the user. In our scenario,
described in section 2, the interesting concepts were People, Proj-
ects, Organizations and Research areas. Before outlining how
lexical clashes are dealt with, it should be noted that each of the
top level classes, displayed in the Magpie toolbar, typically con-
tains sub-classes. For example, class ‘People’ contains sub-classes
such as ‘Academic’ and ‘Professor’.
Two types of lexical clashes can occur, and each of them would
be treated slightly differently. The types of clashes are:

1. the entities are instances of different top level classes, for
example, a Project and Organization;

2. the entities are instances of the same top level class;
If a clash of the first type occurs, the ontology designer deploying
Magpie (see section 6 for details on the deployment of Magpie) is
offered two options:

• one entity takes precedence over the other, or

• the end-user is asked to indicate, which top-level class the
matched item belongs to.

Clashes of the second type result in the following two options for
the ontology engineer:

• one entity takes precedence over the other, or

• any semantic services carried out on the term return the
combined results for both instances.

Within the OCML representation, instances of different classes
can have the same name. With Magpie it is also possible for in-
stances of the same class to generate a lexical clash. For example,
instances with the names enrico-motta and emanuela-
motta would both generate a ‘common sense’ pretty name
“Motta, E.” according to the heuristics on variants to peoples’
names used in our scenario example (see section 4.1).

5. SEMANTIC SERVICES
In section 4, we presented the conceptual architecture of Magpie,
and showed how a semantic layer is created, displayed and acti-
vated. The main benefits of using Magpie however are generated
from the ability to deploy semantic services on top of the semantic
layer. These services are provided to the user as a physically inde-
pendent layer generated on top of a particular HTML document.
Magpie distinguishes between two types of semantic services,
each having a specific user interaction model. Services are shown
in Figure 5 as interaction threads (B) and (C).
According to the process model in Figure 5, the parser identifies
entities from a chosen ontological KB in the original web docu-
ment (thread A). Each discovered entity is annotated and recorded
in a semantic log, and the annotated document is displayed in the
user’s web browser. The annotation has been described in section

4.1, semantic logging will be addressed in section 5.2. Thread (B)
represents services activated on a user’s request; i.e. a reader ex-
plicitly selects an entity s/he is interested in, and using a right
mouse click invokes a services menu. This layer of on-demand
semantic services is described in section 5.1. Alternatively, se-
mantic services may be based upon certain patterns or footprints
of the entities that co-occur in a particular document or during a
particular browsing session. In section 5.2, we refer to this his-
tory-based functionality as trigger services.

5.1 On-Demand Semantic Services
As already mentioned, semantic services are enabled by clicking
on the ‘Services’ button in the Magpie toolbar (see the marker ‘♠’
in Figure 2). When the semantic services are activated, the con-
textual (right-click) menu of a web browser is overridden by an
on-demand services menu. The ‘on-demand services’ menu is also
context-dependent as could be expected; however, in this case, we
are dealing with a semantic context defined by the membership of
a particular entity to a particular ontological class. The lexicon
containing the information on these memberships is generated
from an ontology in a setup phase. Details on the lexicon genera-
tion process can be found in sections 4.1 and 4.2.
In addition to domain ontologies, Magpie also uses a Services
module (see a box labeled ‘Services’ in the top-left corner of
Figure 5). This knowledge model formally defines what opera-
tions can be performed on particular class(es) of domain entities,
and the semantics of each operation. In the scenario of using
Magpie as a semantic portal for organizational research, the serv-
ices for ontological class project included the following opera-
tions (see menu displayed in Figure 3A):

• Show a project’s details;

• Show the research areas tackled by a particular project;

• Show the project publications and bibliographic data;

• Show the technologies resulting from a project;

• Show projects tackling similar issues (share research
scope), and finally

• Show the project website.

