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Abstract

In this document we present a library of generic, reusable components
whose purpose is to support the specification and operationalization of
classification problem solvers. In addition, it is envisaged that this
library will provide a test case for future version of the IBROW
component brokering and configuration system. The library has been
specified in the OCML modelling language, according to the IBROW
framework for reuse. It comprises ontologies, task specifications and
problem solving methods. It has been tested on a sample apple
classification domain, independently developed by the University of
Amsterdam. In the document we discuss our approach to modelling
classification problem solving, we describe the various parts of the
library, we illustrate examples from our application domain and we
discuss related work and open issues.
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1. INTRODUCTION

A knowledge-based system is typicaly described as a computer system which relies on a
body of domain knowledge to make decisions under uncertain conditions and carry out
complex tasks (Newell, 1982; Stefik, 1995). Research on problem solving methods
(Benjamins and Fensel, 1998) and ontologies (Gruber, 1995) aims (among other things) to
identify and formalise classes of generic components and reasoning patterns, which can be
reused across different domains to support the robust development of knowledge-based
systems. Loosely speaking, an ontology defines a conceptual vocabulary that can be used to
describe a certain class of domains. For instance, the parametric design ontology devel oped
by one of us (Motta, 1999) specifies the various concepts and relations required to model
parametric design problems - e.g., parameters, constraints, requirements, design model, etc.
A problem solving method describes a generic reasoning behaviour which can be reused in
different applications. For instance, figure 1 shows the flow of inferences in the heuristic
classification model defined by Clancey (1985), which can be used to solve classification and
diagnostic tasks. According to this model, these tasks can be solved by a sequence of
abstraction, matching and refinement operations, by which the available data are abstracted
(for instance from areading of the temperature of a patient we can infer that such temperature
is high or low), matched to possible explanations (say, the patient has fever) and these can
then be refined (e.g., the final diagnosis could be ‘glandular fever’).

Data > > Solution
Abstractions Abstractions
Abstraction

Data Solutions

Figure 1. Clancey’s heuristic classification model.

The essential role of ontologies and problem solving methods is to support reuse. Hence, not
surprisingly, a number of libraries have been developed over the last few years. Some of the
libraries focus on problem solving methods - e.g., the Common KADS library (Breuker and
Van de Vede, 1994) and Benjamins library of diagnostic problem solving methods
(Benjamins, 1993); some focus on ontologies - e.g., the Stanford Ontolingua repository
(Farguhar et al., 1996); some include both ontologies and problem solving methods - e.g.,
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Motta's library of parametric design components (Motta, 1999) and the WebOnto repository
of knowledge models (Domingue, 1998). The rapid growth in the quantity, quality and size
of these repositories attests to the growing importance and maturity of the field. Ontologies
are being developed in a variety of domains to support all sorts of computer-based activities,
including intelligent internet searches (Guarino et al., 1999; McGuinness, 1998), knowledge
acquisition (Motta et a., 2000) and system development (van Heijst, 1995; Motta, 1999), and
several success stories have been reported in the literature - see for instance (McGuinness,
1999; Mulholland et al., 2000). Analogously success stories have also been reported about
the application of problem solving methods to industrial problems (Spedl and Aben, 1997;
Hori and Yoshida, 1998). Equally importantly, advances in knowledge modelling research
(i.e, in research on ontologies and problem solving methods) make it possible to put
knowledge system development on a more solid theoretical and engineering basis, thus
aligning knowledge engineering with other engineering disciplines - see Schreiber et a.
(2000) for an in-depth presentation of a comprehensive framework detailing a methodology
and a set of techniques for carrying out structured knowledge analysis and knowledge
engineering projects in organizations.

The main goa of the IBROW project is to develop an intelligent brokering service able to
retrieve software components from libraries distributed over the Internet and configure them
for particular applications in accordance with the stated user requirements. In order to
achieve this goal a number of sub-goals need to be achieved. These include: (i) to define an
epistemological framework and a formalism that make it possible for users to characterize
these components in such a way as to perform semi-automated identification and
configuration; (ii) to develop libraries of components according to the aforementioned
framework; (iii) to define a brokering agent, both able to reason about the functionalities and
costs of available library components and also able to carry out a dialogue with a customer
who requires such components; (iv) to define an appropriate interoperability infrastructure
which can make it possible to interface, configure and execute the selected components. The
first phase of the project has addressed primarily the first goal and has developed a
framework, called UPML, which characterizes the types of components which can be found
inan IBROW library and their relationships (Fensel et al., 1999a; 1999b). A brief description
of UPML is provided in the next section. In this document we focus mainly on the second
goal and we present alibrary of generic, reusable components whose purpose is to support the
specification and operationalization of classification problem solvers. In what follows we
will discuss our approach to modelling classification problem solving, we will describe the
various parts of the library, we will illustrate examples from our application domain and we
will discuss related work and open issues. We will start the discussion by illustrating the
epistemological framework underlying the library.
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2. THEUPML FRAMEWORK FOR REUSE

The basic structure of UPML is illustrated in figure 2. UPML defines four main knowledge
components: Tasks, Problem Solving Methods, Domain Models, and Ontologies. A (generic)
task specifies a generic class of problems, e.g., parametric design problems (Motta, 1999;
Motta et al., 1999; Motta and Zdrahal, 1998). A task specification does not make any
assumption about how the problem can be solved, that is, task specifications only define a
generic goal, not how this can be achieved. A problem solving method provides a (possibly
partial) definition of how a generic task can be solved. A domain model specifies a body of
knowledge about a particular application domain, with little or no focus on problem solving
behaviour. For instance, a domain model could be a database of employees in a company,
which describes their role in the organization, their salary, their competences, their
performance, etc. Tasks, methods and domain models can be linked to each other by means
of bridges and specialised by means of refiners - see (Fensel et al., 1999b) for more details.

An application can then be developed in a reuse-oriented fashion by selecting an appropriate
task model, mapping it to a domain by means of task-domain bridges, selecting the
appropriate problem solving method and then mapping this to both domain and task. When
appropriate, refinements can be used to specialise components according to a particular
purpose - e.g., to modify a PSM for a particular domain.

The role of UPML is to provide an architectural framework and a precise characterization of
the main types of components, in particular tasks and PSMs, which can be found in libraries
of reusable knowledge components. UPML does not impose any commitment with respect to
a particular specification language. The idea here is that as long as libraries subscribe to the
IBROW architectural framework and components are specified in terms of their functional
capabilities, according to the UPML meta-ontology - e.g., PSMs must be characterized in
terms of preconditions, domain assumptions and postconditions, then the resulting library will
exhibit the correct degree of knowledge-level interoperability, which is required by the
IBROW broker.

To carry out the detailed modelling of the classification components we have used the OCML
language (Motta, 1999). The advantages of this choice are several: i) our group has extensive
experience with this language, having used it for the past 5 years; ii) the language supports
both specification and operationalization of knowledge components, thus alowing rapid
prototyping and evaluation; iii) we can rely on an extensive library of models, developed in
the context of dozens of research projects, which provides an excellent platform for any new
modelling initiative; and iv) we have a sophisticated web-based environment, WebOnto
(Domingue, 1998), which makes it possible to browse the library from anywhere on the web
through a standard web browser, and also supports collaborative model development from
teams of developers located at distributed sites. WebOnto is publicly available at
http://webonto.open.ac.uk and has now been used in over twenty projects, by research groups
from both European and non-European countries. A detailed description of the OCML
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language is given in (Motta, 1999); in what follows we will provide some details of OCML
constructs, when these are needed to clarify the description of library components.

Refiner Refiner

PSM-Task
Bridge

Task PSM
A
ﬂm
Task-Domain Refiner
Bridge
Ontologies

PSM-Domain
Bridge

|

Refiner
Domain
Model

Figure2. The UPML framework for reuse.

3. MODELLING CLASSIFICATION PROBLEMS

As Stefik (1995) explains, “to classify something... is to identify it as a member of a known
class’. Hence, classification can be seen as the problem of finding the solution (class) which
best explains a certain set of known facts (observables) about an unknown object, according
to some criterion. In the following we will discuss each of these conceptsin turn.

