Preparation

1) Ensure you have a valid installation of Java (JRE or JDK of 1.5.x
w1th)JAVA_HOME set in the environment and %JAVA_HOME%\bin included in
PATH) .

2) Ensure you have a valid installation of Apache Ant (1.6.5 has been
tested, again its 'bin' folder must be in the PATH variable).

3) Unzip HICSS06-handson.zip to a convenient Tocation.

4) Copy the code folder from 'IRS-III\Lisp' to 'c:\users\jbd2'
(i.e. forming 'c:\users\jbd2\code' etc.).

5) Launch all tools by executing 'tutorial.bat', when the IRS
Visualiser is shown, navigate to IRS Browser, accept the default
server settings (localhost:3000), and log-in as wsmo:wsmo.

6) Finally,navigate to the web Services Modelling Toolkit (WSMT).



Exercise 1

The point of this exercise is to show the logical separation of goals
from services, and their connection through wG-mediators.

The first stage in the virtual travel agency example concerns the
provision of timetable information for european rail travel. For the
purposes of the tutorial the service will be implemented by a LISP
function, 'get-train-times' (pl55).

1) In wWSMT, right click on the 'exercisel' project, in the navigator
on the left, and select 'New->Other->WSMO->Goal', enter filename
'get-train- t1mes -goal', identifier 'get-train-times-goal', and select
the 'wsml-core' variant.

(Tip: Since filenames will usually match identifiers, it is useful to
copy this into the clipboard and paste for the identifier.)

2) Double click on 'get-train-times-goal.wsml' and the WSMO Visualiser
will show the goal in the centre.

3) Right- c11ck on the goal and select 'Add->Capability'; call the new
capability 'get-train-times-capability'.

3) Right-click on the capability and select 'Add->Preconidition'; call
the new precondition 'get-train-times-inputs'

4) Right-click on the precondition and select 'Add->Logical
Expression'; enter the following:

?ogigin memberof _"http://irs.open.ac.uk/tutorial#city"

an

?dgstination memberof _"http://irs.open.ac.uk/tutorial#city"
an

?date memberof _"http://irs.open.ac.uk/tutorial#date"

5) Right-click on the capability and select 'Add->Postcondition'; call
the new postcondition 'get-train-times-outputs'

6) Right- c11ck on the postcondition and select 'Add->Logical
Expression'; enter the following:

?timetable memberof _"http://irs.open.ac.uk/tutorial#string"
7) Save the goal (File->Save)

(Tip: You can now right click on the goal, in the navigator, and
select 'Open With->WSMO Text Editor' to see the WSML created.)

8) Right click on the 'exercisel' project, in the navigator, and
select 'New->Other->wSMO->Mediator', enter filename and then
identifier 'get-train-times-mediator', variant 'wsml-core'
'WebService-Goal Mediator' (i.e. WG-mediator).

and type

9) Double click on 'get-train-times-mediator.wsml' and the wsmo
Visualiser will show the mediator in the centre.

10) Right- c11ck on the medaitor and select 'Add->Source Web Service'
and enter 'get-train-times-goal' (NB. In IRS WG-mediators have a
goal as source and are referenced by each service that satisfies the
goal

11) save the mediator.

12) Right click on the 'exercisel' project, in the navigator, and
select 'New->Other->wSMO->Web Service', enter filename and then
identifier 'get-train-times-service' and variant 'wsml-core'

13) Right-click on 'get-train-times-service.wsml' and select 'Open
with->wSMO Editor Launcher'. This will open the service description in
the wsSMO Studio's form-style editor.

14) Right-click in the 'Used Mediators' box and select 'Add Mediator'
select 'get-train-times-mediator'

15) Save the service.

16) Double-click "import.bat' under 'exercisel' in the navigator.
17) Navigate to_the IRS Browser and double click on the ontology
'european-travel-service-descriptions', where the three new items
should appear.

(Tip: If the ontology was already open at the time of import, close
and reopen it by double-clicking)

18) select 'get-train-times-service' and then (from the menu)
'Goal/ws/Mediator->Edit Goal/wS/Mediator Description...'

19) select the Interface tab, and then in the 'Grounding' field (on
the 'Choreography' subtab) enter the following (and save):

((normal get-train-times))

20) From the menu, select 'Publish->Lisp Function' and publish with
the default settings.

21) Finally, to test the above, select 'get-train-times-goal' and,
from the menu, select 'Invoke->Achieve Goal...', entering the
following:

origin: milton-keynes
destination: Tondon
date: (02 01 2005)



Exercise 2

The point of this exercise is to show how the logical separation of
goals from services allows capability-driven execution.

