IBROW Project | ST-1999-19005

An Intelligent Brokering Service for Knowledge-Component Reuse on the World-Wide-Web

Appendix 1. Classification Task Specification

Enrico Mottal, Wenjin Lul

I dentifier:
Class:
Version:
Date:

Status:
Distribution:

Responsible partner:

Abstract

In this appendix we show the compl ete specification of the classification
task ontology and the definitions of afamily of classification tasks.

D1 Appx1l
Deliverable

1.0

7 September, 2000
Dr aft

Project Members
The Open University

IBROW Deliverable D1, Appendix 1 Page 2

;53 TASK CLASSI FI CATI ON- TASK
(def-class classification-task (goal -specification-task) ?task
"Classification is defined here as finding one or nore adm ssible solutions
out of a predefined solution space, which explain the features of a
gi ven set of observables, in accordance with a given match criterion and
solution adm ssibility criterion.
Because different variants of the goal can be fornul ated, the goa
of the task is given here only as a default"”
((has-input-rol e :val ue has-candi dat e-sol uti ons
:val ue has-observabl es
:val ue has-match-criterion
:val ue has-solution-adnmissibility-criterion)
(has-out put-rol e :val ue has-sol utions)
(has- candi dat e-sol uti ons :type sol uti on-space)
(has- observabl es :type observabl es)
(has-match-criterion :type match-criterion
:defaul t-val ue defaul t-match-criterion)
(has-solution-adm ssibility-criterion
:type solution-admissibility-criterion
:defaul t-val ue defaul t-solution-adm ssibility-criterion)
(has-sol utions :type sol ution-space)
(has-precondition
:docunentation "A classification task is neaningful iff both observabl es and
sol ution space are provided"
:val ue (kappa (?task)
(exists (?x ?y)
(and (nenmber ?x (rol e-val ue ?task 'has-observables))
(rmenber ?y (rol e-val ue ?task
' has- candi dat e-
solutions))))))
(has- goal - expressi on
:docunentation "The goal is to find one or nore adm ssible sol utions”
:defaul t-val ue (kappa (?task ?sols)
(forall ?so
(=> (menber ?sol (role-value ?task 'has-
sol utions))
(adni ssi bl e-sol ution
?sol
(appl y-match-criterion
(rol e-value ?task 'has-match-criterion)
(rol e-val ue ?task 'has-observabl es)
?sol)
(rol e-val ue
?t ask
" has-sol ution-adm ssibility-

criterion))))))))

;55 SINGLE- SOLUTI ON- CLASSI FI CATI ON- TASK
(def-class single-solution-classification-task (classification-task) ?task

"A classification task which assunes only one solution is found. The assunption

just states that the output of the task will contain at nost one solution. It
does not

say anythi ng about whether only one solution actually exists.”
((has-assunption
:val ue (kappa (?task)
(< (Length (rol e-value ?task 'has-solutions))

2)))))

IBROW Deliverable D1, Appendix 1 Page 3

;33 TASK OPTI MAL- CLASSI FI CATI ON- TASK
(def-class optinmal-classification-task (classification-task) ?task
"Another definition of a classification task which requires a solution to be
optimal with respect to the given match criterion.”
((has- goal - expressi on
:docunentation "The goal is to find the set of adm ssible solutions, say ?sols,
whi ch best explain the observables with respect to the
gi ven match criterion”
:defaul t-val ue (kappa (?task ?sols)
(forall ?so
(=> (menber ?sol (role-value ?task 'has-
sol utions))
(and

(adni ssi bl e-sol ution

?sol

(appl y-match-criterion
(rol e-value ?task 'has-match-criterion)
(rol e-val ue ?task 'has-observabl es)
?sol)

(rol e-val ue
?t ask
"has-solution-adm ssibility-criterion))

(best-match

(rol e-val ue ?task 'has-observabl es)

?sol

(rol e-val ue ?task 'has-candi date-sol utions)
(rol e-val ue ?task 'has-match-

criterion)))))))))

;;; CLASS OBSERVABLES
(def-cl ass observabl es (set) ?obs
"This is sinply a set of observables.
An inportant constraint is that there cannot be two values for the sane feature
in a set of observabl es"
;iff-def (every ?obs observabl e)
:constraint (not (exists (?o0bl ?0b2)
(and (nenber ?obl ?o0bs)
(nmenber ?0b2 ?0bs)
(has- observabl e-feature ?0bl ?f)
(has- observabl e-feature ?0b2 ?f)
(has- observabl e-val ue ?ob1l ?v1)
(has- observabl e-val ue ?0b2 ?v2)
(not (= ?vl ?v2))))))

