

Semantic Web Service
Frameworks for Agents

Terry R. Payne
Intelligence, Agents, Multimedia Group

University of Southampton

John Domingue
Knowledge Media Institute

The Open University

Acknowledgements

• There are many who should be thanked for their
contribution and assistance in this tutorial, including

• We would also like to thank to all the members of
the OWL-S, WSMO, WSML, and WSMX working
groups for their advice and input into this tutorial.

 David de Roure
 Carole Goble
 Dieter Fensel
 Christoph Bussler
 Sheila McIlraith
 Jim Hendler

 Luc Moreau
 John Domingue
 Liliana Cabral
 Enrico Motta
 Nigel Shadbolt
 David Martin

 Sinuhe Arroyo
 Michael Stollberg
 Matthew Moran
 Michal Zaremba
 Jos de Bruijn
 Valentina Tamma

Intelligence Agents
Multimedia

Semantic Web Service
Frameworks for Agents
Introduction and OWL-S

Terry R. Payne
Intelligence, Agents, Multimedia Group

University of Southampton

Agents & Multi-Agent Systems

• Agents & Multi-agent Systems emerged from the

field of Distributed AI

 distribute problem solving across several processes or

machines

 Thus, to coordinate, there is a need to:

- Communicate

- Plan

- Coordinate actions wrt each other

- …

• Agents emerged as self-contained, autonomous

entities that could perform (multiple) services

 “objects with attitude” (Jeff Bradshaw)

Open Agent Systems

• Many Multi-Agent Systems developed by different

groups…

 OAA, Retsina etc

• Lauded for the fact that they could solve various

problems using

 information gathering

 planning

 team awareness

 robustness through redundancy and functional substitutability

• …Provided that all the agents conformed to the same

MAS architecture

Combining Multi-Agent Systems

• Early homogeneous multi-agent systems (MAS)

 Could make assumptions on:

- organization

- communication protocols

- ontologies

- availability of resources

- benevolence

• Emerging heterogeneous MAS

 Assumptions began to break as different MAS were

combined

- DARPA CoABS Technology Integration Experiments

- FIPA and Open Agent Systems

Challenges for Open Agent Systems

• New challenges included:

 Need to locate agents that provide a given functionality

- Relaxing the assumption of known models of peers

- Mechanisms for gathering / managing advertisements

- Semantic inter-operability required

- Mechanisms for understanding and coordinating
communication

 Need to set up coalitions of agents to achieve joint goals

- Relax the assumption of benevolence

- Planning to determine how goals may be achieved using
available resources (e.g. other agents)

- Negotiation required, to form service level agreements

- Need to agree on Commitment and Availability

- Trust, Reputation, Security requirements

… and along came CoABS

• DARPA CoABS program aimed to tack the problem

of interoperability between multiple heterogeneous

MAS

 Development of CoABS Grid to support and facilitate

interoperability between Agent Communities

 However, problems still existed in the way knowledge was

expressed and shared amongst Agents.

 Needed to solve the problem of semantic interoperability

between agents / services

CoABS combining different MAS… … and along came CoABS

• CoABS DARPA program aimed to tack the problem
of interoperability between multiple heterogeneous
MAS
 Development of CoABS Grid to support and facilitate

interoperability between Agent Communities

 However, problems still existed in the way knowledge was
expressed and shared amongst Agents.

 Needed to solve the problem of semantic interoperability
between agents / services

• DAML Program
 Started a couple of years after CoABS

- Distributed ontologies using Web-based links

- Based on DLs, but introducing new challenges

- Helped kick-start the Semantic Web

Event:title

Event:WebPage

< > rdf:type photo:Photograph,
 Photo:File http://…/images#image1,
 Photo:topic :event1#event:speaker.

 Event1 a Event:event;
 date “May 7-11”,
 speaker http://…#timbl.html
 Title “WWW 2002…”

TimBL rdf:type w3c-ont:person;
 name “Tim Berners-Lee”
 …

<daml:ObjectProperty rdf:ID="photograph">
<rdfs:domain rdf: resource="#Picture"/>
<rdfs: range rdf: resource= …#person"/>
</daml: ObjectProperty>

 <rdf:Description rdf:about="http://www.w3.org/2001/03/earl/0.95#Person">
<rdf: type rdf: resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs: subClassOf rdf:resource="http://www.w3.org/2001/03/earl/0.95#Assertor"/>
</rdf:Description>

<s:Class
rdf:about="http://www.semanticweb.org/o
ntologies/swrc-onto-2000-09-
10.daml#Conference">
<s:comment>
describes a generic conceptabout events
 </s:comment>
<s:subClassOf
rdf:resource="http://www.semanticweb.org
/ontologies/swrc-onto-2000-09-
10.daml#Event"/>
<a:disjointFrom
rdf:resource="http://www.semanticweb.org
/ontologies/swrc-onto-2000-09-
10.daml#Workshop"/>
<a:restrictedBy
rdf:resource="http://www.semanticweb.org
/ontologies/swrc-onto-2000-09-
10.daml#genid18"/>

Semantic Web as connective fabric for the Web

Source: Jim Hendler

Bringing Semantics to the Web

• Semantic Web vision

• Semantic Web

technologies and tools

Semantic Web

• Not just another Knowledge Base Framework

 Facts scattered in many locations, referencing each other

through URIs

 Dynamic knowledge source that is typically:

- Inconsistent

- Incomplete (open-world)

- Composed of Several Ontologies

- Generated by novices and machines, as well as experts

 Based on a standardized syntax (XML)…

 … with a superset of standardized expressions (OWL)

 … supporting various levels of reasoning

- OWL-Lite / OWL-DL / OWL-Full

- Others may be defined as necessary

• E.g. OWL-Tiny

Services as a
Software Architecture
• Services connect computers and devices with each

other using the Internet to exchange data and

combine data in new ways

• The key to Services is on-the-fly software creation

through the use of loosely coupled, reusable

software components

• Software can be delivered and paid for as fluid

streams of services as opposed to packaged

products

New Concept for eWork
and eCommerce

New Concept for eWork and eCommerce

Numerous white papers
“Web Services, are Services accessible via the web.”

New Concept for eWork
and eCommerce
• Business services can be completely decentralized

and distributed over the Internet and accessed by a

wide variety of communication devices

• The Internet will become a global common platform

where organizations and individuals communicate

among each other to carry out various commercial

activities and to provide value-added services

• The dynamic enterprise and dynamic value chains

become achievable and may be even mandatory for

competitive advantage

…but…

• …or this would be the case if everybody used

exactly the same:

 Framework

- For invocation

- Communication protocol

 Tools

- Guaranteeing seamless interoperation

- Consistent use of middleware

 Vocabulary

- Consistent use of language

- Consistent syntax

• …but this isn’t the case!