As was the case with document parsing and annotation, the ‘on-
demand services’ menu is also generated on the fly. When a right
click occurs, it is handled by the Magpie browser extension first,
and consequently, through the Magpie browser/server interface
the Magpie server is asked for the services that are available for a
particular entity. The interface deploys the information about class
membership of a particular entity that was created in the process
of annotating the content (see section 4.1). If the list of applicable
semantic services is non-empty, Magpie displays the services as a
menu, and lets the user choose what s/he is interested in. The user
selects a particular option, and this leads to another request to the
‘Services’ module of the Magpie server to perform the requested
reasoning and/or execute the applicable method. The knowledge-
level reasoning provides the requested context for a particular
entity. This is delivered to the web browser, is annotated in the
Magpie proxy (as any other web page), and finally, is displayed in
a dedicated browser window. The user can then semantically
browse the results similarly as with any other web page.
Thus, Magpie provides two complementary methods for web
browsing. First, it implements syntactic browsing by following the
 anchors inserted into a web document by its

author. A document accessed via such a tag is treated as described
in section 4; i.e. it is parsed, annotated, and displayed with a
Magpie toolbar to facilitate semantically enriched user interaction.
The second browsing mechanism in Magpie follows the custom-
ized semantic anchors created during the processing phase by the
Magpie proxy, and the applicable, dynamically generated seman-
tic services. While the first method give access to physically
linked content, the second method makes available the semantic
context of a particular entity. The two methods are visually differ-
entiated so that any confusion is minimized, and they provide
complementary functionality. Figure 3A shows a sample semantic
services menu for term ‘ScholOnto’ (which belongs to the ‘Proj-
ect’ class). The semantic context corresponding to the user’s re-
quest for similar projects, is displayed in Figure 3B, and in this
case contains an ordered list of ontologically related projects that
are displayed in a new browser window.

5.2 Trigger Semantic Services
User-requested (or on-demand) semantic services are not the only
means for interacting with the relevant background knowledge. A
number of researchers emphasize the importance of active or push
services. Active services take many different forms – for example,
activity critics within domain dependent design environments
[11], or content guides in an online shopping context [7]. The
main feature distinguishing the active services from the user-
requested ones is that they tend to “look over the user’s shoulder”,
gather useful facts, and present appropriate conclusions.
Active services are represented in Figure 5 by the interaction
thread (C) on the right hand side. As can be seen, a pre-condition
for having active services is to keep history logs of browsing,
particularly a log of the recognized entities. The label ‘browsing
history’ is more than appropriate because a log may accumulate
findings not only from the current web page, but also from previ-
ously visited documents in the same browsing session.
As shown in Figure 5, the process of semantic logging runs in
parallel with the web page annotation. While an annotated web
page is displayed in a browser, the data from the log are delivered
to the Magpie server component responsible for semantic log
maintenance. The server asserts the data from the logs as facts
into a ‘working’ knowledge base. Several watchers are designed
to monitor and respond to patterns in the asserted facts. When the
required assertions have been made for a particular watcher, a
semantic service response is triggered and applicable information
is delivered to the dedicated window of the user’s web browser. A
few examples of the results of a trigger service firing are shown
on the right-hand side of Figure 1 (‘People’, ‘Projects’ and ‘Peo-
ple’s Projects’ collector windows).
Figure 6 shows the definition for the collect-peoples-
projects watcher that is a part of the trigger service peo-
ples-projects, shown at the bottom right of Figure 1. When-
ever, a web page is viewed in Magpie the Semantic Log Updater
(see Figure 5) asserts found-item facts, for each of the items
found, into the Semantic Log KB. The collect-peoples-
projects watcher is triggered if a person is found in the log,
and this person is a member of a project, which is not yet present
in the log. When triggered, the project and the URL of the page
that the person was found on are collected. Future work will en-
able Magpie users to create watchers through a direct manipula-
tion interface.