;;; CLASS OBSERVABLE
(def-class observable () ?ob
"An observable is defined as a pair <feature, value> (logically, not necessarily
physi cal ly).
This definition assunes that a relation exists, |egal-feature-value, which
specifies whether a value is appropriate for a feature.
In addition we also assune that only one value can be provided for each feature"
((has-observabl e-feature :type feature)
(has- observabl e-val ue :max-cardinality 1))
:constraint (=> (and (has-observabl e-feature ?ob ?f)
(has- observabl e-val ue ?0b ?v))
(l egal -feature-value ?f ?v)))

IBROW Deliverable D1, Appendix 1 Page 4

;+ 3 RELATI ON LEGAL- FEATURE- VALUE
(def-relation |egal -feature-value (?f ?v)
"True if ?vis a legal value for a feature ?2f")

;3 FUNCTI ON ALL- FEATURES- | N- OBSERVABLES
(def-function all-features-in-observabl es (?o0bs)
"This function extracts the features froma set of observabl es”
:body (setofall ?f (and (nenber ?ob ?0bs)
(has- observabl e-feature ?0b ?f))))

;5 FUNCTI ON OBSERVABLES- FEATURE- VALUE
(def-function observabl es-feature-val ue (?obs ?f)

"This function retrieves the value of a feature in a set of observables.

The assunption is that a feature can at nobst have one value in a set of
observabl es.

If ?f does not appear in ?obs, then :nothing is returned"

:body (if (and (nmenber ?ob ?obs)

(has- observabl e-feature ?0b ?f))
(the ?v (has-observabl e-val ue ?0b ?v))))

;+ 3 CLASS FEATURE
(def-class feature ())

;5 CLASS CONTEXTUAL- FEATURE
(def-class contextual -feature (feature)
"Welinga et al (I1JHCS, 49, 1998) point out that feature classification is
cont ext - dependent .
For instance, a red apple in a supermarket in sunmmer may be a GOLDEN _APPLE
while a red apple on a tree in summer may not feasibly be a GOLDEN _APPLE, given
that these are only found on trees in winter (we know nothing about apples, the

exanple is conpletely made up.....).
In this ontol ogy we nodel context know edge has sinply another class of
features. Certain features are contextual, other are not. It will be up to the

classification problem solving process, which is not part of this task ontol ogy,
to deci de how to handl e contextual features")

i CLASS SOLUTI ON- SPACE

(def-class sol ution-space (Set) ?x
"This is sinply a set of solutions"
ciff-def (every ?x solution))

;53 CLASS SOLUTI ON

(def-class solution () ?x
"A solution is a set of feature definitions"
;iff-def (every ?x feature-definition))

;+; CLASS FEATURE- DEFI NI TI ON
(def-class feature-definition () ?x
"A feature definition is a pair <?f ?spec> where ?f is a feature and ?spec is a
unary relation.
The idea here is that ?spec defines a sub-domain of ?f, restricting the range
of val ues which satisfy the solution”
((has-feature-nane :type feature)
(has-feature-val ue-spec :type unary-relation))
:constraint (=> (and (has-feature-nane ?x ?f)
(has-feature-val ue-spec ?x ?spec))
(=> (hol ds ?spec ?v)
(l egal -feature-value ?f ?v))))

IBROW Deliverable D1, Appendix 1 Page 5

;3 FUNCTI ON ALL- FEATURES- | N- SCLUTI ON
(def-function all-features-in-solution (?sol)
"This returns all the features in a solution"
:body (setofall ?f (and (element-of ?fd ?sol)
(has-feature-nane ?fd ?f))))

;5 FUNCTI ON SOLUTI ON- FEATURE- SPEC
(def-function solution-feature-spec (?sol ?f)
"This returns the spec associated with a particular feature in a solution"
:body (the ?spec (and (nenber ?fd ?sol)
(has-feature-nane ?fd ?f)
(has-feature-val ue-spec ?fd ?spec))))

;;; BEST- MATCH
(def-rel ation best-match (?obs ?sol ?candi dates ?criterion)
"?class is the best classification for ?o0bs wt a set of
classes if its score - with respect to sone netrics - is better than
that of any other candidate"
:constraint (nmenber ?sol ?candi dates)
;iff-def (and (menber ?sol ?candi dates)
(sol -has-mat ch-score ?sol ?obs ?score ?criterion)
(not (exists ?sol2
(and (nmenber ?sol 2 ?candi dat es)
(not (= ?sol 2 ?sol))
(sol -has-mat ch-score ?sol 2 ?0bs ?score2
?criterion)
(better-match-score ?score2 ?score
?criterion))))))

i+ BETTER- MATCH THAN
(def-relation better-match-than (?sol 1l ?sol 2 ?0bs ?criterion)
"?soll is a better solution than ?sol 2, according to ?obs and ?criterion”
:constraint (and (observabl es ?0bs)
(solution ?sol 1)
(sol ution ?sol 2)
(match-criterion ?criterion))
:iff-def (and (sol-has-match-score ?sol 1 ?obs ?scorel ?criterion)
(sol -has-mat ch-score ?sol 2 ?0bs ?score2 ?criterion)
(better-match-score ?scorel ?score2 ?criterion)))