Perspectives on Web Services 1

• Functional (Request-Response) Services

 Search Engines or conversion services

 May be implemented simply in Java (e.g. unit conversion)

or use GET/POST protocol

Perspectives on Web Services 2

• Conversational Services

 Online Shopping

 Require the user to navigate several stages before

transaction is complete

Interaction Mechanisms

• Functional – i.e. Request-Response

 User visits a page and types in request

 Web service returns an answer

• Conversational – i.e. Solicit-Response interaction

 Analogous to being asked questions to refine the request!

 Triggered by the user visiting the page, of course

 Whilst attempting to satisfy user’s request, the Web service

presents a page containing information and choice

 User responds with information

 Ultimately, the service returns the desired response to the

initial request

Web Services - Liberating the Machine

• Web Services traditionally have a human interface
 Required information is presented using forms

 Humans interpret labels and enter corresponding
information

 Humans interpret resulting information

• Form-based interaction ill-suited for machine
comprehension
 Prior knowledge can be used to prime parsing of pages

- E.g. screen scraping

 CGI-based services can ignore presented page and submit
a preformed request directly to the server

• Web Services make the implicit specifications
explicit!

Human Oriented Services vs Machine
Oriented Services

• WWW is organized around URIs, HTML, and HTTP.

 URIs provide defined ids to refer to elements on the web

- URLs are machine resolvable, but other URIs may resolve to

any object…

 HTML provides a standardized way to describe document

structures

- allowing browsers to render information for the human reader

 HTTP defines a protocol to retrieve information from the

web.

- resulting in a near-ubiquitous communication framework

• Not surprisingly, web services require a similar

infrastructure around UDDI, WSDL, and SOAP.

Source: Dieter Fensel & Christoph Bussler

Agents vs Web Services

• The WS stack provides a representation specification:

 SOAP messages can support communication

 WSDL - declarative specifications of meaningful messages

- Typically thought of as describing service interfaces, but a

WSDL operation isn’t necessarily a service!

 BEPL4WS - describes coordination between operations

- Still need to determine if the service (with multiple execution

paths) can deliver meaningful results given a set of beliefs

 WS-Chor - describes how several services interact to

achieve a joint goal

- Still need to plan across a dynamic space of services to

determine a coalition that will achieve this goal

- This may also require supporting services

• (e.g. Agent-based commitment, or GRID reservations)

One Advantage of building on Web Services

• Web Services have:

 provided de facto standard for ubiquitous communication

- http !!!

 provided a unified base representation language

- <XML/>

 provided a universal naming scheme

- Universal Resources Identifiers

- Name Spaces

• All this is syntax, but what does it all mean?

 And if it means something to you, does it mean the same to

me?

Agents, Web Services
& The Semantic Web
• Semantic Annotations embedded in Web Pages

 Provide better access to the web

- Facilitate better navigation within web-pages

- Support client-side services that utilize the annotations

- Provide background resources for extended reasoning

 But may need gathering, monitoring, and managing

- Automated mechanisms for locating new facts…

- … and determining the implications

• Web Services benefit from Semantic Annotations

 Exchanged Data can be richer

 Descriptions can support enterprise integration

- Protocol Interoperation

- Data Representation

Tackling Semantic Interoperability…

• Semantic Interoperability is a major hurdle for

 Locating Services

- Different terms used for advertisements and requests

 Negotiating contracts & communications

- Different protocols used by different communities when

agreeing whether to transact

 Invoking

- Constructing valid messages based on the published

signature/interface of a service

 Understanding

- Interpreting the results of invoking a service

 Composing Services

- Constructing plans to achieve meta-goals based on available

Services/Agents

Examples of Semantic Mismatch

• Semantic Mismatch at the Content Level
 Provider returns value Pennsylvania, but requester only

understands two letter state codes (i.e. PA)

• Semantic Mismatch at the Attribute level
 Requester needs rainfall but provider provides precipitation

• Semantic Mismatch at the level of Units
 Requester has value in inches, but provider requires cm

• Semantic Mismatch at the Message level
 Requester has length & width, provider requires area

Semantic Web Services

• Explicitly defined vocabularies (ontologies)

• Expressive representations of concepts and
relationships

• Ability to reason and infer new facts, or
identify implicit relations

• Distributed entities with (often) well-defined
identifiers

• Well defined dissemination/acquisition
protocols

• Dynamic, expandable environment

• Reusable objects with one or more
capabilities

• Invocable though some communication
metaphor

Semantic

Web

Services

S(WS) vs SW(S)

• Semantic + Web Services
 annotating or wrapping Web Service Technology

- Supporting existing WS

• Extends existing commercial deployed services
• Builds upon emerging industry-driven standards
• Benefits from commercial tools

- Architecture to manage the semantic annotations

• Extentions to existing frameworks
• Possibly transparent to the web-service developer

• Semantic Web + Services
 services supporting, and using the Semantic Web

- Not limited to Web Services

• includes Grid, Agent etc
- Introduces additional complexity

• Different communication or community frameworks
• Different demands or assumptions

Semantic… Web Services

• Semantic + Web Services
 annotating or wrapping Web Service Technology

• Assumes an underlying Web Service Architecture
 Bounded (constrained) by standards definitions

- Well defined notions of interface, choreography etc

- Applications often oriented towards industrially focused
domains

• Enterprise Applications
 Benefits from large user base

 Realistic near-term potential of technology-transfer

• Two perspectives:
 Semantically Annotated Web Services

 Semantically Enabled Web Services

Semantically Annotated … Web Services

• Encapsulates Web Services
 Can be applied onto existing services without

understanding internal logic

 Developers need no prior knowledge of “Semantics”

 Semantic Framework / Architecture Required

Web Service

Semantic Wrapper
Ontologies

Semantic
Matchmaker

(e.g. extended UDDI)

Mediation
Rules

Articulations
(for ontology

mapping)

Shim
Components

Etc…

Ontologies
Ontologies

Semantic
Framework

Semantically Annotated … Web Services

• Encapsulates Web Services
 Can be applied onto existing services without

understanding internal logic

 Developers need no prior knowledge of “Semantics”

 Semantic Framework / Architecture Required

Web Service

Semantic Wrapper

Web Service

Semantic Wrapper

Communication

resources exchanged are
typically datatype properties

(strings, ints, complex types)

Semantically Enabled … Web Services

• Augmented Web Services
 Services understand Semantic (Web?) resources

 May have reasoning capabilities

 Build upon Web Service Technology

- But existing web services need adapting

Semantically Enabled
Web Service

OntologiesMediation
Rules

Articulations
(for ontology

mapping)

Shim
Components

Etc…

Ontologies
Ontologies

Semantic
Framework

Communication

Semantic resources exchanged
(e.g. literals, URIs, RDF)