The information that can be delivered in this fashion may range
from a simple collection of relevant items to sophisticated guid-
ance on browsing or browsing history visualization. Since the
reasoning server component taps into a knowledge base con-
structed potentially from the logs of community members, the
guidance or history visualization may draw on community knowl-
edge and behaviors. This is an important benefit, especially if we
follow the argument of Tauscher and Greenberg [26] mentioned
in the introduction that 58% of all visits to web documents are to
sites visited previously, but that history mechanisms are used
infrequently. This significant number of re-occurring visits calls
for a more sophisticated approach to the management of browsing
histories. Indeed, one of design recommendations following from
the study was that bookmarks should have a meaningful repre-
sentation. We believe that history management based upon the
semantics of the visited pages, and implemented by a triggered
semantic layer would perform better than current, purely syntactic
and linear (access time ordered) methods.
Although the design goal for our two types of services is the same
– to provide users with additional knowledge sources to support
the interpretation of web pages and to assist in information gath-
ering – the underlying frameworks are different. The ‘on-demand’
services are only invoked by a specific user request. Backward
chaining (goal based) reasoning from the user’s query results in a
response, which is typically presented as a new web page. The
trigger services are invoked when a watcher matches a pattern
within the semantic logs. The pattern causes forward chaining
(data-driven) reasoning to occur. The results are displayed by a
change in the interface. In Figure 1, trigger services result in ad-
ditions to one of the three collectors. The differences between the
two types of services are briefly summarized in Table 1.

Table 1. Magpie on-demand and trigger services

Feature On-demand Trigger

Source of service User’s request Pattern in semantic log

Reasoning method Backward chaining Forward chaining

Delivery form ‘Pull’ (on-demand) ‘Push’ (triggered)

It is important to differentiate the Magpie Trigger services from
the growing number of web logging tools that exist [28]. The goal
of these web-logging tools is to monitor user’s activity with the
intention to measure the usability of a particular web site. Within
the Magpie architecture, the semantic logs are kept to provide
trigger services that could support the interpretation of a web
document and/or information gathering.

6. BEFORE DEPLOYING MAGPIE
Deploying Magpie within a particular domain involves the fol-
lowing two steps that typically precede any meaningful user’s
interaction with the Magpie tool:
i) Choosing or implementing an ontology – within the Magpie

context it is important that a) the ontology represents the in-

tended viewpoint (with respect to the web resources, and
b) the ontology is able to support the desired semantic
services.

ii) Population of the ontology – the ontology itself is a
skeleton for clarifying the domain structure; it should be
populated with specific entities, which represent items of
interest to the intended users. For scalability, the ontol-
ogy population should be an automated process, and,

when applicable, integrated with working practices. We dis-
cuss some techniques for population below.

If Magpie is targeted at a specific user community (e.g. members
of a specific organization) it is important that the users are able to
participate in the ontology design process. However, we firmly
believe that the ontology should be implemented by knowledge
engineers since the careful design of the ontology is crucial to
ensure the success of any knowledge intensive system. In addition
to specifying the communal viewpoint, the ontology circum-
scribes the range of phenomena we want to deal with, and defines
the terminology used to acquire domain knowledge. In our expe-
rience, small errors/inconsistencies in any of these aspects can
make the difference between success and failure. Moreover, on-
tology design requires specialist skills, which are normally not
possessed by potential target user communities. Examples of how
we have constructed ontologies for specific user communities in
other domains are given in [7, 9, 21].
Once the ontology has been constructed, it needs to be populated;
generic domain terms must be specified in detail. We currently
use three techniques for ontology population, each of them suit-
able for different types of domain and content:

i) Importing from online semantic resources – as we men-
tioned earlier, Magpie can accept ontologies represented in
RDF(S), DAML+OIL and Ontolingua.

ii) Importing from an ODBC compliant database – the Magpie
server incorporates a tool for converting data stored within
an ODBC compliant database into OCML instances.

iii) By information extraction – we also have used a dedicated
tool – MnM [27] developed in-house, which enables infor-
mation extraction engines, such as Amilcare [4] to be inte-
grated with the Magpie knowledge model component.