3.1. Observables

As said above, we use the term ‘observables to refer to the known facts we have about the
object (or event, or phenomenon) that we want to classify. Each observable can be
characterized as a pair of the form <f, v>, where f is a feature of the unknown object and vis
its value. Here, we take a very generic viewpoint on the notion of feature. By feature we
mean anything which can be used to characterize an object, such that its value can be directly
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observed, or derived by inference. Asis common when characterizing classification problems
- seg, eg., (Widlingaet al., 1998), we assume that each feature of an observable can only have
one value. This assumption is only for convenience and does not restrict the scope of the
model.

3.2. Solution space

The solution space specifies a set of predefined classes (solutions) under which an unknown
object may fall. A solution itself can be described as a finite set of feature specifications,
which isapair of the form <f, c>, where f is afeature and ¢ specifies a condition on the values
that the feature can take. Then, we can say that an observable (f, v) matches a feature
specification (f, ¢) if v satisfies the condition c.

3.3. Criteriafor classification tasks

As we have seen, generally speaking, classification can be characterized as the problem of
explaining observablesin terms of pre-defined solutions. To assess the explanation power of a
solution with respect to a set of observables we need to match the specification of the
observables with that of a solution. Given a solution, sol: ((fg1, C,)-.---(fm C))» @nd a set of
observables, obs: ((f,;, V4)-----(fons V1)), fOUr cases are possible when trying to match them:

A feature, say f, isinconsistent if (f, v) T obs, (f, ¢) T sol and v, does not satisfy c;
A feature, say f, isexplained if (f, v) T obs, (f, ¢) T sol and v satisfiesc;

A feature, say f, is unexplained if (f, v) T obsbut f, is not afeature of sol.

A feature, say f, ismissing if (f, ¢) T sol but f; is not a feature of obs.

Given these four cases, it is possible to envisage different solution criteria. For instance, we
may accept any solution which explains some data and is not inconsistent with any data. This
criterion is called positive coverage (Stefik, 1995). Alternatively we may require a complete
coverage- i.e., asolution is acceptableif and only if it explains all data and is not inconsi stent
with any data. Thus, the specification of a particular classification task needs to include a
solution (admissibility) criterion. This in turn relies on a match criterion, i.e.,, a way of
measuring the degree of matching between candidate solution and a set of observables. By
default, our library provides a match criterion based on the aforementioned model. That is, a
match score between a solution candidate and a set of observables has the form (1, E, U, M),
where | denotes the set of inconsistent features, E the set of explained features, U the set of
unexplained features and M the set of missing features. Of course users of the library are free
to specify and make use of alternative criteria.

In many situations, specifying the conditions under which a candidate solution is indeed a
satisfactory solution is not enough. In some cases we may be looking for the best solution,
rather than for any admissible one. In this cases we need to have a mechanism for comparing
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match scores and this comparison mechanism becomes then part of the specification of the
match criterion. By default, our library includes the following score comparison criterion.

Given two scores, S, = (i, €, U, m) and S, = (i, €,, U,, M,), we say that S, is a better score
than S, if and only if:

(i,<i) U

(i,=i,Ue<e)U

(i,=i,Ue,=g, Uu,<u) U

(i,=i,Ue,=e, Uu,=u,Um,<m,)

The notation x; < x; indicates that the set x, contains less elements than the set x.

The above criterion is of course completely generic. It is possible to envisage domain and/or
application-specific comparison criteria that, for instance, give higher importance to some
features, rather than others.

In conclusion, our analysis characterizes classification tasks in terms of the following
concepts: observables, solutions, match criteria, solution criteria and score comparison
criteria. 1n the next section we illustrate how we have modelled these conceptsin OCML.

4. FORMALIZING THE CLASSIFICATION TASK

The ontology for the classification task consists of a group of formal specifications of
concepts needed for defining classification tasks. Here we will focus the discussion on the
main concepts discussed in the previous section. The complete specification of the ontology
can be found in Appendix 1.

4.1. Modeling observables

The definition below defines the notion of observables as an OCML class.

(def-cl ass observabl es (set) ?obs
"This is sinply a set of observabl es.
An inmportant constraint is that there cannot be two values for the sane
feature
in a set of observables"
ciff-def (every ?obs observabl e)
:constraint (not (exists (?0bl ?0b2)
(and (nenber ?o0bl ?0bs)
(menber ?0b2 ?0bs)
(has- observabl e-feature ?obl ?f)
(has- observabl e-feature ?0b2 ?f)
(has- observabl e-val ue ?0bl1 ?v1)
(has- observabl e-val ue ?0b2 ?v2)
(not (= ?vl ?v2))))))
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The definition states that each element of the class must be a set and that every element of the
set must be an observable. In addition it also states that no two members of a set of
observables can have the same feature - i.e. the set ((f, v))(f; V,)) is not a legal set of
observables.

The class observable is defined as follows.

(def-cl ass observable () ?ob

"An observable is defined as a pair <feature, value> (logically, not
necessarily physically).

This definition assunes that a relation exists, |egal-feature-value, which
speci fies whether a value is appropriate for a feature

In addition we al so assune that only one val ue can be provided for each
feature”
((has-observabl e-feature :type feature)

(has- observabl e-val ue : max-cardinality 1))

:constraint (=> (and (has-observabl e-feature ?ob ?f)

(has- observabl e-val ue ?0b ?v))
(I egal -feature-value ?f ?v)))

The definition models an observable in terms of a feature and a value and states that only one
value can be specified for each observable (by means of the option : max-cardinality in slot
has- obser vabl e-val ue). The constraint associated with the class states that in an observable
the observable value must be legal with respect to the feature. Thus, specific applications and
domains can then impose their own legality constraints by providing specific definitions of
relation | egal - f eat ur e- val ue.

Features are simply modelled as classes. Our ontology also includes a subclass of class
feature, caled contextual - feature, which can be used to model analyses of classification
problems such as the one carried out by Wielinga et al., (1998), which distinguish between
contextual and non-contextual features.

4.2. Moddling solution spaces

A solution space is defined simply as a set of solutions.

(def-class sol ution-space (Set) ?x
"This is sinply a set of solutions"
ciff-def (every ?x solution))

A solution isin turn defined as a set of feature definitions.

(def-class solution () ?x
"A solution is a set of feature definitions"
ciff-def (every ?x feature-definition))
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A feature definition is specified in terms of two dots, a feature name and a feature value
specification. The latter is a unary relation whose domain is a subset of the domain of
alowed values for the feature in question. This requirement is specified by means of the
: const rai nt option given in the class definition.

(def-class feature-definition () ?x
"A feature definition is a pair <?f ?spec> where ?f is a feature and ?spec
is a unary relation.
The idea here is that ?spec defines a sub-domain of ?f, restricting the
range of values which satisfy the solution"
((has-feature-nane :type feature)
(has- feature-val ue-spec :type unary-relation))
:constraint (=> (and (has-feature-nane ?x ?f)
(has- f eat ure-val ue-spec ?x ?spec))
(=> (hol ds ?spec ?v)
(1 egal -feature-value ?f ?v))))

4.3. Modeling match criteria

A match criterion is defined in terms of a scoring mechanism and a match score comparison
relation. The former is used to measure the degree of matching between a solution and a set of
observables. The latter is used to compare two scores. While we provide a set of definitions
specifying these notions generically, the library also provides a specific match criterion, to be
used as adefault. We will start with the generic definitions.

A match criterion is modelled in terms of a match score mechanism and a score comparison
relation.

(def-class match-criterion ()
((has-scoring-mechani sm:type match-score-nmechani sm
(has- mat ch-score-conparison-relation :type match-score-conparison-relation)))

A match score mechanism is modelled as a class mat ch- scor e- mechani smwith two slots, one
takes instances of the class nacr o- scor e- nechani sm as value and the other takes instances of
the classf eat ur e- scor e- mechani smas value.