Semantically Enabled
Web Service

Can be used by

Semantic Web … Services

• Services supporting, and using the semantic web
 Extends any service-oriented, or distributed architecture

- Grid Services

- Agent Services

- Autonomic Services

- Services within a Pervasive (Ubiquitous) Environment

 Not bound by the constraints of Web Service technology

- Can define own protocols and policies

• E.g. for dialogues, communication etc

 Oriented specifically towards Semantic Web technology

- Can benefit from “web linkyness”

• URIs pointing to other concepts
• Distributed, linked ontologies

- May be constrained by reasoning logic

• Current descriptions mainly represented in OWL
• Reasoning typically DL based (at the moment)

Varying Service Characteristics

• Characteristics of a service are dependent on the

environment and task they perform

 Grid Services

- May be physical or software

- May be persistent

• Need mechanisms for managing multiple contracts
• Need supporting (ancillary) services for functionally related tasks

- Invocation duration varies

• Typically non-instantaneous
- Emphasis on…

• Contractural issues, e.g. billing, accountability
• Security issues, authentication, etc

 Web Services

 Agent Services

Varying Service Characteristics

• Characteristics of a service are dependent on the
environment and task they perform
 Grid Services

 Web Services

- Typically software based

- Typically transient instances

• Issues of sessions and state are open problems
- Well defined structures for defining

• Communication & Interfaces
• Orchestration / Choreography

- Rapidly evolving standards for more complex requirements

• WS-Security, WS-Resources, XACML etc
- Invocation duration varies

• Typically assumed to be rapid, with acknowlegement being result
- Mainly used by commercial sector

 Agent Services

Varying Service Characteristics

• Characteristics of a service are dependent on the

environment and task they perform

 Grid Services

 Web Services

 Agent Services

- May be physical or software

- Generally persistent

• Agent may present several services / capabilities which may be
functionally dependent

• May perform similar tasks concurrently
- Not guaranteed to acquiesce when invoked

• If request has little utility, agent may choose not to perform task,
or may choose to de-commit from an ongoing task

- Various

• Architectures (both agent and environment)
• Policies, protocols for agent-interaction and dialogues

Existing & Emerging SWS Frameworks

• UPML

 Built on the idea of
- Problem Solving Methods (PSMs) & Tasks

- Domain Models, Ontologies and Bridges

• OWL-S: OWL for Services

 Built using OWL-based description logics

 Views services as having distinct

- Advertisements / queries (Profile)

- Workflows (Process Models)

- Communication / Lower-level protocol binding
(Grounding)

• WSMO

 Complete framework aimed at Enterprise
integration

 Defines its own

- Language (WSML) - not bound by Description
Logics

- Ontologies (WSMO) for all aspects of semantic
web services

- Architecture and execution framework (WSMX)

Agents, Services and Processes

• Proposed definitions for what constitutes a service / process / agent ...

 Agent:
- Intelligent Autonomous Entity capable of offering several services (providing

different functionalities)

 Service:

- Encapsulated functionality (or set of functionalities) that achieve a goal (in a

variety of ways). Two types…

• Core Service - The main functionality offered
• Ancillary Services - Additional functionalities that support the core service

 Process:

- Declared sub-components within the service

• Composite Process can be hierachically decomposed
• Simple Process provides abstraction of a service
• Atomic Process has a defined grounding to support invocation/data passing

NOTE - Not necessarily the agreed definition across the community!

Main Semantic Web Service
Requirements
• Capability descriptions

- Need to describe what a service does, so that it can be found,

compared (to similar ones), and selected, often autonomously

• Workflow descriptions
- A description of the internal components and the way they are

orchestrated is necessary to determine if the service performs

the desired task

- Also used to define the interaction protocol with the exposed

funtional components within the workflow

• Interface descriptions
- Need to define the message structure, syntax, communication

endpoints etc

- Need an invocation framework to support execution of

services and communication of data etc

Ancillary Services

• Provide loosely-bound support for a core service

 Additional services, e.g. reservation, commitment

- This service should be available at 10am Thursday, when the

prior workflow completes. Can I reserve this service?

 Higher order services, based on parametric call

- If I invoke this service with these parameters, when will it

complete, and what will it cost?

• Such ancillary services necessary for Grid services

• Also exist within many agent frameworks

 Supporting FIPA behaviors, such as responding to queries

 Supporting Commitment or Team-based behaviors

Oblex view of Services

• Describing bundles of services

 Akkermans et al (service configuration)

• Supports relationships between services

 Core service - main functionality

 Supporting Service - mandatory additional functionality

 Extending Service - optional additional functionality

• Service bundling common in the business world

 E.g. Phone or Electricity operators

• Formal concepts applied to agents have received

little attention

 May facilitate planning or service composition?

Agents, Semantic Web & Web Services

WEB SERVICES

MULTI-AGENT
SYSTEMS

SEMANTIC WEB
Distributed
Ontologies

Declarative
Representation

Logic-based
Reasoning

XML-based
representation

Upper Ontologies

Protocol
Definitions

Well defined
Interfaces

Loose
Open-world
Semantics

StandardsIndustry
Support

Interchange
Formats

Distributed
Architectures

Multi-Agent
Development
Environments

Mediation
ToolsDevelopment

Methodologies

Communication
Languages

Requirements…

• Need a framework to provide semantic descriptions

of these services to support

 Invocation of a previously-unseen service

 Composition of several services to achieve a goal

 Planning / Model Checking to determine valid execution

paths through the composition

• For Example

 “…generate a workflow to buy all the books within a
set, given that only sub-sets of the books are available
at any given online book store…” - Jim Hendler

DAML / OWL Services

• DAML-S (OWL-S) Coalition formed

 To explore how Distributed (i.e. Web-Based) semantics

could be used to describe agents and facilitate knowledge

exchange

 Developed a high level architecture and set of ontologies

for services

 Emphasis moved from Agents to Web Services…

- Tighter focus on procedural definitions of the service protocol

- Emphasis on bounded interface defined explicitly

OWL-S

• DAML-S: A DARPA Agent Markup Language for
Services
 An upper ontology for describing properties & capabilities

of agents & (Web) services in an unambiguous, computer
interpretable markup language.

• Oriented towards:
 Discovery

- Locating services based on a functional description

- Reasoning about queries using Description Logics

 Composition

- Defining the workflow / protocol for execution

- Support composition (e.g. via planning) and model checking

 Execution

- Defined mappings from semantic representation to XML
based data definitions

- Well-defined remote-execution support through Web Services

OWL-S Objectives

• Model services using DAML syntax and description-

logics

• Achieve semantic interoperability through tight

coupling with Semantic Web standards.

• Automate:

 WS Discovery

 WS Invocation

 WS Selection, Composition & Interoperation

 WS Execution Monitoring

Automating WS Discovery & Selection

• Support tasks such as
- Find me an airline that can fly me to Sardinia

• Issues:

 How are service capabilities defined in the

advertisement/request?