;1 SOL- HAS- MATCH- SCORE
(def-rel ation sol -has-match-score (?sol ?obs ?score ?criterion)
"?score expresses a neasure - with respect to sone netrics -
of the extent to which ?class covers ?obs with respect to"
:constraint (and (observabl es ?0bs)
(solution ?sol)
(mat ch-score ?score)
(match-criterion ?criterion))
:iff-def (= ?score (apply-match-criterion ?criterion ?obs ?sol)))

;3 MATCH SCORE --- All neasures for assessing the match between a cl ass
;;;and an instance should be defined as subclasses of this class
(def-class match-score ())

IBROW Deliverable D1, Appendix 1 Page 6

;3 MATCH SCORE- TYPE
(def-class match-score-type () ?x
;i ff-def (subclass-of ?X match-score))

;; ; DEFAULT- MATCH SCORE
(def-class default-match-score (match-score) ?s
"This class quantifies the match between a class C and an instance |
in terns of a 4-place vector
<i nconsi stent-features, explained-features, unexpl ai ned-features, m ssing-
features>
Feature is INCONSISTENT - f1 is in | and in C but their values are inconsistent
Feature is EXPLAINED - f1 is in |l and in C and their values are consistent
Feature is UNEXPLAINED - f1 is in | but not inC
Feature is MSSING - fl1l is in Cbut not in I"

ciff-def (and (list ?s)
(= (length ?s)
4)))

;3 BETTER- MATCH SCORE
(def-relation better-match-score (?dl1 ?d2 ?criterion)
"true if ?dl is a better score than ?d2 according to ?criterion”
:constraint (and (match-score ?dl)
(mat ch-score ?d2)
(match-criterion ?criterion))
:axi omdef (defines-partial-order better-nmatch-score)
:iff-def (holds (the ?rel (has-match-score-conparison-relation ?criterion ?rel))
?2d1
?2d2))

;5 CLASS MATCH- CRI TERI ON
(def-class match-criterion ()

"A match criterion has a scoring nmechani smand a match-score-conparison rel ation.
The former is needed to assess the degree of match between a solution and a set
of observables. The latter to conpare two scores”

((has-scoring-nmechani sm:type mat ch-score-nmechani sm
(has-mat ch-score-conpari son-relation :type match-score-conparison-relation)))

i, ; CLASS MATCH SCORE- MECHANI SM
(def-class match-score-nechani sm ()
"A match-score nmechanismhas two levels. A level at which each <feature val ue>
pair is scored, and a |l evel at which scores are conbi ned"
((has- nacro-scoring-nechani sm :type macro-score-nechani sm
(has-feature-scoring-nechanism :type feature-score-nechanisnj))

;3 CLASS MATCH SCORE- COVPARI SON- RELATI ON
(def-class match-score-conparison-relation (binary-relation) ?r
"A match-score-conparison-relation is a binary relation which checks whet her
a score is better than another one"
:axi omdef (defines-partial-order ?r)
:constraint (and (domain ?r match-score)
(range ?r match-score)))

;+ 3 RELATI ON DEFAULT- MATCH SCORE- COVPARI SON- RELATI ON
(def-rel ation defaul t-nmatch-score-conparison-relation (?2dl ?d2)
ciff-def (= (default-the-better-match-score ?2dl ?2d2) ?d1))

IBROW Deliverable D1, Appendix 1 Page 7

i+ FUNCTI ON THE- BETTER- MATCH SCORE
(def-function the-better-match-score (?dl1 ?d2 ?criterion)
:body (in-environnent
((?rel . (the ?rel (has-match-score-conparison-relation ?criterion
?rel))))
(cond ((holds ?rel ?dl ?d2)
?2d1)
((holds ?rel ?d2 2dl)
?2d2)
((true)
tequal))))