(def-class match-score-nmechani sm ()
((has- macro-scoring-mechani sm :type macro-score-mechani sn
(has-feature-scoring-mechani sm :type feature-score-nechanismn))

Both classes nacr o- scor e- mechani sm and f eat ur e- scor e- mechani sm are subclasses of a class
function, which is defined in the OCML base ontology. The former specifies the class of
functions which take as input a set of observables, a solution and an instance of classf eat ur e-
scor e- mechani smand return a match score. The latter define the class of functions which take
as input a set of observables, a feature, a solution and the list of features associated with the
solution and return a feature-level score. Therefore a match-score mechanism works at two
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levels: one at which each individual <feature value> pair is scored, and the other at which all
the scores computed at first level are combined.

( Match Criterion J

/\

( Match Score Mechanism) ( Match Score Comparison RelationJ

( Macro Score Mechanist ( Feature Score Mechanism J

Figure 3. The main classes involved in defining solution space

The score comparison relation is modelled as a binary relation predicated over instances of
class mat ch-score. We also require a score comparison relation to be a partial order.

(def-cl ass nmatch-score-conparison-relation (binary-relation) ?r
"A mat ch-score-conparison-relation is a binary relation which checks whet her
a score is better than another one"
:axi omdef (defines-partial-order ?r)
:constraint (and (domain ?r natch-score)
(range ?r match-score)))

The main classes involved in defining the notion of match criterion are diagrammatically
shownin figure 3.

A concrete match criterion can then be defined as an instance of class mat ch-criterion - See
Appendix 1 for the formal specification of the criterion discussed in section 3.3.

4.4. Solution admissibility criterion

Our class sol uti on-adni ssi bility-criterion comprises two slots: one specifies the class of
match scores for which this criterion is applicable and the other specifies the unary relation
defining the actual admissibility criterion. This relation must be defined over a particular
class of match scores. Associating a solution admissibility criterion with a match score
results in a cleaner model: whether or not something, say sol, qualifies as a solution is a
reflection of the results of the matching process between a set of observables and the
specification of sol.
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(def-class solution-admissibility-criterion () ?c
"This provides us with a way to specify when a solution is adm ssible
that is, we can express a threshold under which solutions are not
feasible. an admissibility criterion applies to a particular class of nmatch
scores and is realised through a admissibility relation. This takes a score
as input and returns true or false, depending on whether the solution is
admi ssi bl e”
((applies-to-match-score-type :type match-score-type)
(has-solution-adm ssibility-relation :type unary-relation))
rconstraint (=> (and (solution-admssibility-criterion ?c)
(has-solution-adm ssibility-relation ?c ?r)
(domain ?r 2d))
(subcl ass-of ?d match-score)))

A solution admissibility criterion should be monotonic, that is, if asolution, sol, isadmissible,
then any solution which is better than sol must also be admissible. Hence, our ontology
includes the following axiom.

(def -axi om adm ssibility-is-nonotonic
"This axiomstates that the admi ssibility criterion is nonotonic. That is,
if a solution, ?sol, is admi ssible, then any solution which is better than
?sol will also be adnissible"
(forall (?soll ?sol2 ?obs ?criterion)
(=> (and (adm ssi bl e-solution
?sol 1 (apply-match-criterion ?criterion ?0bs ?sol 1)
?criterion)
(better-match-than ?sol 2 ?sol 1 ?obs ?criterion))
(admi ssi bl e-sol ution
?sol 2 (apply-match-criterion ?criterion ?o0bs ?sol 2)
?criterion))))

A specific solution admissibility criterion is defined as an instance of the class sol uti on-
adni ssi bi l'i ty-criterion. Inour specification we provide two concrete solution admissibility
criterions, corresponding to the two criteria discussed in section 3.3. As an illustration we
give here the definition of the positive coverage criterion. As usual, more details can be
found in Appendix 1.

(def-instance conpl et e-coverage-adm ssibility-criterion
solution-adm ssibility-criterion
((applies-to-match-score-type default-match-score)
(has-solution-adm ssibility-relation
conpl et e-coverage-admi ssibility-relation)))

(def-rel ation conpl et e-coverage-adni ssibility-relation (?score)
"Score is alist (I, E, U M. According to this criterion a solution should
be consistent, i.e. | =nil, and explain all features, i.e. U=nil"
:constraint (default-match-score ?score)
ciff-def (and (= (length (first ?score)) 0) (= (length (third ?score)) 0)))
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45. Reations‘best-match’ and ‘admissible’

Solutions can be either optimal or ssimply admissible. Relation best - mat ch is useful to specify
which solution is best out of arange of candidates; relation adni ssi bl e- sol uti on defines what
is an admissible solution. The two definitions are given below.

(def-relation best-match (?obs ?sol ?candi dates ?criterion)
"?class is the best classification for ?o0bs wt a set of
classes if its score - with respect to sonme criterion - is better than
that of any other candidate"
:constraint (menmber ?sol ?candi dates)
ciff-def (and (menmber ?sol ?candi dates)
(sol -has-nmat ch-score ?sol ?obs ?score ?criterion)
(not (exists ?sol 2
(and (menmber ?sol 2 ?candi dat es)
(not (= ?sol2 7?sol))
(sol -has-nat ch-score ?sol 2 ?0bs ?score2
?criterion)
(better-match-score ?score2 ?score
?criterion))))))

(def-relation adm ssible-solution (?sol ?score ?criterion)
ciff-def (holds (the ?rel (has-solution-admissibility-relation ?criterion
?rel))
?score))

Relation best - mat ch states that a solution, sol, is the best with respect to a criterion and a set
of observablesif its score is better than that of anybody else in the given set of candidates. A
solution sol with a certain score is admissible with respect to a solution admissibility criterion
if the admissibility relation associated with the criterion holds for the given score.

4.6. Auxiliary relationsand functions

The definition of the classification ontology involves alot of auxiliary functions and relations,
many of which have been used in the examples given in this section. For convenience we list
some of the most significant here. The complete ontology contains 42 definitions.

Relations

better-match-than(?sol 1, ?sol2, ?0bs, ?mc) Trueif for the observables ?0obs and match criterion ?mc,
?s0l1 has better match score than sol 2.

sol-has-match-score(?sol,?0bs, ?score, ?mc) | True if for observables ?obs and match criterion ?mc,
?s0l has match score ?score.

better-match-score(?scorel, ?score2, ?mc) True if ?scorel is a better score than ?score2 according
to match criterion ?mc

composable-solutions (?sol1 ?sol2) Two solutions are composable if they are not mutually
inconsistent with respect to some feature.
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Functions

apply-match-criterion (?mc ?obs ?sol) | Return the score of ?sol for the observables ?obs and match
criterion 2mc

the-better-match-score (?d1 2d2 ?mc) | Return the better score according to match criterion 2mc

all-features-in-observables (?0bs) This function extracts the features from a set of observables

observabl es-feature-val ue (?obs ?f) This function retrieves the value of a feature in a set of
observables. The assumption is that a feature can at most have
onevaluein aset of observables. If ?f does not appear in ?obs,
then :nothing is returned

all-features-in-solution (?sol) "Thisreturns all the featuresin a solution
sol ution-feature-spec (?sol ?f) "This returns the spec associated with a particular feature in a
solution”

5. CLASSIFICATION TASK SPECIFICATION

Having defined the task ontology, we are now in a position to present a formal specification
of afamily of classification tasks. In UPML atask is specified in terms of its input and output
roles, preconditions, assumptions and goal. The same approach is taken in the OCML base
ontology, which formally defines the notion of task used in OCML. In particular, the OCML
base ontology defines a goal as a kappa expression (i.e., an anonymous relation) with two
arguments: the task itself and avalue. The latter is meant to be a possible result from carrying
out the task. The goa of atask, say task, is satisfied for a value v, if the associated kappa
expression holds for arguments task and v.