- How are constraints specified?

 How do mediation/discovery services affect the format of

the request specification?

Automating WS Invocation

• Support tasks such as
- Book flight tickets from Alitalia to arrive on the 9th June.

• Issues:

 What is the format of the messages sent between service

provider and service requester?

 How are values in incoming messages validated to ensure

successful invocation?

Automating WS Composition &
Interoperation
• Support tasks such as:

- Arrange travel from Pittsburgh to Civitavecchia via Rome.

• Issues:

 How are composite tasks defined?

 How are multi-party interactions mediated?

 How are tasks decomposed

- Matching with pre-defined composite models?

- Planning based on known or discovered services?

Automating WS Execution Monitoring

• Support tasks such as
- Have the ferry tickets been reserved yet??

• Issues:

 How does a service monitor and share its current execution

status?

 How are execution monitoring queries defined?

 How are failures and aborts handled?

OWL-S Upper Ontology

. input types

. output types

. preconditions

. postconditions

. communication protocol
 (RPC, HTTP, …)
. port number
. marshalling/serialization

• process flow
• composition hierarchy
• process definitions

Presenting Service Profiles

• Service Profile

 Presented by a service.

 Represents

“what the service provides”
 One can derive:

- Service Advertisements
- Service Requests

Describing the profile

• A profile represents a functional description of the

service capabilities

 Describe:

- Dataflow properties

• Inputs required to invoke the service
• Outputs that are generated by the service

- World State properties

• Preconditions that should be satisfied
• Effects that will be asserted if the service execution is successful

• Service metadata is presented

 Determine additional data that should be used when

searching for, or selecting services

- Quality of Service Parameters

- References to supporting services

- etc

DAML-S Service Profile

Non Functional Properties

Functionality
Description

DAML-S Service Profile
Functionality Description

•Functional Specification of what

the service provides in terms of

parameters, subclassed as:

 preconditions
 inputs
 outputs
 effects

•Summarizes the abstract

capability of a service.

DAML-S Service Profile
Functionality Description
• Preconditions

 Set of conditions that should hold prior to service invocation

• Inputs
 Set of necessary inputs that the requester should provide

to invoke the service

• Outputs
 Results that the requester should expect after interaction

with the service provider is completed

• Effects
 Set of statements that should hold true if the service is

invoked successfully.

 Often refer to real-world effects

- Package being delivered, or Credit card being debited

Describing Service Models

• Service Process

 Describes how a

service works.

• Facilitates

 (automated) Web

service invocation

 composition

 interoperation

 monitoring

Processes within the Process Model

• Three types of Process
 Atomic

- invokable, bound to grounding
 Simple

- Provides abstraction, encapsulation etc. Not invokable unless realized as
an atomic process, or expanded into a composite process

 Composite process
- Models the workflow of several simple or atomic processes

• Each process type can express IOPEs
 IOPEs bound to atomic processes, or inferred as computed IOPEs

Process Model Control Constructs

• Four types of control construct
 Sequential, concurrent, conditional, and iteration

• Test and conditional constructs used to control workflow

Supporting a Service Grounding

• Service Grounding

 Provides a specification of
service access information.

 Service Model + Grounding give
everything needed for using the
service

 Builds upon WSDL to define
message structure and physical
binding layer

• Specifies:

 communication protocols,
transport mechanisms, agent
communication languages, etc.

Service Grounding: “How to access it”

• How to access the service

• Implementation-specific

• Message formatting, transport mechanisms,

protocols, serializations of types

• Service Model + Grounding give everything needed

for using the service

DAML-S / WSDL Binding

DL-based Types

WSDL

DAML-S

Process Model

Atomic Process

Operation Message

Inputs / Outputs

Binding to SOAP, HTTP, etc.

Describing the grounding

• Provide a WSDL file for the service being described

• Identify and map

 The atomic processes within the process model to the

corresponding operations in the WSDL description

 The inputs & outputs correspond to WSDL messages

An approach to Constructing a service

• Describe the process model
 Atomic (functional) or composite (conversational)

 Determining what to expose

- Just interaction points

- Additional process information for reasoning

• Transporting Wine trans-continental

• Describe the profile and advertise
 Expose input & outputs, preconditions and effects

 Determine relevant metadata

• Bind to a transport mechanism via the grounding
 Provide (or augment existing) WSDL document and bind to it

• Define the Service concept to link the models together
 presents profile

 describedBy process

 supports grounding

Ancillary Services

• Provide loosely-bound support for a core service

 Additional services, e.g. reservation, commitment

- This service should be available at 10am Thursday, when the

prior workflow completes. Can I reserve this service?

 Higher order services, based on parametric call

- If I invoke this service with these parameters, when will it

complete, and what will it cost?

• Such ancillary services necessary for Grid services

• Also exist within many agent frameworks

 Supporting FIPA behaviors, such as responding to queries

 Supporting Commitment or Team-based behaviors

Example - Stock Purchaser

• Stock purchasing service can be used to buy stock. It charges

a commission which is a function on the volume of stock

bought. Interaction is through a dialog, where the price is

provided and credit card details a requested.

 Service provides:

- Core Service: Purchase_Stock

- Ancillary Service: Execution_Cost (based on calling parameters)

Execution_Cost
(atomic process)

Ticker_symbol

Quantity
Cost

Check_Price
(atomic process)

Buy_Stock
(atomic process)

Ticker_symbol

Quantity
Stock-Price

Reciept-Ref
Stock-Price

CreditCard#

Sequence (control flow)Purchase_Stock
(composite service)

Stock_Buying_Service

Oblex view of Services

• Describing bundles of services

 Akkermans et al (service configuration)

• Supports relationships between services

 Core service - main functionality

 Supporting Service - mandatory additional functionality

 Extending Service - optional additional functionality

• Service bundling common in the business world

 E.g. Phone or Electricity operators

• Formal concepts applied to agents have received

little attention

 May facilitate planning or service composition?

Service Dialogue

• Individual processes indicate dialogue points when

interacting with the core service

• Issue: Client is performing some task based on

results of Check_Price - this should be defined

 Such actions are defined within Agent-based dialog

protocols [McBurney & Parsons, 2003]

• Need to use the Simple Process

Client

Check_Price
(atomic process)

Buy_Stock
(atomic process)

Example - Modified Stock Purchaser

• Add behavior expected from the client as a simple process

 Should be expanded by the client into an atomic service the client

provides, that the client uses to decide whether to buy at the given

price.