;53 FUNCTI ON APPLY- MATCH- CRI TERI ON
(def-function apply-match-criterion (?criterion ?observabl es ?sol ution)
:body (in-environnment
((?scoring-nmechanism. (the-slot-value ?criterion has-scoring-nmechanism)
(?macro-nmech . (the-slot-val ue ?scoring-nmechani sm
has- macr o- scori ng- mechani sm)
(?mcro-nmech . (the-slot-value ?scoring-nmechani sm
has-f eat ure-scori ng- nechani snj))
(call ?macro-nech ?observabl es ?sol ution ?m cro-nech)))

;3 | NSTANCE DEFAULT- MATCH- CRI TERI ON
(def-instance default-match-criterion natch-criterion
((has-scoring-nmechani sm defaul t-scoring-nmechani sm
(has-mat ch-score-conpari son-rel ati on defaul t-match-score-conparison-relation)))

;33 | NSTANCE DEFAULT- SCORI NG MECHANI SM
(def-instance defaul t-scoring-nechani sm mat ch-scor e- nechani sm
((has- macro-scori ng- nechani sm def aul t - macr o- scor e- mechani sm
(has-feature-scoring-nechani sm default-feature-score-nechanism))

i ; CLASS MACRO- SCORE- MECHANI SM
(def-class macro-score-nmechani sm (function) ?f
"This is a function which takes as input a set of observables, a solution and
a feature-level scoring nechanismand returns a match score")

i+ FUNCTI ON DEFAULT- MACRO- SCORE- MECHANI SM
(def-function default-nmacro-score-nechani sm (?observabl es ?sol ution
?f eat ure-score-nech)
:lisp-fun # (1l anbda (observabl es sol ution feature-score-nech)
(defaul t - macr o- scor e- mechani sm observabl es sol ution
feature-score-nech)))

IBROW Deliverable D1, Appendix 1 Page 8

(defun defaul t-nmacro-score-nechani sm (observabl es sol uti on feature-score-nech)
(let ((obs-features (ocnl-eval-gen “(all-features-in-observables ', observables)))
(sol -features (ocnl -eval -gen “(all-features-in-solution ',solution)))
(score-vector (list nil nil nil nil)))
;;initialize unexplained features (in i but not in c)
(setf (third score-vector)
(set-difference obs-features
sol -features))
(loop for feature in obs-features
for result = (ocnl-eval -gen
“(call ',feature-score-nech ', observables ', feature
',solution ',sol-features))
do
(case result
(:inconsistent (if (not (menber feature (first score-vector)))
(setf (first score-vector)
(cons feature (first score-vector)))))
(:explained (setf (second score-vector)
(cons feature (second score-vector))))
(:unexplained (if (not (menber feature (third score-vector)))
(setf (third score-vector)
(cons feature (third score-vector))))))
finally
(progn
(setf (fourth score-vector)
(set-difference sol-features obs-features))
(return score-vector)))))

;3 CLASS FEATURE- SCORE- MECHANI SM

(def-class feature-score-nmechani sm (function) ?f
"This is a function which takes as input a set of observables, a feature,
a solution and the list of features associated with the solution and returns
a feature-level score")

;+ 3 FUNCTI ON DEFAULT- FEATURE- SCORE- MECHANI SM
(def-function defaul t-feature-score-nechani sm (?observabl es ?feature ?solution
?sol uti on-features)
:body (in-environnment ((?fv . (observabl es-feature-val ue ?observabl es ?feature)))
(if (menber ?feature ?solution-features)
(in-environnment ((?f-spec . (solution-feature-spec
?sol ution ?feature)))
(if (= ?f-spec :nothing)
:unexpl ai ned
(if (holds ?f-spec ?fv)
: expl ai ned
;inconsistent)))
:unexpl ai ned)))

i+ DEFAULT- THE- BETTER- MATCH SCORE
(def-function default-the-better-match-score (?sl ?s2)
"returns the better match score between ?sl and ?s2 or :equa
if they are the sane score
The better score is the one which mninises inconsistency,
maxi m ses expl anati on power and mninises m ssing features.
These criteria are applied in order"
:constraint (and (default-match-score ?sl)
(defaul t-match-score ?s2))
clisp-fun # (lanbda (x y) (default-the-better-match-score x y)))

IBROW Deliverable D1, Appendix 1

i+ DEFAULT- THE- BETTER- MATCH SCORE
(defun default-the-better-match-score (sl s2)
"Returns the better match score between ?sl and ?s2 or :equa
if they are the sane score
The better score is the one which mninses inconsistency,
maxi m ses expl anati on power and m ninises m ssing features.
These criteria are applied in order”
(let*
((inconsistentl (first sl))
(expl ai nedl (second sl1))
(unexpl ainedl (third s1))
(mssingl (fourth s1))
(inconsistent2 (first s2))
(expl ai ned2 (second s2))
(unexpl ained2 (third s2))
(mssing2 (fourth s2)))