Several definitions of classification tasks can be provided. In some cases we may be asking
for optimal solutions, in other cases we just want to find an admissible one. Hence, here we
provide a family of task specifications. We start with a generic definition, which defines the
input and output roles of classification tasks, the relevant preconditions and a default goal
specification. Different variants on the classification task can then be easily defined as
refinements of this generic definition.
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(def-class classification-task (goal -specification-task) ?task
((has-input-role :val ue has-candi date-sol utions
:val ue has-observabl es
:val ue has-match-criterion
:val ue has-solution-adnmissibility-criterion)
(has-output-rol e :value has-sol utions)
(has- candi dat e-sol uti ons :type sol ution-space)
(has- observabl es :type observabl es)
(has-match-criterion :type match-criterion
:default-val ue default-match-criterion)
(has-solution-admi ssibility-criterion
:type solution-adm ssibility-criterion
:default-val ue default-solution-adnmissibility-criterion)
(has-sol utions :type sol ution-space)
(has-precondition
:val ue (kappa (?task)
$?x $?y (member ?x ?task.has-observables) U
(menber ?y ?task. has-candi dat e-sol utions))
(has- goal - expression
:docunentation "The goal is to find one or nore admissible solutions”
:defaul t-val ue (kappa (?task ?sols)
?sol (menmber ?sol ?sols) ®
(adm ssi bl e-sol ution
?sol (apply-match-criterion
?task. has-match-criterion
?t ask. has- observabl es
?sol)
?t ask. has-sol ution-admi ssibility-criterion))

The above definition specifies four input roles:
has- candi dat e- sol uti ons Whose filler must be an instance of classsol uti on- space.
has- obser vabl es Whose filler must be an instance of classobser vabl es.

has- mat ch-criterion whose filler must be an instance of class match-criterion. A
default value is also provided for thisrole, def aul t - mat ch-criterion.

has- sol uti on-adni ssibility-criterion whose filler must be an instance of class
sol ution-adnissibility-criterion. A default value is aso provided for this role,

defaul t-sol ution-adm ssibility-criterion.
The output roleis the following:
has- sol uti ons wWhose filler must be an instance of classsol uti on- space.

The task precondition states that a classification task is meaningful if and only if some
observables and some candidate solutions are provided. The (default) goal expression states
that each solution output must be admissible with respect to the given solution admissibility
criterion.

In many cases we know that only one solution to a classification task exists (or aternatively
we may not care about retrieving multiple solutions, one will do). We can model this situation
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by refining the above definition and introducing an assumption which states that the output of
the task will include at most one solution. This assumption can then be used by the IBROW
broker when choosing an appropriate problem solving method and when instantiating the task
for a particular domain. A single-solution classification task can then be formalised as
follows:

(def-class single-solution-classification-task (classification-task) ?task

"A classification task which assumes only one solution is found. The
assunption just states that the output of the task will contain at npst one
solution. It does not say anything about whether only one solution actually
exists."

((has-assunption

:val ue (kappa (?task)
(< (Length ?task. has-solutions) 2)))))

Finally we give the definition of a classification task which requires a solution to be optimal
with respect to the given match criterion.

(def-class optimal -classification-task (classification-task) ?task
((bhas-goal - expressi on
:defaul t-val ue (kappa (?task ?sols)
' ?sol (nenber ?sol ?sols) ®
((adm ssi bl e-sol ution

?sol

(appl y-match-criterion

?t ask. has-match-criterion

?t ask. has- observabl es

?sol)

?t ask. has-sol ution-admi ssibility-criterion)
U

(best-match ?task. has- observabl es

?sol
?t ask. has- candi dat e- sol uti ons)
?t ask. has-match-criterion))))))

6. PROBLEM SOLVING METHODSFOR CLASSIFICATION

6.1. Classification problem solving

Classification involves searching the space of possible solutions to find one which explains
the given observables in accordance with the given solution criterion. The choice of a method
depends on many factors, such as whether the goal is to find one, al or the best solution;
whether all observables are known at the beginning or are uncovered opportunistically
(maybe at some cost) during the problem solving process; whether or not the solution spaceis
structured according to a refinement hierarchy; whether solutions can be composed together,
or aternatively, whether each solution presents a different, self-contained alternative. The
current version of the library provides support to deal with most of these scenarios. However
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it currently does not offer any method to acquire observables incrementally, nor it supports
composite solutions. It is envisaged that support for these problem solving approaches will be
added to future versions of the library.

If we restrict ourselves to a scenario in which observables are not acquired incrementally
during the classification process, then only a data-directed approach can be taken. That is,
from the given set of observables we identify the most promising solutions and, in those cases
where arefinement hierarchy is provided, we can then search the latter to home in on the most
appropriate solutions. A data-directed approach does not however imply that the set of
observables remain the same during the problem solving process. In many cases we can have
abstraction mechanisms, which generate new observables from existing ones, in accordance
with Clancey’s model shown in figure 1. From this discussion it follows that we can use the
heuristic classification model as the basis of our library of problem solving methods for
classification. Simpler problem solving methods can simply be defined as ‘ degenerations’ of
the heuristic classification model — e.g., these may not include abstraction and/or refinement
mechanisms. More complex PSMs — e.g., PSMs which allow for composite solutions to be
generated, will instead extend this model with additional inference mechanisms.

Aswe did in the previous section we will present our PSM specification in two steps: first we
define a method ontology, which formalises the necessary concepts, relations and functions.
Then we will define the actual PSMs.

6.2. A method ontology for classification problem solving

The heuristic classification model includes two notions not aready covered by our
classification task ontology: abstractors and refiners. These are defined below.

6.2.1. Abstractors

Data abstraction consists of inferring new observables from existing ones by means of domain
knowledge. We model this kind of knowledge by means of abstractors. Formally, an
abstractor is a function which takes a set of observables as input and produces an observable
as output. Hence, we can model it as a subclass of class function with an additional slot,
called applicability-condition, whose filler must be an instance of class abstractor-
appl i cability-condition-class. This slot can be used to specify precisely additional
domain-specific conditions associated with a particular class of abstractors.

(def-cl ass abstractor (function)
((donmi n :val ue observabl es)
(range :val ue observabl e)
(applicability-condition :type abstractor-applicability-condition-class)))

The applicability condition for an abstractor is defined as a relation whose domain is a subset
of classobservabl es.
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(def-cl ass abstractor-applicability-condition-class (unary-relation) ?x
ciff-def (subset (the ?d (domain ?x ?d)) observables))

Abstractors implicitly introduce a hierarchy structure in the data space: directly observed data
are at the lowest level of the hierarchy, higher level data are obtained by applying abstractors
to lower level data

6.2.2. Refiners

Solution refinement consists of taking a solution as input and generating more specialised
ones — i.e., solutions which cover a subset of the phenomena explained but the ‘parent’
solution. In this process, domain knowledge about the solution is used. We model this kind of
knowledge by means of refiners. Refinement can be seen as the inverse process to
abstraction, rather than going from concrete data to abstract ones, here we go from abstract
solutions to more concrete ones. Hence, not surprisingly we model the class of refiners much
the same way as we modelled the class of abstractors, as a subclass of class function
augmented with a dot which can be used to specify additional, domain-dependent
applicability conditions.

(def-class refiner (function)
((domai n :val ue sol ution)
(range :val ue sol ution-space)
(applicability-condition :type refiner-applicability-condition-class)))

The applicability condition for arefiner must be arelation and its domain must be a subset of
class solution.

(def-class refiner-applicability-condition-class (unary-relation) ?r
ciff-def (subset (the ?x (domain ?r ?x)) solution))

Refiners aso introduce a hierarchy structure in the solution space: the level of the solution
appearing in the slot domain of a refiner can be viewed as one level higher than that of the
solutions appearing in the slot range of the refiner.