We will now briefly outline how we used techniques ii) and iii) to
populate the AKT reference ontology within the context of the
Knowledge Media Institute.
Within our department, the secretarial staff are responsible for
updating the people and project pages using simple web forms.
Lab members are also able to edit their own entries or update
entries for their projects. In our case, each form contains a list of
research areas, which are identical to those found in the AKT
reference ontology. Consequently, the structured information
about each person or project is easy to translate into the terminol-
ogy of the AKT reference ontology, and populate it automatically.
More specifically, once every 24 hours a Magpie process uses an
ODBC interface to create instances representing the people and
projects within KMi and store them on the Magpie server.

MnM [27], is a tool, which incorporates a web browser and in-
terfaces to web based ontology libraries and to information ex-
traction engines. MnM enables users to attach information extrac-
tion mechanisms to ontological classes. As web pages are marked
up a selected information extraction (IE) engine extracts items

(def-watcher collect-peoples-projects peoples-projects
 (found-item ?time ?address ?page-url ?person)
 (person ?person)
 (has-project-member ?project ?person)
 (not (found-item ?time2 ?address ?page-url2 ?project))
 action
(collect ?project ?page-url)))

Figure 6. Watcher definition for “People’s Projects” trigger service
(see also bottom right collector in Figure 1).

according to a template derived from a class within a chosen on-
tology. Through a plug-in mechanism, MnM currently interfaces
to the WebOnto [6] ontology server and is also able to read web
accessible ontologies written in RDFS or DAML+OIL. MnM has
been used to populate our ontology from our web based newslet-
ter, KMi Planet [8]. KMi Planet contains stories about interesting
events within our lab. Lab members write these stories as free
text, and thus ontology population necessitates the use of IE tech-
nology.

Another technique, which is sometimes used for populating on-
tologies is screen scraping – using scripts to access the content of
web pages. Screen scraping techniques have been used to con-
struct an RDF resource encoding data from all UK computer sci-
ence departments2.

7. RELATED WORK
One of the inspirations for Magpie was the COHSE system [3].
COHSE combines an Open Hypermedia System with an ontology
server, to provide a framework for ontological linking. As with
Magpie, an ontology-derived lexicon is used to add links to arbi-
trary web pages. The links are added either by proxy server or by
an augmented Mozilla™ browser. The distinctions between Mag-
pie and COHSE are due to their differing design goals. The design
goals for COHSE were to a) separate web page links from the web
pages and b) to make these links conceptual – i.e. they could be
potentially generated from ontology. The overall goal for Magpie
is to support interpretation and information gathering. Thus,
Magpie’s interface enables ontological differences to be high-
lighted easily using the toolbars, and the services provided are
dependent on the class of entity found. Magpie also offers trigger
services dependent on the semantic log. Neither type of Magpie
service is intended to replace traditional links; they are designed
to be used as an auxiliary source of knowledge available at the
user’s fingertips.
In the last few years, a number of tools have emerged which sup-
port the annotation of web pages. A classic example is the Amaya
HTML editor, which implements the Annotea infrastructure [17].
Annotea facilitates the RDF-based mark-up of web documents as
they are created. In other words, authors or viewers may add vari-
ous meta-statements to a document, which are separate from the
document itself and are accessible to collaborating teams via a
centralized annotation server. The annotation in this sense centres
on attaching additional information to a chunk of content on an
arbitrary web page. This feature of Annotea makes it a powerful
tool for the joint authoring of documents where a small group of
collaborating agents share a common goal. However, the same
feature may make it more difficult to facilitate a similar form of
annotation sharing in ‘open’ user communities. In these cases,
there is no guarantee that a freely articulated annotation would
convey the same meaning to the different users.
Another difference of the Annotea framework as compared to
Magpie approach is in the source of annotations. Annotea as-
sumes that at least one author (human) is willing to invest addi-
tional effort into making a page semantically richer. Magpie, on
the other hand, is more liberal and assumes a reader subscribes to
a particular domain ontology, which is then used to provide rele-
vant background knowledge. It may be argued that ontology crea-
tion takes even more effort than simple document annotation. This