Execution_Cost
(atomic process)

Ticker_symbol

Quantity
Cost

Check_Price
(atomic process)

Commit_to_Buy
(simple process)

Ticker_symbol

Quantity
Stock-Price

Stock-Price

Sequence (control flow)Purchase_Stock
(composite service)

Stock_Buying_Service

Buy_Stock
(atomic process)

Reciept-Ref
Stock-Price

CreditCard#

Sequence (control flow)

Stock-Price

CreditCard#

Planning for dialogues

• Planning is necessary to determine execution paths

through service dialogue

 i.e. Model Checking

 Given a set of beliefs, can the agent:

1. Understand the different stages of the dialogue

2. Provide necessary resources to satisfy the dialogue

3. Trust the service given the resource requirements and client

expectations

• Also necessary to:

 Determine if client can perform the dialogue task (based

on its own capabilities)

 Determine if the task should be delegated to a third party

Planning also used for Service
composition
• Several services can be combined to achieve higher

level goals

 e.g. many book stores offer book-buying services. Another

may provide a currency conversion service.

 To achieve Jim’s goal, many book-buying services may

need to be combined, including those out of the country

- which need the prices converting to ??? into dollars

• This is the commonly used definition of “Service

Composition”

 May result in several services being choreographed

according to the composed model / workflow

 Different compositions require different control structures…

Service and Process Interaction
Hub-n-spoke

• Conversational Service involves interaction with client throughout
the process model

• Hub-n-Spoke

• Assumes:

 the client is always available

- interaction is pairwise between the client and the service

 that the client provides mediation between semantic types

 each service is unaware of the others in the model

- service is unaware of its role within the composite model

• This is the approach currently assumed by OWL-S

P1

Client

P2 P3

Service and Process Interaction
Pipelining

• Pipelining service composed of several other services

 Client provides data at start, and retrieves result at end

• Can support composition of services with “semantic shims”

 e.g.

- convert between conceptual types

- similar to WSMO Ontology mediation

 May be defined through composition

 Could be invoked directly by agents

• Don’t rely on client being present

• Control may be:

 Centralised by some enactor

 Distributed, by passing a partially executed workflow

• This is the approach often required by GRID Services

P1

Client

P2 P3

Service and Process Interaction
Delegation

• Delegation may occur by an arbitrary service to a third party

• Client may or may not be aware of the delegation

 Composition may determine 3rd party
- Important from a security perspective

- service doing the delegation may be acting on behalf of the client

 Delegating service may determine 3rd party

- Client may no longer have control over what parties have access to intermediary
results

 Issues include responsibility, liability

 This is being explored in Security projects such as the Semantic Firewall

P2a

P1

Client

P2 P3

Partially Instantiated Services

• Workflows may be generated by hand, as well as

through automated composition

 Some service instances may be mandatory, and shouldn’t

be replaced through discovery.

- E.g. P2 below

 Other services can be selected for the plan at

plan/execution time

- E.g. P1 and P3 below

Any
P1

Client

P2 at
http://…

Any
P3

Wrap up…
Agents, Web Services and OWL-S
• There exists a considerable body of work on Agents

 encompasses notions of

- communication

- negotiation / argumentation / auctions

- commitment, coalitions, communities

- evolving behaviour and adaptation

- autonomous behaviour

 Different MAS have different ways of defining these

- both in terms of syntax, and their semantics

• Web Services provide

 a declarative specification of

- messages

- workflows, orchestrations, and choreographies

- resources, security requirements, contracts

 Standardized syntax (XML) but lacking:

- higher level autonomous reasoning, adaptation and coordination

- formal semantics to support interoperation between services

Wrap up…
Agents, Web Services and OWL-S

• OWL-S provides

 Set of ontologies for defining services, that support:

- Discovery

- Workflow analysis, composition

- Service invocation / interaction

 Initial design grounded in AI techniques

- but focus shifted towards augmenting Web Services

• Question: Are requirements of Agents the same as WS?

 From a simple, functional perspective… perhaps…

 but complex multi-agent behaviors requires a richer, dynamic

representation

- Many Agent theories have no analogies within the WS

community… yet!

Acknowledgements

• I would like to thank many of the people who have

contributed and assisted in this tutorial, including

 David de Roure
 Carole Goble
 Dieter Fensel
 Christoph Bussler
 Sheila McIlraith
 Jim Hendler
 Sinuhe Arroyo
 Michael Stollberg
 Matthew Moran

 Luc Moreau
 John Domingue
 Liliana Cabral
 Enrico Motta
 Nigel Shadbolt
 David Martin
 Michal Zaremba
 Jos de Bruijn

1

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Web Service Modeling Ontology
(WSMO) and IRS-III

John Domingue, Liliana Cabral,
Michael Stollberg and

Christoph Bussler

2

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Outline

• WSMO
– aims & objectives
– working structure

• WSMO Design Principles
• WSMO Top Level Notions

– Ontologies
– Web Services
– Goals
– Mediators

• IRS-III Overview
• IRS-III Demo
• Summary

3

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO is ..

• a conceptual model for Semantic Web Services :
– Ontology of core elements for Semantic Web Services
– a formal description language (WSML)
– execution environment (WSMX)

• … derived from and based on the Web Service
Modeling Framework WSMF

• a SDK-Cluster Working Group
(joint European research and development initiative)

4

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Working Groups

A Conceptual Model
for SWS

A Formal Language for WSMO

A Rule-based Language for SWS

Execution Environment
for WSMO

5

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

• Web Compliance
• Ontology-Based
• Strict Decoupling
• Centrality of Mediation
• Ontological Role Separation
• Description versus Implementation
• Execution Semantics

WSMO Design Principles
6

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Top Level Notions

Objectives that a client wants to
achieve by using Web Services

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components
with mediation facilities for
handling heterogeneities

WSMO D2, version 1.2, 13 April 2005 (W3C submission)

7

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Non-Functional Properties
every WSMO elements is described by properties that

contain relevant, non-functional aspects

• Dublin Core Metadata Set:
– complete item description
– used for resource management

• Versioning Information
– evolution support

• Quality of Service Information
– availability, stability

• Other
– Owner, financial

8

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Non-Functional Properties List
Dublin Core Metadata

Contributor
Coverage
Creator
Description
Format
Identifier
Language
Publisher
Relation
Rights
Source
Subject
Title
Type

Quality of Service
Accuracy
NetworkRelatedQoS
Performance
Reliability
Robustness
Scalability
Security
Transactional
Trust

Other
Financial
Owner
TypeOfMatch
Version

9

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Ontologies

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components
with mediation facilities for handling
heterogeneities

Objectives that a client wants to
achieve by using Web Services

10

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

• Ontologies are used as the ‘data model’ throughout
WSMO
– all WSMO element descriptions rely on ontologies
– all data interchanged in Web Service usage are ontologies
– Semantic information processing & ontology reasoning

• WSMO Ontology Language WSML
– conceptual syntax for describing WSMO elements
– logical language for axiomatic expressions (WSML Layering)