A typical case is that in which solutions are represented as classes and the class/subclass
hierarchy is used to represent the space of refinements. To cover this obvious scenario our
library provides the following refiner instance, which returns al direct subclasses of the input
class (i.e., solution).
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(def-instance refinenent-through-subcl ass-of-1inks refiner
"I'f the solution space is specified by neans of classes arranged in a
subcl ass-of hierarchy, then this is a good refiner to use"
((has-body ' (I anbda (?sol)
(setofall ?sub (direct-subclass-of ?sub ?sol))))
(applicability-condition ‘(kappa (?sol)
(and (class ?sol)
(exists ?sub
(direct-subcl ass- of
?sub ?sol)))))))

6.2.3. Candidate exclusion criterion

As pointed out earlier, classification problem solving can be seen as the process of searching a
solution space, in accordance with the given application criteria. Loosely speaking efficient
search requires the ability to identify promising paths and the ability to stay away from dead
ends. Our task ontology already provides generic components which make it possible for
developers to represent ‘positive notions' such as when a solution is admissible. Here, we
provide ontological support for specifying ‘ negative notions’, such as a criterion to be used to
decide when a candidate solution and its refinements can be removed from the solution search
gpace. We call this the candidate exclusion criterion. As in the case of the solution
admissibility criterion, we model it as a class with two dots, which specify the relevant match
score type and the actual relation used to test whether a solution should be ruled out.

(def-class candi dat e-exclusion-criterion ()
((applies-to-match-score-type :type match-score-type)
(has-candi dat e-excl usion-relation :type unary-relation) ))

A correct candidate exclusion criterion is monotonic in the sense that if a solution, sol, is
ruled out, then any solution which has a worse score than sol will also be ruled out. Hence,
our ontology includes the following axiom.

(def - axi om excl usi on-i s- nonot oni c
" ?soll "?sol2 "?0bs "?criterion
(rul ed-out-solution ?sol1l (apply-nmatch-criterion ?criterion ?obs ?sol 1)
?criterion) U
(D(better-match-than ?sol 2 ?sol 1 ?obs ?criterion))
®
(rul ed-out-solution ?sol 2 (apply-match-criterion ?criterion ?obs ?sol 2)
?criterion)

In addition we also require that the admissibility and exclusion criteria associated with the
same match criterion have to be congruent: no solution should ever satisfy both. Formally we
have:
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(def - axi om congruent - admi ssi bi lity-and-exclusion-criteria
" ?sol " ?task
(menber ?sol (the-virtual-sol uti on-space
?t ask. has- candi dat e- sol uti ons
?t ask. has-refiners))
®
@ ((adm ssibl e-solution ?sol (apply-match-criterion
?task. has-match-criterion
?t ask. has- observabl es
?sol)
?t ask. has-sol uti on-admissibility-criterion)
U
(rul ed-out-solution ?sol (apply-nmatch-criterion
?t ask. has-match-criterion
?t ask. has- observabl es
?sol)
?t ask. has-sol uti on-exclusion-criterion)))

Our library provides a default solution exclusion criterion which rules out inconsistent
solutions — see definitions below.

(def-instance default-solution-exclusion-criterion solution-exclusion-criterion
((applies-to-match-score-type defaul t-natch-score)
(has- candi dat e- excl usi on-rel ati on defaul t-candi dat e-excl usion-relation)))

(def-rel ation defaul t-candidate-exclusion-relation (?score)
:constraint (default-match-score ?score)
ciff-def (> (length (first ?score)) 0))

6.2.4. Auxiliary relations and functions

Our method ontology for classification problem solving includes many auxiliary relations and
functions. Below we list some of the most significant.

Functions
the-virtual -sol ution-space (?init-space ?refs) Return the solution space generated by refinement
application from an initial solution space
apply-abstract-operator (?ab ?0bs--in) Return a new observable obtained by applying
abstractor ?ab to observables 20bs-in.
apply-refiner-operator (?ref ?solution)s Return refined solutions obtained by applying
?ref to observables 20bs-in.
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Relations
ruled-out-solution (?sol ?score ?sec) Trueif the ?score of the solution ?sol satisfiesthe
relation defined in the solution exclusion criterion
?sec.
abstractor-is-applicable? (?ab ?obs) True if abstractor ?7ab can be applied to

observables ?0bs

generalized-abstract-from (?obs-out ?0bs-in ?abs) | True if ?obsout is obtained by applying
abstractors ?abs to observables ?0bs-in.

generalised-abstract-link (?0b1 ?0b2 ?abs) 20bl isin achain of abstraction which stems from
20b2

observabl e-abstracted-from (?ob ?0bs ?ab) True if observable ?ob is abstracted from
observables ?0bs using abstractorsin ?abs

refiner-is-applicable? (?ref ?sol) True if abstractor ?ref can be applied to solution
?s0l

some-refiner-is-applicable? (?refs ?sol) Trueif thereis arefiner in ?refs that is applicable
to ?sol

generalised-refinement-of (?sols-out ?sols-in ?refs) | True if ?sols-out is obtained by applying refiners
?refs to solutions ?sols-in.

6.3. Specification of heuristic classification problem solving methods

A problem solving method in OCML is defined as a subclass of a predefined class probl em
sol vi ng- net hod, whose main sots are as follows:

has-i nput - r ol e: al inputs to the method are listed here;

has- out put - r ol e: the output produced by the method,;

has- pr econdi t i on: the preconditions associated with the method;
has- post condi t i on: the postconditions associated with the method,;
has- assunpt i on: the domain assumptions imposed by the method;
has- body: the control structure of the method.

Basically, the pre- and post-conditions together describe the competence of the method. The
slot has- body Specifies its procedural behaviour. In general the same competence can be
achieved by different procedural behaviours. The dot has-assunption specifies the
conditions which have to be satisfied by the domain knowledge to ensure that the specified
behaviour can deliver the method' s competence for a particular domain.

Our library comprises two basic generic methods, one for dealing with classification tasks
where optimal solutions are not required, the other for dealing with classification tasks where
optimal solutions are sought. We will first describe the former.
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6.3.1. PSM heuristic-admissible-sol-classifier

This is a basic method for finding a single admissible solution to a classification problem.
More precisely it can tackle instances of class singl e-sol ution-cl assi fication-task. The
single solution assumption greatly reduces the complexity of the search. This method uses a
backtracking hill-climbing solution to home in on the most promising solutions. It is a
heuristic, hierarchical classifier, as it provides for both abstraction and refinement
mechanisms. These are however are optional. In particular, if no refinement mechanisms are
provided, then the psm just reducesto a'flat' classifier.

For the sake of explanation, we will discuss the various parts of the specification separately.

(def-class heuristic-adm ssible-sol-classifier (problemsolving-nmethod) ?psm
((has-input-role :value has-abstractors
:value has-refiners
:val ue has-observabl es
:val ue has-candi dat e-sol uti ons
:val ue has-sol ution-exclusion-criterion)
(has-output-rol e :val ue has-sol ution)
(has-abstractors :type abstractors)
(has-refiners :type refiners)
(has- observabl es :type observabl es)
(has-sol ution-exclusion-criterion
:type candi dat e-excl usion-criterion
:defaul t-val ue default-candi dat e-excl usion-criterion)
(has- candi dat e-sol uti ons :type sol ution-space)
(has-sol ution :type sol ution)
(has- out put - mappi ng
:value '(lanbda (?psm ?result) (list-of ?result)))

:own-slots ((tackles-task-type single-solution-classification-task)))

The above definition shows the role definition part of the method specification. In addition to
the input roles inherited from the definition of the classification task, this method also uses
knowledge about abstraction and refinement and a candidate exclusion criterion. None of
these types of knowledge actually need to be provided by the user. By default, the method
will assume that no refinement or abstraction mechanisms exist and it will use the default
candidate exclusion criterion described in the previous section.

The definition also points out that the PSM has been defined to tackle single-solution
classification tasks and that the output from the PSM needs to be modified, in order to
conform to the list format expected from classification tasks - this is specified by means of
glot has- out put - mappi ng. This facility provides a simple adaptation mechanism for adapting
PSMs to tasks - see section 9.4 for a discussion of the extent to which the OCML adaptation
facilities support the UPML framework.