2 More information available from http://www.hyphen.info

is true; however, an ontology is a domain model, a shared view-
point that can be used for many different purposes, not solely for
the annotation of a single document. Thus, the effort spent on
designing a shared ontology may be greater in the short term but
in the longer term, it is a more cost-effective way of recording a
shared point of view.
A similar approach to annotating formally structured documents
can be found in other research projects. For example, the CEDAR
toolkit [22] used a similar strategy for rich web publishing and the
construction of organizational memories using a shared organiza-
tional ontology. The CREAM-based Ont-O-Mat/Annotizer [14] is
a tool similar to MnM (described in section 6), which integrates
ontologies and information extraction technologies. As with
MnM, Amilcare [4] provides information extraction support, and
ontologies are represented in DAML+OIL. Annotations, as under-
stood in this framework, are very close to those advocated in this
paper. Basically, any ontological instance, attribute or relation
known in a particular ontology may serve as an annotation. A key
feature of Ont-O-Mat/Annotizer is its use of discourse represen-
tations to structure the relatively flat output of Amilcare according
to the chosen ontology, thus facilitating the ontology population
process.
The CREAM research team voice an important feature of ontol-
ogy-based annotation and document enrichment. Namely, any
annotating tool must be aware of already existing (i.e. recognized)
entities and their relationships; otherwise harm can be done with
redundancies and multiple definitions. CREAM’s annotation in-
ference resembles our trigger semantic services produced by a
data-driven reasoning process. On the other hand, our mechanism
of ‘on-demand’ services smoothly and seamlessly addersses the
issue identified above – the awareness of the existing relationships
and the actual context of any particular ontological instance.
The SHOE project [16] proposed an extension to HTML to allow
the specification of ontological information within common
HTML-based documents. In addition to the inclusion of a seman-
tically rich, ontological knowledge, SHOE also invested signifi-
cant effort into making these inclusions re-usable and understand-
able ‘throughout the web’. An editor was developed to support the
page annotation process. As with the tools mentioned in the pre-
vious paragraphs, and unlike our Magpie framework, SHOE relies
on the offline annotation or mark-up of web documents. Once that
is accomplished, the enriched documents are published on the
web and dedicated tools may make use of the enriched contextual
knowledge (e.g. Exposé web crawler [15]).

8. CONCLUSIONS
Reducing the information overload caused by the growing web is
often cited as the premise for work on supporting the retrieval of
relevant documents. But finding relevant documents is only half
of the story. Interpreting a returned document involves a reader in
understanding the surrounding context in which the document
was created. In order to gain the full understanding of a document
a reader will require knowledge of the specific terms mentioned
and the implicit relationships contained both within the document
and between the document and other external knowledge sources.
Magpie addresses this issue by capturing context within an ontol-
ogy, which then is used to enrich web documents with a semantic
layer. Semantic services expose relevant segments of the ontology
according to the user’s needs.
As we described in section 3, certain design criteria are critical if
semantic layering is to be both useful and usable. If desired Mag-