• WSMO Ontology Design
– Modularization: import / re-using ontologies, modular approach for

ontology design
– De-Coupling: heterogeneity handled by OO Mediators

Ontology Usage & Principles

11

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

• Non functional properties (see before)
• Imported Ontologies importing existing ontologies

where no heterogeneities arise
• Used mediators OO Mediators (ontology import with

terminology mismatch handling)

Ontology Elements:
Concepts set of concepts that belong to the ontology, incl.
Attributes set of attributes that belong to a concept
Relations define interrelations between several concepts
Functions special type of relation (unary range = return value)
Instances set of instances that belong to the represented ontology
Axioms axiomatic expressions in ontology (logical statement)

Ontology Specification
12

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Web Services

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components
with mediation facilities for
handling heterogeneities

Objectives that a client wants to
achieve by using Web Services

13

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Web Service Description

Web Service
Implementation
(not of interest in Web
Service Description)

Choreography --- Service Interfaces ---

Capability

functional description

WS

WS

- Advertising of Web Service
- Support for WS Discovery

client-service
interaction interface
for consuming WS
- External Visible
 Behavior
- Communication
 Structure
- ‘Grounding’

realization of
functionality by
aggregating
other Web
Services
- functional
 decomposition
- WS composition

Non-functional Properties

DC + QoS + Version + financial

- complete item description
- quality aspects
- Web Service
Management

WS

Orchestration

14

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Capability Specification

• Non functional properties
• Imported Ontologies
• Used mediators

– OO Mediator: importing ontologies with mismatch resolution
– WG Mediator: link to a Goal wherefore service is not usable a priori

• Pre-conditions
What a web service expects in order to be able to
provide its service. They define conditions over the input.

• Assumptions
Conditions on the state of the world that has to hold before
the Web Service can be executed

• Post-conditions
describes the result of the Web Service in relation to the input,
and conditions on it

• Effects
Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

15

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Choreography & Orchestration
• VTA example:

• Choreography = how to interact with the service to
consume its functionality

• Orchestration = how service functionality is achieved
by aggregating other Web Services

VTA
Service

Date

Time

Flight, Hotel

Error

Confirmation

Hotel Service

Flight Service

Date, Time

Hotel

Error

Date, Time

Flight

Error

When the service is
 requested

When the service
requests

16

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Choreography Aspects

• External Visible Behavior
– those aspects of the workflow of a Web Service where Interaction is

required
– described by workflow constructs: sequence, split, loop, parallel

• Communication Structure
– messages sent and received
– their order (communicative behavior for service consumption)

• Grounding
– concrete communication technology for interaction
– choreography related errors (e.g. input wrong, message timeout, etc.)

• Formal Model
– reasoning on Web Service interfaces (service interoperability)
– allow mediation support on Web Service interfaces

Interface for consuming Web Service

17

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Orchestration Aspects

- decomposition of
service functionality

- all service interaction
via choreographies

Control Structure for aggregation of other Web Services

WS

W
eb Service Business Logic

1

2

3

4

WS

State in Orchestration

Control Flow
Data Flow

Service Interaction

18

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Web Service Interfaces
• service interfaces are concerned with service consumption

and interaction
• Choreography and Orchestration as sub-concepts of

Service Interface
• common requirements for service interface description:

1. represent the dynamics of information interchange during service
consumption and interaction

2. support ontologies as the underlying data model
3. appropriate communication technology for information interchange
4. sound formal model / semantics of service interface specifications in

order to allow operations on them.

19

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Service Interface Description
• Ontologies as data model:

– all data elements interchanged are ontology instances
– service interface = evolving ontology

• Abstract State Machines (ASM) as formal framework:
– dynamics representation: high expressiveness & low ontological

commitment
– core principles: state-based, state definition by formal algebra,

guarded transitions for state changes
– overcome the “Frame Problem”

• further characteristics:
– not restricted to any specific communication technology
– ontology reasoning for service interoperability determination
– basis for declarative mediation techniques on service interfaces

20

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Service Interface Description Model

• Vocabulary Ω:
– ontology schema(s) used in service interface description
– usage for information interchange: in, out, shared, controlled

• States ω(Ω):
– a stable status in the information space
– defined by attribute values of ontology instances

• Guarded Transition GT(ω):
– state transition
– general structure: if (condition) then (action)
– different for Choreography and Orchestration

21

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Service Interface Example

Ωin hasValues {
 concept A [
 att1 ofType X
 att2 ofType Y]
…}

a memberOf A [
 att1 hasValue x
 att2 hasValue y]

a memberOf A [
 att1 hasValue x,
 att2 hasValue
m]

b memberOf B [
 att2 hasValue
m]

IF (a memberOf A [
 att1 hasValue x])
THEN
(b memberOf B [
 att2 hasValue m])

State ω1 Guarded Transition GT(ω1) State ω2

Ωout hasValues
{
 concept B [
 att1 ofType W
 att2 ofType Z]
…}

Vocabulary:
- Concept A in Ωin
- Concept B in Ωout

received ontology
instance a

Communication Behavior of a Web Service

sent ontology
instance b

22

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Future Directions

Ontologies as data model:
 - every resource description based on ontologies
 - every data element interchanged is ontology instance

Formal description of serv ice interfaces:
 - ASM-based approach
 - al lows reasoning & mediation

w orkflow constructs as basis for describing serv ice
interfaces:
 - workflow based process models for describing behavior
 - on basis of generic workflow constructs (e.g. van der Aalst)

Choreography:
 - interaction of services / service and c l ient
 - a „c horeography interface“ describes the behavior of a
 Web Service for c l ient-service interaction for consuming
 the service

Orchestration:
 - how the functionality of a Web Service is achieved by
 aggregating other Web Services
 - extends Choreography descriptions by control & data flow
 constructs between orchestrating WS and orchestrated WSs.

Grounding:
 - making service interfaces executable
 - currently grounding to WSDL

Conceptual models

User language
 - based on UML2 activity diagrams
 - graphical Tool for Editing & Browsing Service Interface
Description

23

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Goals

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components
with mediation facilities for
handling heterogeneities

Objectives that a client wants to
achieve by using Web Services

24

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Goals

• Ontological De-coupling of Requester and Provider

• Goal-driven Approach, derived from AI rational agent approach
- Requester formulates objective independently
- ‘Intelligent’ mechanisms detect suitable services for solving the Goal
- allows re-use of Services for different purposes

• Usage of Goals within Semantic Web Services
– A Requester, that is an agent (human or machine), defines a Goal to be

resolved
– Web Service Discovery detects suitable Web Services for solving the

Goal automatically
– Goal Resolution Management is realized in implementations

25

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Goal Specification
• Non functional properties
• Imported Ontologies
• Used mediators

– OO Mediators: importing ontologies with heterogeneity resolution
– GG Mediator:

• Goal definition by reusing an already existing goal
• allows definition of Goal Ontologies