The method also includes four assumptions. The first two state that the abstraction and
refinement hierarchies have to be free of cycles.
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(kappa (?psm
(not (exists (?obl ?0b2)
(and (or (nenber ?0bl ?psm has- observabl es)
(exists ?ob
(and (nmenber ?o0b ?psm has- observabl es)

(general i sed-abstract-Iink
?0bl1 ?0b ?psm has-abstractors))))

(generalised-abstract-Ilink

?0b2 ?0bl ?psm has-abstractors)

(general i sed-abstract-Ilink

?0bl ?0b2 ?psm has-abstractors)))))

(kappa (?psm
(not (exists (?soll ?sol 2)
(and (or (nenmber ?sol 1 ?psm has-candi dat e-sol uti ons)
(exists ?sol (and (nenber

?sol ?psm has- candi dat e- sol uti ons))
(general i sed-refinement - of
?sol 1 ?sol ?psm has-refiners))))

(general i sed-refinenent - of

?sol 2 ?sol 1 ?psm has-refiners)

(general i sed-refinement - of

?sol1 ?sol 2 ?psm has-refiners))))

The third assumption states that the PSM assumes the existence of a solution in the virtual

solution space - i.e., if such a solution exists, the PSM will find it.

(kappa (?psm
(exists ?so
(and (adm ssi bl e-sol ution
?sol
(appl y-match-criterion ?psm has-nmatch-criterion
?psm has- observabl es
?sol)
?psm has-sol ution-adm ssibility-criterion)
(merber ?sol
(the-virtual -sol ution-space
?psm has- candi dat e- sol uti ons
?psm has-refiners)))))

The final assumption states that the method assumes that the exclusion criterion is monotonic
with respect to the refinement hierarchy. That is, it assumes that if a solution is excluded, all

its refinements can be excluded too.
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(kappa (?psm)
(forall (7?sol ?score)
(=>
(and
(sol -has-mat ch-score ?sol
?psm has- observabl es
?score
?psm has-mat ch-criterion)
(rul ed-out-solution ?sol ?score
?psm has- sol uti on-exclusion-criterion))
(not (exists
?sol 2
(and (generalised-refinenent - of
?sol 2 ?sol ?psm has-refiners)
(admi ssi bl e-sol ution
?sol 2
(apply-match-criterion ?psm has-match-criterion
?psm has- observabl es
?sol 2)
?psm has-sol ution-adm ssibility-criterion)))))))

The postcondition of the method states that the output solution satisfies the admissibility
criterion - i.e.,, assuming the domain assumptions are satisfied, the method will return an
admissible solution.

(has- postcondi tion
:val ue (kappa (?psm ?sol)
(admi ssi bl e-sol ution
?sol
(appl y-match-criterion ?psm has-nmatch-criterion
?psm has- observabl es
?sol)
?psm has-sol ution-admi ssibility-criterion)))

The body of the PSM is very simple - see definition below. It cals the abstraction task, to
apply al available abstractors and then calls a search procedure which is able to search the
solution space for an admissible solution.

begi n
?0bs := (achi eve-generic-subtask ?psm abstraction
has- observabl es ?psm has- observabl es
has- abstractors ?psm has-abstractors)
(admi ssi bl e-sol ution-search ?psm ?obs ?psm has-refiners
?psm has- candi dat e- sol uti ons
?psm has-sol ution-natch-criterion
?psm has-sol ution-adnmissibility-criterion
?psm has-sol uti on-excl usion-criterion)
end

The admissible-solution-search procedure works as follows. If one of the candidate solution
given as input is an admissible solution (according to the given criterion), then the procedure
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stops and return the solution it has found. Otherwise it ranks the candidates according to the
given match criterion (recall that a match criterion also includes a score comparison relation)
and then explore the refinement space of each one in turn, until it finds a solution. This
behaviour is analogous to hill climbing with backtracking. At each stage of the search
process the most promising path is explored, but if it is found to be a dead end then the
procedure is able to backtrack to the next one in the most recent branching point.

(def - procedure adni ssi bl e-sol ution-search (?psm ?obs ?refs ?candi dates
?mcriterion ?a-criterion
?e-criterion)
- body
begi n
if $ ?sol ((menber ?sol ?candidates) U
(admi ssi bl e-sol ution ?sol (apply-match-criterion
?mcriterion ?obs ?sol)
?a-criterion))
then return ?so
el se
begi n
?ranked- candi dat es := (achi eve-generi c-subtask ?psm rank-sol uti ons
has- observabl es ?obs
has- candi dat e- sol uti ons ?current-sols
has-match-criterion ?mcriteria)
I oop for ?candidate in ?ranked-candi dates do
if @ (ruled-out-solution ?candidate
(apply-match-criterion ?mcriteria
?0bs
?candi dat e)
?e-criteria)
t hen
begi n ?refined-sols := (achi eve-generi c- subt ask
?psm ref i nenment
has- candi dat e- sol uti on ?candi dat e
has- observabl es ?obs
has-refiners ?refs)
if ?refined-sols t nil then

begi n
?result := (adm ssi bl e-sol ution-search
?psm ?obs ?refs ?refined-sols
?mcriterion ?a-criterion e-criterion)
if ?result * :nothing then return ?result
end if
end
end if
end
end if
end | oop
end
end if

end
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6.3.2. PSM heuristic-optimal-sol-classifier

This PSM can be used to tackle classification tasks which require a solution to be optimal
with respect to the given match criterion. The method carries out an exhaustive search looking
for an optimal solution and uses the exclusion criterion to prune the search space. It returns
one or more optimal solutions.

This method has the same input role specification and assumptions as the PSM described in
the previous section, therefore we only need to describe its postcondition and its control
regime. Its postcondition is defined as follows.

(kappa (?psm ?sol s)
(forall ?so
(=> (nenber ?sol ?sols)
(and

(adm ssi bl e-sol ution

?sol

(apply-match-criterion ?psm has-match-criterion
?psm has- observabl es)
?sol)

?psm has-sol ution-adm ssibility-criterion)

(best-match

?psm has- observabl es

?sol
(the-virtual -sol uti on-space
?psm has- observabl es
?psm has- candi dat e- sol ut i ons)
?psm has-match-criterion)))))

The definition given above states that any solution returned by the optimal classification
method will be both admissible and optimal with respect to the given admissibility and match
criteria.

The next definition gives the control regime of the optima classification method. The
method works as follows. It first performs data abstraction and ranks the input candidates in
terms of the given match criterion. Then it initializes the current solutions, by checking
whether the best ranked candidate, say sol, is aready an admissible solution. If thisis the
case, then the PSM makes use of the monotonicity property of solution admissibility criteria
to add to the list of current solutions all the given candidates whose score is not worse than
sol. Then the method checks whether any candidate can be ruled out. It does so by going
through the ranked candidates in reverse order (from the worst to the best) and stopping as
soon as it finds a candidate which cannot be ruled out. Here the PSM makes use of the
monotonicity property of solution exclusion criteria: if a candidate sol, cannot be ruled out,
then a candidate sol, which is better than sol, cannot be ruled out either. Once the set of
current solutions and ranked candidates have been initidized, then the PSM invokes
procedure conpl et e- opt i mal - sear ch to perform a complete search of the solution space.
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begi n
?0bs := (achi eve-generic-subtask
?psm abstracti on has-observabl es ?psm has- observabl es
has- abstractors ?psm has-abstractors)
?psm has-ranked- candi dat es := (achi eve-generi c-subt ask
?psm rank-sol uti ons
has- observabl es ?obs
has- candi dat e- sol uti ons
?psm has- candi dat e- sol uti ons
has- mat ch-criterion ?psm has-match-criterion)
;olnitialize current solutions
?psm has-current-sol utions := ni
if (admissible-solution (first ?psm has-ranked-candi dat es)
(appl y-match-criterion
?psm has-mat ch-criterion ?obs
(first ?psm has-ranked-candi dat es)
?psm has-sol uti on-admi ssibility-criterion)
t hen
begi n ?psm has-current-sol utions := (List-of
(first ?psm has-ranked- candi dat es))
loop for ?candidate in (rest ?psm has-ranked-candi dat es)
do
if (better-match-than (first ?psm has-ranked- candi dat es)
?candi date ?obs
?psm has-mat ch-criterion)
then return :nothing
el se
?psm has-current-solutions := (cons
?candi dat e
?psm has-current-sol utions)
end if
endl oop
end
end if