pie users are able to browse the web in a standard way with negli-
gible differences in the user experience. Magpie can achieve this
because it works in standard web browsers with standard mark-up
languages, presents web pages without altering their layout or
appearance, and involves only a small time overhead - the Magpie
proxy server takes less than 1 second to parse even relatively large
web pages.
Another key set of principles underlying the design of Magpie is
that the user is able to control to what extent semantic browsing
comes to the fore. The Magpie toolbar enables terms to be made
visible according to their ontological category. The Magpie
framework also enables arbitrary semantic actions to be triggered
on patterns of items found within a semantic log. Trigger services
allow certain types of tasks to be delegated. The simple trigger
services shown in the scenario enable semantically designated
types of entities to be collected for later inspection. More complex
trigger services can be implemented easily in the Magpie frame-
work. For example, the Magpie proxy has an option to automati-
cally parse web pages linked to the current page. This allows re-
connaissance services [18] to be set up, which would alert the
user whenever an interesting neighbouring page was identified.
As we mentioned in the introduction, Magpie addresses some of
the issues found by Tauscher and Greenberg in their study [26] of
how web pages are browsed. A conclusion of their work was that
users need better support in managing the histories of visited web
pages. The semantic log in Magpie can help in this as it forms the
basis for semantic bookmarks. Using Magpie previous pages can
be found by a semantic query based on the types of entities found
in the page. For example, one could look for “a web page I saw
early last week which mentioned a semantic web project funded
by a large Petroleum Company”.
Attention as opposed to information is now widely acknowledged
to be the scarce resource in the Internet age. Consequently, tools
that can leverage semantic resources to take some of the burden of
the interpretation task from the human reader are going to be of
enormous use. We believe that Magpie is a step towards achieving
this goal.

9. ACKNOWLEDGMENTS
The Magpie project is supported by the climateprediction.net and
the Advanced Knowledge Technologies (AKT) projects. Cli-
mateprediction.net is sponsored by the UK Natural Environment
Research Council and UK Department of Trade e-Science Initia-
tive, and involves Oxford University, CLRC Rutherford Appleton
Labs and The Open University. AKT is an Interdisciplinary Re-
search Collaboration (IRC) sponsored by the UK Engineering and
Physical Sciences Research Council by grant GR/N15764/01. The
AKT IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and The Open University.

This paper has benefited from numerous conversations with Marc
Eisenstadt, Maria Vargas-Vera, Nigel Shadbolt, and other col-
leagues from KMi and the University of Southampton. The Mag-
pie graphic design is courtesy of Harriett Cornish from KMi.

10. REFERENCES
[1] Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic

Web. Scientific American, 2001. 279.
[2] Brickley, D. and Guha, R., Resource Description Frame-

work (RDF) Schema Specification. 2000, World Wide Web

Consortium. (URL: http://www.w3.org/TR/2000/CR-rdf-
schema-20000327).

[3] Carr, L., Bechhofer, S., Goble, C., et al. Conceptual Link-
ing: Ontology-based Open Hypermedia. In Proc. of the 10th
International WWW Conference. 2001.

[4] Ciravegna, F. Adaptive Information Extraction from Text by
Rule Induction and Generalisation. In Proc. of 17th Inter-
national Joint Conference on AI. 2001. Washington, USA.

[5] DAML.org, Reference description of the DAML+OIL on-
tology mark-up language. 2001,
http://www.DAML.org/2001/03/reference.html.

[6] Domingue, J. Tadzebao and WebOnto: Discussing, Brows-
ing, and Editing Ontologies on the Web. In Proc. of 11th
Knowledge Acquisition Workshop. 1998. Banff, Canada.

[7] Domingue, J., Martins, M., Tan, J., et al. Alice: Assisting
Online Shoppers Through Ontologies and Novel Interface
Metaphors. In Proc. of the 13th European Knowledge Ac-
quisition Workshop (EKAW). 2002. Spain.

[8] Domingue, J. and Scott, P. KMi Planet: A Web Based News
Server. In Proc. of Asia-Pacific Computer Human Interac-
tion Conference. 1998. Japan.

[9] Dzbor, M., Paralic, J., and Paralic, M. Knowledge Manage-
ment in a Distributed Organisation. In Proc. of the 4th
IEEE/IFIP Conference on IT for Balanced Systems (BA-
SYS'2000). 2000. Berlin, Germany.

[10] Farquhar, A., Fikes, R., and Rice, J. The Ontolingua Server:
a Tool for Collaborative Ontology Construction. In Proc. of
Knowledge Acquisition Workshop. 1996. Banff, Canada.

[11] Fischer, G. Domain-Oriented Design Environments. In
Proc. of 7th Knowledge-Based Software Engineering Con-
ference (KBSE'92). 1992: IEEE Computer Society.