This part of virtual travel agency example concerns the provision of
booking services for european rail travel. For the purposes of the
tutorial the services will be implemented by LISP functions
'book-english-train-journey' and 'book-french-train-journey' (pl55).

1) In wsMT, open (click the '+' sign) and then right click the
'exercise2' project, in the navigator on the left, and select
'New->0ther->wSMO->Goal', enter filename and then identifier
'book-train-goal', and select the 'wsml-core' variant.

2) As before, open the goal in the visualiser and add a capability
'book-train-capability'.

3) Add a precondition 'book-train-inputs', and to this a logical
expression as follows:

?passenger memberof _"http://irs.open.ac.uk/tutorial#person"
gggigin memberof _"http://irs.open.ac.uk/tutorial#city"
gggstination memberof _"http://irs.open.ac.uk/tutorial#city"

gggte memberof _"http://irs.open.ac.uk/tutorial#list-date-and-time"

4) Add a postcondition 'book-train-outputs', and to this a Togical
expression as follows (and then save the goal):

?confirmation memberof _"http://irs.open.ac.uk/tutorial#string"

5) Add a wG-mediator called 'book-train-mediator' and add
'book-train-goal' as its source (remembering to save).

6) Add services named 'book-english-train-service' and
'book-french-train-service', each with 'book-train-mediator' in 'Used
Mediators' (using the Editor Launcher, and then save each).

7) Double click 'import.bat' and switch to the IRS Browser (reopening
the ontology as explained above).

8) Add the grounding to 'book-english-train-service' as above and
then, on the main 'Capability' tab, enter the following assumption:

(kappa (?goal)
(and

(is-in-country (wsmo-role-value ?goal 'origin) 'england)
(is-in-country (wsmo-role-value ?goal 'destination) 'england)))

9) Publish 'book-english-train-service'.

10) Add the grounding to 'book-french-train-service', add the
following assumption and then publish:

(kappa (?goal)
(and

(is-in-country (wsmo-role-value ?goal 'origin) 'france)
(is-in-country (wsmo-role-value ?goal 'destination) 'france)))

11) Test the goal with the following inputs:

passenger: john

origin: milton-keynes
destination: Tondon

date: (00 00 09 02 01 2005)

(Tip: Switching to the visualiser allows you to see which service is
being invoked.)

12) Test the goal with the following inputs:

passenger: john

origin: paris

destination: Tyon

date: (00 30 19 02 01 2005)



Exercise 3 ) ) )
12) Test the goal with the following inputs:
The point of this exercise is to show how data mediation can play a

part in the mediation between a goal and a service with disimilar passenger: john
input. origin: munich
destination: berlin
This part of virtual travel agency example extends the provision of date: (00 30 19 02 01 2005)

booking services for european rail travel. For the purposes of the
tutorial the services will be implemented by LISP functions
'book-german-train-journey' and 'mediate-time' (pl56-7).

1) In wWSMT, open the 'exercise3' project, then copy across
'book-train-goal.wsml' from 'exercise2' (right click on the original
and select 'Copy', then right click on 'exercise3' and select
'Paste').

2) Create a new WG-mediator 'book-train-mediated-mediator' with a
source of 'book-train-goal' and a mediation service
'mediate-time-goal' (and save).

3) Create a new service 'book-german-train-journey', add this mediator
above and save.

4) Create a new goal 'mediate-time-goal' and add a capability
'mediate-time-capability'.

5) Add a precondition 'mediate-time-inputs' and add to it a logical
expression as follows:

?date memberof _"http://irs.open.ac.uk/tutorial#list-date-and-time"

6) Add a postcondition 'mediate-time-outputs' with the Togical
expression as follows, and save:

?mediated memberof
_"http://irs.open.ac.uk/tutorial#universal-date-and-time"

7) Add a wG-mediator 'mediate-time-mediator' with this goal as source
and save.

8) Add a service 'mediate-time-service', add this mediator to 'Used
Mediators' and save.

7) Double click "import.bat' and switch to the IRS Browser (reopening
the ontology there).

8) Edit 'mediate-time-goal' and, on the 'Input and output' tab, change
the 'SOAP Type' of the output from 'xml' to 'float'.

8) Add the grounding to 'mediate-time-service' and publish.
9) Test the 'mediate-time-goal' with the following input:
(00 00 09 02 01 2005)

10) Edit 'book-train-mediated-mediator' and change 'Parent' from
'mediator' to 'wg-mediator'.

11) Add the grounding to 'book-german-train-service', add the
following assumption and then publish:

(kappa (?goal)
(and

(is-in-country (wsmo-role-value ?goal 'origin) 'germany)
(is-in-country (wsmo-role-value ?goal 'destination) 'germany)))