;W now renmove rul ed out candi dates
| oop for ?candidate in (reverse ?psm has-ranked- candi dat es)
do
if (ruled-out-solution ?candidate (apply-match-criterion
?psm has-nmatch-criterion
?o0bs ?candi dat e)
?psm has- excl usi on-criterion)
then ?psm has-ranked-candi dates := (renove ?candi date
?psm has- r anked- candi dat es)
el se return :nothing
end if
endl oop

i f ?psm has-ranked-candi dates = nil

t hen ?psm has-current-sol utions

el se (conpl ete-optinmal -search ?psm ?0bs ?psm has-refiners
(first ?psm has-ranked-candi dat es)
(rest ?psm has-ranked-candi dates) ?psm has-match-criterion
?psm has-sol ution-adnmissibility-criterion
?psm has-sol uti on-exclusion-criterion

end if

end
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(def - procedure conpl ete-opti mal -search (?psm ?obs ?refs ?candi date
?ot her - candi dates ?current-sol utions
?match-criterion ?adnmissibility-criterion
?excl usion-criterion)
begi n
?good-refined-sols := (filter (achi eve-generic-subtask ?psm refinenent
has- candi dat e- sol uti on ?candi dat e
has- observabl es ?0bs has-refiners ?refs)
(kappa (?sol)
@(rul ed-out -sol ution ?so
(appl y-match-criterion
?match-criterion ?0bs ?sol)
?exclusion-criterion))))
i f ?good-refined-sols = ni
then if ?other-candidates = ni
then ?current-solutions
el se (conpl ete-optimal -search
?psm ?0bs ?refs (first ?other-candidates)
(rest ?other-candi dates) ?current-solutions ?match-criterion
?admi ssibility-criterion ?exclusion-criterion))
end if
el se
begi n ;;there are some new useful refinenments
?ranked- candi dat es := (achi eve-generi c- subt ask
?psm rank-sol uti ons
has- observabl es ?obs
has- candi dat e- sol uti ons
(append ?ot her-candi dat es ?good-refined- sol s)
has-match-criterion ?match-criterion)
?new- admi ssi bl e-solutions := (filter ?good-refined-sols
' (kappa (?sol)
(admi ssi bl e-sol ution
?sol
(apply-match-criterion
?match-criterion ?obs ?sol)))
?adm ssibility-criterion)
i f ?new adm ssi bl e-sol utions = ni
then ?new current-solutions := ?current-sol utions
el se ?ranked-sols := (achi eve-generi c-subt ask
?psm rank-sol uti ons has-observabl es ?obs
has- candi dat e- sol uti ons
(append ?current-solutions
?new- admi ssi bl e-sol uti ons)
has-match-criterion ?match-criterion)
?newcurrent-solutions := (cons (first ?ranked-sols)
(filter (rest ?ranked-sols)
' (kappa (?sol)
(D (better-match-than
(first ?ranked-sol s)
?sol ?obs
?match-criterion)))))))
end if
(conpl ete-optimal -search ?psm ?0bs ?refs (first ?ranked-candi dat es)
(rest ?ranked- candi dat es)
?newcurrent-sol utions ?match-criterion
?adm ssibility-criterion ?exclusion-criterion)
end
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If no candidates exist (maybe because they have been ruled out by the solution exclusion
criterion), then the method returns the set of current solutions.

This search is implemented by the search procedure complete-optimal-search. This takes as
input a PSM, a set of observables, a set of refiners, the current best candidate, a ranked list of
other possible candidate solutions, the list of currently best solutions and the match,
admissibility and exclusion criteria. Its output is the list of best solutions generated after
exhaustive search of the refinement space. The procedure assumes that both the current best
candidate and any other candidate in the ot her - candi dat es list are possible solutions - i.e.,
they have passed the exclusion criterion test.

The procedure works as follows. Firgt, it calls task refi nenent to generate the refinements of
the current candidate solution and it uses the solution exclusion criterion to filter out the ‘ bad’
candidates. If no good refinements have been found and there are no other candidates, then
the current set of solutions is returned. Otherwise, if some other candidate can be tried, a
recursive call of complete-optimal-search is invoked. The only case left is the one in which
some ‘good’ refinements have been generated from the current candidate. In this scenario we
do the following: i) we rank the list obtained my merging the current set of candidates with
the new refined solutions according to the match criterion and ii) we check whether any of the
refined solutions is an admissible solution to our current classification problem. If there are
new solutions, then we check whether any of these is better than our current set of solutions
(remember that we are looking for optimal solutions) and we update the list of optimal
solutions accordingly. Then we recursive invoke complete-optimal-search with the updated
set of current solutions, the current top candidate and the other candidates in order of ranking.
Thus, in accordance with the best-first search strategy (Stefik, 1995), this PSM aways
explores the best node currently known, rather than performing only local backtracking steps.

( Classification J

( Heuristic Classification PSM J

( Abstraction J (RankSqutionsJ ( Refinement J

Figure 4. Main tasks for classification problem solving.

6.4. Subtasks

The two PSMs we have introduced for classification tasks share the same input specification,
assumptions and subtasks. Essentialy, they provide different ways of searching a solution
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space. Figure 4 shows the direct subtasks of these PSMs: abstraction, refinement and solution
ranking. In this section we present the specifications of each of these subtasksin turn.

6.4.1. Abstraction task and abstraction PSV

The goal of the abstraction task is to abstract from the given observables, using the given
abstraction mechanisms. The output includes both the original (non-abstracted) observables
and those inferred by means of abstraction mechanisms. The goal expression states aso that
the available abstraction mechanisms should be applied exhaustively.

(def-class abstraction (goal -specification-task) ?task
"The goal of this task is to abstract fromthe given observabl es, using the given
abstractors. Note that the output also includes the original (non-abstracted)
observabl es"
((has-input-role :value has-observabl es
:val ue has-abstractors)
(has-out put-rol e :value has-abstract-observabl es)
(has- observabl es :type observabl es)
(has- abstract-observabl es :type observabl es)
(has-abstractors :type list)
(has- goal - expression
:val ue (kappa (?task ?observabl es)
(and (forall ?0ob
(=> (menber ?ob ?observabl es)
(or (member ?ob ?task.has-observabl es)
(generalized-abstract-from
?observabl es
?t ask. has- observabl es
?t ask. has-abstractors))))
(not (exists (?ab ?new ob)
(and (nmenmber ?ab ?task. has-abstractors)
(abstractor-is-applicable?
?ab ?observabl es)
(= ?new ob (appl y-abstract-operat or
?ab ?observabl es))
(not (rmenber ?new ob
?observables))))))))))

Our classification library contains an ‘ obvious' method which applies abstractors to the given
data space (observables) repeatedly until no more abstractions can be performed. It returns
the complete set of observables - i.e., both those inferred by abstraction and those given as
input.
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(def-class abstracti on-psm (primtive-method) ?psm
((has-control -rol e :val ue has-current-observabl es
:val ue has-current-abstractors)
(has-current-observabl es :type observabl es)
(has-current-abstractors :type |list)
(has- body
:value ' (lanbda (?psm
(do
(set-rol e-val ue ?psm ' has-current-observabl es
?psm has- observabl es)
(set-rol e-value ?psm ' has-current-abstractors
?psm has- abstractors)
(repeat
(i n-envi ronment
((?ab . (achieve-generic-subtask
?psm sel ect - abstractor
' has- observabl es
?psm has- current - observabl es
' has-abstractors
?psm has-current-abstractors)))
(if (abstractor ?ab)
(do
(set-rol e-val ue
?psm ' has-current-abstractors
(renove ?ab
(rol e-value ?psm ' has-current-abstractors)))
(i n-envi ronment
((?0bs . (the ?0bs2 (has-current-observabl es ?psm ?0bs2)))
(?0b . (achi eve-generic-subtask ?psm one-step-abstraction
' has-abstractor ?ab
' has- observabl es ?0bs)))
(if (and (observabl e ?0b)
(not (nmenber ?o0b ?0bs)))
(set-rol e-value ?psm ' has-current-observabl es
(cons ?0b ?0bs)))))
(return ?psm has-current-observables)))))))))

The abstraction PSM makes use of two subtasks, select-abstractor and one-step-
abstraction. The former selects an abstraction mechanisms from those available and the
latter performs each individua abstraction inference. These tasks and the associated PSMs
are fairly trivial and therefore we do not need to discuss them here. The full specification of
these componentsis provided in Appendix 2.