• Requested Capability
– describes service functionality expected to resolve the objective
– defined as capability description from the requester perspective

• Requested Interface
– describes communication behaviour supported by the requester for

consuming a Web Service (Choreography)
– Restrictions / preferences on orchestrations of acceptable Web

Services

26

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Mediators

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description
of Web Services:
- Capability
(functional)
- Interfaces (usage)

Connectors between components
with mediation facilities for
handling heterogeneities

Objectives that a client wants to
achieve by using Web Services

27

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Mediation

• Heterogeneity …
– Mismatches on structural / semantic / conceptual / level
– Occur between different components that shall interoperate
– Especially in distributed & open environments like the Internet

• Concept of Mediation (Wiederhold, 94):
– Mediators as components that resolve mismatches
– Declarative Approach:

• Semantic description of resources
• ‘Intelligent’ mechanisms that resolve mismatches independent of content

– Mediation cannot be fully automated (integration decision)

• Levels of Mediation within Semantic Web Services (WSMF):
(1) Data Level: mediate heterogeneous Data Sources
(2) Protocol Level: mediate heterogeneous Communication Patterns
(3) Process Level: mediate heterogeneous Business Processes

28

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WSMO Mediators Overview

29

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Mediator Structure

WSMO Mediator

uses a Mediation Service via

Source
Component

Source
Component

Target
Component 1 .. n

1

Mediation
Services

- as a Goal
- directly
- optionally incl. Mediation

30

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

OO Mediator - Example

OO Mediator
Mediation Service

Train Connection
Ontology (s1)

Purchase
Ontology (s2)

Train Ticket
Purchase Ontology

Mediation
Services

Goal:
“merge s1, s2 and
s1.ticket subclassof s2.product”

Discovery

Merging 2 ontologies

31

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

GG Mediators
• Aim:

– Support specification of Goals by re-using existing Goals
– Allow definition of Goal Ontologies (collection of pre-defined Goals)
– Terminology mismatches handled by OO Mediators

• Example: Goal Refinement

GG Mediator
Mediation Service

Source Goal
“Buy a ticket”

Target Goal
“Buy a Train Ticket”

postcondition:
“aTicket memberof trainticket”

32

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

WG & WW Mediators
• WG Mediators:

– link a Web Service to a Goal and resolve occurring mismatches
– match Web Service and Goals that do not match a priori
– handle terminology mismatches between Web Services and Goals
⇒ broader range of Goals solvable by a Web Service

• WW Mediators:
– enable interoperability of heterogeneous Web Services
⇒ support automated collaboration between Web Services

– OO Mediators for terminology import with data level mediation
– Protocol Mediation for establishing valid multi-party collaborations
– Process Mediation for making Business Processes interoperable

33

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

IRS-III:
A framework and platform for

building Semantic Web Services

34

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

The Internet Reasoning Service
is an infrastructure for
publishing, locating, executing
and composing Semantic Web
Services

35

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Design Principles
• Ontological separation of User and Web Service

Contexts
• Capability Based Invocation
• Ease of Use
• One Click Publishing
• Agnostic to Service Implementation Platform
• Connected to External Environment
• Open
• Complete Descriptions
• Inspectable
• Interoperable with SWS Frameworks and Platforms

36

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Features of IRS-III (1/2)

• Based on Soap messaging standard
• Provides Java API for client applications
• Provides built-in brokering and service

discovery support
• Provides capability-centred service

invocation

37

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Features of IRS-III (2/2)
• Publishing support for variety of platforms

– Java, Lisp, Web Applications, Java Web Services
• Enables publication of ‘standard code’

– Provides clever wrappers
– One-click publishing of web services

• Integrated with standard Web Services world
– Semantic web service to IRS
– ‘Ordinary’ web service

38

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

IRS-3 Server

Domain Models

Web Service Specifications
+ Registry of Implementors

Goal Specifications
+ SOAP Binding

IRS Publisher
S O

 A P

IRS Client
SOAP

IRS Publisher

IRS Publisher

IRS Publisher

Lisp

Java

Java WS

IRS-III Framework

39

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

LispWeb Server

IRS-III Architecture

IRS-III Server

WS Publisher
Registry

OCML
WSMO Library

OWL(-S) HandlerOWL(-S)

Browser

Invocation
Client

Publishing
Clients

SOAP
Handler

S
O
A
P

Publishing Platforms

Web Service

Java Code

Web Application

SOAP Browser
Handler

Publisher
Handler

Invocation
Handler

J
a
v
a

A
P
I

WSMX

40

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Publishing Platform
Architecture

IRS-III Publishing Platform
HTTP Server

SOAP
Handler

Service
Registrar

Service
Invoker

WS Service Registry

IRS-III Server

Invocation Client

SOAP

SOAP

Publishing
Clients

SOAP

Web Service 1
Web Service 2

Web Service 3

41

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

IRS-III/WSMO differences

• Underlying language OCML
• Goals have inputs and outputs
• IRS-III broker finds applicable web services via

mediators
– Used mediator within WS capability
– Mediator source = goal

• Web services have inputs and outputs
‘inherited’ from goal descriptions

• Web service selected via assumption (in
capability)

42

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

European Travel Scenario

43

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

IRS-III Demo

44

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

SWS Creation & Usage Steps

• Create a goal description
– (e.g. exchange-rate-goal)
– Add input and output roles
– Include role type and soap binding

• Create a wg-mediator description
– Source = goal
– Possibly add a mediation service

• Create a web service description
– Used-mediator of WS capability = wg-mediator above

• Specify Operation <-> Lisp function mapping in
Choreography Grounding

• Publish against web service description
• Invoke web service by ‘achieve goal’

45

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Multiple WS for goal

• Each WS has a mediator for used-
mediator slot of capability
– Some WS may share a mediator

• Define a kappa expression for
assumption slot of WS capability

• Kappa expression format
– (kappa (?goal) <ocml relations>)

• Getting the value of an input role
– (wsmo-role-value ?goal <role-name>)

46

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Defining a Mediation Service

• Define a wg-mediator
• Source = goal
• Mediation-service = goal for mediation

service
• Mediation goal

– Mediation goal input roles are a subset of
goal input roles

• Define mediator and WS as normal

47

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Goal Based Invocation

Invocation

Instantiate Goal Description

Exchange-rate-goal
Has-source-currency: us-dollars
Has-target-currency: pound

Web Service Discovery

European-exchange-rate-ws
Non-european-exchange-rate-ws
European-bank-exchange-rate-ws

Solve Goal
Goal -> WG Mediator -> WS/Capability/Used-mediator

Web service selection

European-exchange-rate

Mediate input values

‘$’ -> us-dollar

WS -> Capability -> Assumption
expression Mediation

Invoke selected
web service

European-exchange-rate

Invocation

48

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Summary

• WSMO
– Based on ontologies
– Goal
– Web Service
– Mediator
– http://www.wsmo.org/

• WSML
• WSMX
• IRS-III

– Capability based invocation
– ‘One Click’ Publishing of web services
– Open Platform
– http://kmi.open.ac.uk/projects/irs/

49

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References WSMO

• The central location where WSMO work and papers can
be found is WSMO Working Group:
http://www.wsmo.org

• WSMO languages – WSML Working Group:
http://www.wsml.org

• WSMO implementation
– WSMX working group : http://www.wsmx.org
– WSMX open source can be found at:

https://sourceforge.net/projects/wsmx/

50

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References WSMO

• [WSMO Specification]: Roman, D.; Lausen, H.; Keller, U. (eds.): Web Service
Modeling Ontology, WSMO Working Draft D2, final version 1.2, 13 April 2005.