(cond ((< (length inconsistentl)

(l'ength inconsistent2))

sl)

((< (length inconsistent?2)
(l'ength inconsistentl))

s2)

((< (length explainedl)
(I ength expl ai ned2))

s2)

((< (length expl ai ned2)
(I ength expl ai nedl))

sl)

((< (length unexpl ai nedl)
(1 engt h unexpl ai ned2))

sl)

((< (length unexpl ai ned2)
(1 engt h unexpl ai nedl))

s2)

((< (length m ssingl)
(length m ssing2))

sl)

((< (length m ssing2)
(length m ssingl))

s2)

(t

equal))))

Page 9

IBROW Deliverable D1, Appendix 1 Page 10

CLASS SCLUTI ON- ADM SSI BI LI TY- CRI TERI ON
(def-class solution-adm ssibility-criterion () ?c
"This provides us with a way to specify when a solution is adm ssible.
that is, we can express a threshold under which solutions are not
feasible. an admissibility criterion applies to a particular class of match
scores and is realised through a admissibility relation. this takes a score as
input and returns true or false, depending on whether the solution is
admi ssi bl e"
((applies-to-match-score-type :type match-score-type)
(has-solution-admi ssibility-relation :type unary-rel ation)
)
:constraint (=> (and (solution-adm ssibility-criterion ?c)
(has-solution-adm ssibility-relation ?c ?r)
(domain ?r 2d))
(subcl ass-of ?d match-score)))

;3 | NSTANCE DEFAULT- SOLUTI ON- ADM SSI BI LI TY- CRI TERI ON
(def-instance defaul t-solution-adm ssibility-criterion solution-adm ssibility-
criterion
((applies-to-match-score-type default-nmatch-score)
(has-solution-admi ssibility-relation default-solution-adnissibility-relation)))

;» 3 RELATI ON DEFAULT- SOLUTI ON- ADM SSI BI LI TY- RELATI ON
(def-relation default-solution-adm ssibility-relation (?score)
"A solution should not have any inconsistent features and should explain at |east
one feature"
:constraint (default-match-score ?score)
iff-def (and (= (length (first ?score)) 0)
(> (length (second ?score)) 0)))

;33 | NSTANCE COWPLETE- COVERAGE- ADM SSI BI LI TY- CRI TERI ON
(def-instance conpl ete-coverage-adm ssibility-criterion solution-adnissibility-
criterion
((applies-to-match-score-type default-nmatch-score)
(has-solution-adm ssibility-relation conpl ete-coverage-adm ssibility-relation)))

i+ RELATI ON COVPLETE- COVERAGE- ADM SSI BI LI TY- RELATI ON
(def-rel ation conpl ete-coverage-admi ssibility-relation (?score)
"a solution should be consistent and explain all features"
:constraint (default-match-score ?score)
iff-def (and (= (length (first ?score)) 0) (= (length (third ?score)) 0)))

;» 3 RELATI ON ADM SSI BLE- SOLUTI ON
(def-rel ati on adm ssi bl e-solution (?sol ?score ?criterion)
:iff-def (holds (the ?rel (has-solution-admissibility-relation ?criterion ?rel))
?score))

IBROW Deliverable D1, Appendix 1 Page 11

;5 AXI OM ADM SSI BI LI TY-1 S- MONOTONI C
(def-axi om adm ssibility-is-nonotonic
"This axiomstates that the admissibility criterion is nonotonic. That is,
if a solution, ?sol, is adm ssible, then any solution which is better than
?sol will also be adm ssible"
(forall (?soll ?sol2 ?o0bs ?criterion)
(=> (and (admi ssi bl e-sol ution
?sol 1 (apply-match-criterion ?criterion ?obs ?sol 1) ?criterion)
(better-match-than ?sol 2 ?sol 1 ?0bs ?criterion))
(adni ssi bl e-sol ution
?sol 2 (apply-match-criterion ?criterion ?obs ?sol 2)
?criterion))))

i+ RELATI ON COVPCSABLE- SOLUTI ONS
(def-rel ati on conposabl e-sol utions (?sol1 ?sol 2)
"Two solutions are conposable if they are not nmutually inconsistent with respect
to sonme feature.
This definition is not operational™
:no-op (:iff-def (not (exists (?2f ?v)
(and (nenber ?f (all-features-in-solution ?soll))
(menber ?f (all-features-in-solution ?sol2))
(hol ds (solution-feature-spec ?soll ?f) ?v)
(not (holds (solution-feature-spec ?sol2 ?f) ?v)))))))