[12] Gruber, T.R. A Translation approach to portable ontology
specifications Knowledge Acquisition, 1993. 5(2):p.199-221

[13] Guarino, N., Masolo, C., and Vetere, G., OntoSeek: Con-
tent-Based Access to the Web. IEEE Intelligent Systems,
1999. 14(3): p.70-80.

[14] Handschuh, S., Staab, S., and Maedche, A. CREAM - Cre-
ating relational metadata with a component-based, ontol-
ogy driven annotation framework. In Proc. of International
Semantic Web Working Symposium (SWWS). 2001. Califor-
nia, USA.

[15] Heflin, J. and Hendler, J., A Portrait of the Semantic Web in
Action. IEEE Intelligent Systems, 2001. 16(2): p.54-59.

[16] Heflin, J., Hendler, J., and Luke, S. Reading Between the
Lines: Using SHOE to Discover Implicit Knowledge from
the Web. In Proc. of AAAI-98 Workshop on AI and Infor-
mation Integration. 1998.

[17] Kahan, J., Koivunen, M.-R., Prud'Hommeaux, E., et al.
Annotea: An Open RDF Infrastructure for Shared Web An-
notations. In Proc. of 10th WWW International Conference.
2001. Hong-Kong.

[18] Lieberman, H., Fry, C., and Weitzman, L., Exploring the
web with reconnaissance Agents. Communications of the
ACM, 2001. 44(8): p.69-75.

[19] McGuinness, D.L. Ontological Issues for Knowledge-
Enhanced Search. In Proceedings of Formal Ontology in
Information Systems Conference. 1998.

[20] Motta, E., Reusable Components for Knowledge Modelling.
Frontiers in AI and Applications. 1997, The Netherlands:
IOS Press.

[21] Motta, E., Buckingham Shum, S., and Domingue, J., Ontol-
ogy-Driven Document Enrichment: Principles, Tools and
Applications. International Journal of Human-Computer
Studies, 2000. 52(5): p.1071-1109.

[22] Mulholland, P., Zdrahal, Z., Domingue, J., et al., Integrat-
ing working and learning: a document enrichment ap-
proach. Journal of Behaviour and Information Technology,
2000. 19(3): p.171-180.

[23] Ovsiannikov, I.A., Arbib, M.A., and Mcneill, T.H., Annota-
tion Technology. International Journal of Human-Computer
Studies, 1999. 50: p.329-362.

[24] Patel-Schneider, P.F., Horrocks, I., and van Harmelen, F.,
OWL Web Ontology Language 1.0 Abstract Syntax. 2002,
(URL http://www.w3.org/TR/owl-absyn/).

[25] Riva, A. and Ramoni, M., LispWeb: A Specialised HTTP
Server for Distributed AI Applications. Computer Networks
and ISDN Systems, 1996. 28(7-11): p.953-961.

[26] Tauscher, L. and Greenberg, S., How People Revisit Web
Pages: Empirical Findings and Implications for the Design
of History Systems. International Journal of Human Com-
puter Studies, 2001. 47(1): p.97-138.

[27] Vargas-Vera, M., Motta, E., Domingue, J., et al. MnM:
Ontology Driven Semi-automatic and Automatic Support
for Semantic Markup. In Proc. of 13th European Knowl-
edge Acquisition Workshop (EKAW). 2002. Spain.

[28] Zaiane, O.R., Xin, M., and Han, J. Discovering Web Access
Patterns and Trends by Applying OLAP and Data Mining
Technology on Web Logs. In Advances in Digital Libraries
(ADL). 1998. California, USA.

	INTRODUCTION
	A MAGPIE USAGE SCENARIO
	MAGPIE DESIGN PRINCIPLES
	MAGPIE ARCHITECTURE
	Magpie Plug-In
	Dealing with Lexical Clashes

	SEMANTIC SERVICES
	On-Demand Semantic Services
	Trigger Semantic Services

	BEFORE DEPLOYING MAGPIE
	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