• [WSMO Primer]: Feier, C. (ed.): WSMO Primer, WSMO Working Draft D3.1, 18
February 2005.

• [WSMO Choreography and Orchestration] Roman, D.; Scicluna, J., Feier, C.
(eds.): Ontology-based Choreography and Orchestration of WSMO
Services, WSMO Working Draft D14, 01 March 2005.

• [WSMO Use Case] Stollberg, M.; Lausen, H.; Polleres, A.; Lara, R. (ed.): WSMO
Use Case Modeling and Testing, WSMO Working Drafts D3.2; D3.3.; D3.4;
D3.5, 05 November 2004.

• [WSML] de Bruijn, J. (Ed.): The WSML Specification, WSML Working Draft
D16, 03 February 2005.

51

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References WSMO

• [Arroyo et al. 2004] Arroyo, S., Lara, R., Gomez, J. M., Berka, D., Ding,
Y. and Fensel, D: "Semantic Aspects of Web Services" in Practical
Handbook of Internet Computing. Munindar P. Singh, editor. Chapman
Hall and CRC Press, Baton Rouge. 2004.

• [Berners-Lee et al. 2001] Tim Berners-Lee, James Hendler, and Ora
Lassila, “The Semantic Web”. Scientific American, 284(5):34-43, 2001.

• [Chen et al., 1993] Chen, W., Kifer, M., and Warren, D. S. (1993).
HILOG: A foundation for higher-order logic programming. Journal of
Logic Programming, 15(3):187-230.

• Domingue, J. Cabral, L., Hakimpour, F., Sell D., and Motta, E., (2004)
IRS-III: A Platform and Infrastructure for Creating WSMO-based
Semantic Web Services WSMO Implementation Workshop (WIW),
Frankfurt, Germany, September,2004

• [Fensel, 2001] Dieter Fensel, “Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce”, Springer-Verlag, Berlin, 2001.

52

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References WSMO

• [Gruber, 1993] Thomas R. Gruber, “A Translation Approach to
Portable Ontology Specifications”, Knowledge Acquisition, 5:199-220,
1993.

• [Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., and Decker,
S. (2003). Description logic programs: Combining logic programs with
description logic. In Proc. Intl. Conf. on the World Wide Web (WWW-
2003), Budapest, Hungary.

• [Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical
foundations of object-oriented and frame-based languages. JACM,
42(4):741-843.

• [Pan and Horrocks, 2004] Pan, J. Z. and Horrocks, I. (2004). OWL-E:
Extending OWL with expressive datatype expressions. IMG Technical
Report IMG/2004/KR-SW-01/v1.0, Victoria University of Manchester.
Available from http://dl-web.man.ac.uk/Doc/IMGTR-OWL-E.pdf.

• [Stencil Group] -
www.stencilgroup.com/ideas_scope_200106wsdefined.html

53

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References WSMO

• OWL-- - http://www.wsmo.org/2004/d20/d20.1/
• OWL Flight – http://www.wsmo.org/2004/d20/d20.3/
• [Völz, 2004] Völz, R. (2004). Web Ontology Reasoning with Logic Databases.

PhD thesis, AIFB, Karlsruhe.
• WSML-Core – http://www.wsmo.org/2004/d16/d16.7/
• [WSMO Standard] Roman, D.; Lausen, H.; Keller, U. (eds.): Web Service

Modeling Ontology - Standard (WSMO - Standard) v 1.0, WSMO Working Draft
D2, 16 August 2004.

• [WSMO Choreography] Roman, D.; Stollberg, M.; Vasiliu, L.; Bussler, C.:(eds.):
Choreography in WSMO, WSMO Working Draft D14, 17 August 2004.

• [WSMO Orchestration] Roman, D.; Vasiliu, L.; Bussler, C.: (eds.): Orchestration
in WSMO, WSMO Working Draft D15, 29 May 2004.

• [WSMO Use Case] Stollberg, M.; Lausen, H.; Polleres, A.; Lara, R. (ed.):
WSMO Use Case Modeling and Testing, WSMO Working Draft D3.2, 19 July
2004.

54

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

References IRS III tutorial
• J. Domingue, L. Cabral, F. Hakimpour,D. Sell and E. Motta: IRS-III: A Platform and

Infrastructure for Creating WSMO-based Semantic Web Services. Proceedings of the
Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany, September
29-30, 2004, CEUR Workshop Proceedings, ISSN 1613-0073, online http://CEUR-
WS.org/Vol-113/paper3.pdf.

• J. Domingue and S. Galizia: Towards a Choreography for IRS-III.
• Proceedings of the Workshop on WSMO Implementations (WIW 2004) Frankfurt,

Germany, September 29-30, 2004, CEUR Workshop Proceedings, ISSN 1613-0073,
online http://CEUR-WS.org/Vol-113/paper7.pdf.

• Cabral, L., Domingue, J., Motta, E., Payne, T. and Hakimpour, F. (2004).
• Approaches to Semantic Web Services: An Overview and Comparisons. In

proceedings of the First European Semantic Web Symposium (ESWS2004);
• 10-12 May 2004, Heraklion, Crete, Greece.

• Motta, E., Domingue, J., Cabral, L. and Gaspari, M. (2003) IRS-II: A Framework and
Infrastructure for Semantic Web Services. In proceedings of the 2nd International
Semantic Web Conference (ISWC2003) 20-23 October 2003, Sundial Resort, Sanibel
Island, Florida, USA.

55

7th Agent Systems Summer School, Utrecht, The Netherlands, 18-22 July, 2005

Acknowledgements

We would like to thank to all the members of the
WSMO, WSML, and WSMX working groups for
their advice and input into this tutorial.
The WSMO work is funded by the European
Commission under the projects DIP, Knowledge
Web, SEKT, SWWS, AKT and Esperonto; by
Science Foundation Ireland under the DERI-
Lion project; and by the Vienna city government
under the CoOperate program.
The IRS-III work is funded by DIP and AKT