6.4.2. Solution Ranking

The goal of task rank-sol utions is to produce a list of solutions ordered according to the
given match criterion - see next definition.
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(def-cl ass rank-sol utions (goal -specification-task) ?task
((has-input-role :val ue has-candi date-sol utions
:val ue has-observabl es
:val ue has-match-criterion)
(has-out put-rol e :value has-sol utions)
(has- candi dat e-sol uti ons :type sol ution-space)
(has- observabl es :type observabl es)
(has-match-criterion :type match-criterion
:defaul t-val ue default-match-criterion)

(has-sol utions :type sol uti on-space)
(has- goal - expression

:docunent ation

"The goal is to rank the classes according to the match criterion.

The output should be a list of solutions, in which no solution foll ows

one which is worse"

:val ue (kappa (?task ?sol utions)

(forall (?soll ?sol?2)
(=> (and (nenber ?sol 1l ?sol utions)
(menmber ?sol 2 ?sol utions)
(precedes ?sol1 ?sol 2 ?solutions))
(not (better-match-score ?sol2 ?sol1))))))))

The definition below shows the control regime of a PSM which can be used to solve the rank-
solutions task.

(def-cl ass rank-sol uti ons-psm (conposite-nethod) ?psm

(...
(has- body
:value ' (lanbda (?psm
(do
(loop for ?candidate in ?psm has-candi dat e-sol utions
do

(set-rol e-val ue
?psm has-sol -score-pairs
(cons (list-of ?candidate
(achi eve- generi c- subt ask
?psm basi c- heuristic-match
' has- observabl es ?psm has- observabl es
' has- candi dat e- sol uti on ?candi dat e
'has-match-criterion
?psm has-nmatch-criterion))
?psm has-sol -score-pairs)))
(map 'first
(sort ?psm has-sol -score-pairs
' (kappa (?pairl ?pair2)
(better-match-score
(second ?pair1l)(second ?pair?2)
?psm has-match-criterion)))))))))

The above method uses subtask basic-heuristic-match to compute the score of each
candidate solution and then sorts the resulting <solution, score> pairs according to the score
comparison relation associated with the given match criterion. The specification of the basi c-
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heuri stic-mat ch task and a related PSM can be found in Appendix 2. The task itself is very
straightforward: the interesting aspect of the matching process is not computational but
ontological. In other words, our library provides a generic framework for heuristic matching,
which is generic with respect to the various match criteria which can be defined. This
approach facilitates the reuse and configuration of our library: it is much easier to configure
an application by acquiring or selecting components than by modifying behaviour.

6.4.3. Refinement and refinement-PSM

The goal of thistask isto take a solution at a given level of refinement, say n, and generate all
its possible refinements, using the given set of refiners. If a solution at level n cannot be
refined, the method returns the empty list.

(def-class refinenent (goal-specification-task) ?task
((has-input-role :val ue has-candi date-sol ution
:val ue has-observabl es
:val ue has-refiners)
(has-out put-rol e :val ue has-refined-sol utions)
(has- candi dat e-sol ution :type sol ution)
(has- observabl es :type observabl es)
(has-refined-solutions :type solution-space)
(has-refiners :type list)
(has- goal - expression
sval ue
(kappa (?task 7?sol utions)
(forall ?so
(=> (nenber ?sol ?sol utions)
(exists ?ref
(and (menber ?ref ?task. has-refiners)
(menber ?so
(appl y-refiner-operator
?ref
?t ask. has-candi date-solution))))))))))

The PSM given below provides away to carry out solution refinement. It uses task col I ect -
appl i cabl e-refiners to identify all the applicable refinements and task appl y-refiners to
generate the refined solutions. The definitions of these tasks can be found in Appendix 2.

(def-class vanilla-refinenent-psm (deconposition-nmethod) ?psm
"This method applies all refiners applicable to the given input solution”
((has- body

:val ue
"(lanbda (?psm
(i n-envi ronment
((?sol . 7?psm has-candi dat e- sol ution)
(?refs . (achi eve-generic-subtask
?psm col | ect-applicabl e-refiners
has-sol uti on ?so
has-refiners ?psmhas-refiners)))
(achi eve-generi c-subt ask ?psm appl y-refiners
has-sol ution ?so
has-refiners ?refs)))))
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6.5. Summingup

Figure 5 summarizes the main tasks and PSMs discussed in this section. As shown in the
figure the two classification PSMs presented here share the same task-method structure.
Essentially they provide aternative search methods on classification search spaces. This
relative simplicity of the task-method structure is not accidental and it is unlikely to change
even when extensions to the library are made. The lesson seems to be that once a
sophisticated task ontology is provided, then different behaviours result mainly from the
nature of the task, the chosen search methods and the selected match, solution admissibility

and solution exclusion criteria.
classification l
/L heuristic-classification-psm
abstraction rank-solutions refinement

i 1

abstraction-psm rank-solutions-psm refinement-psm

p
select-abstractor ’ [ one-step-abstraction ] [ basic-heuristic-match ’ [ collect-refiners ] ‘ apply-refiners ]

A

Figure5. Main tasks and PSMs in the classification library

7. AN EXAMPLE: APPLE CLASSIFICATION

In this section we provide an example of the use of the library on a simple problem of apple
classification. The goa of the application is to identify an unknown apple from its features,
e.g., from her background colour, foreground colour, foreground pattern, size, taste, etc. The
domain model we use has been provided by the University of Amsterdam and was devel oped
prior to the development of the library. Henceit istotally independent of the task and method
components of the library. The only changes we made to the original domain model werei) to
trandate if from a Prolog notation to OCML and to augment it with some new knowledge
about types of apple, to alow usto illustrate the abstraction and refinement mechanisms. We
should emphasi ze that these new types of apples added by us are complete fantasies.

7.1. Domain model

Our domain model consists of a hierarchy of apple types structured by means of
class/subclass links. Figure 6 shows an illustrative subset of the domain model, which in total
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contains 29 classes. Each class is described by a number of single-valued attributes, such as
her colour, size, taste, etc. For instance, granny apples are represented as follows:

(def-class granny (apple)
"Granny Smith"
((has_foreground :val ue no)

(background :val ue green)
(rusty :value no)))

It isimportant to emphasize that, in order to test the reusability of both the domain model and
the library components, no changes were made to the given domain model, other than
trandating to OCML and augmenting it with some extra classes.

A\

=) (=)

[ us-granny ] al-arannv

[ high-sweet-granny ][ middle-sweet-granny ][ low-sweet-granny ]

Figure6. Illustrative subset of the domain model.

7.2. Application configuration

The application configuration process involves defining an application ontology, which
comprises both the domain model and the task and PSMs specifications included in the
library. These in turn are based on the associated ontologies. The resulting model inclusion
structure is shown in figure 7. This shows that the apple classification application ontology
aso includes a generic task-domain mapping ontology, which configures the generic notions
of solution feature for the class representation used in the apple domain model. Because such
approach (representing solutions as classes and specifying features through class slots) is far
from unusual, this generic mapping mechanism is provided as part of the classification
library.

7.2.1. Task Configuration

In order to configure the generic specification of a classification task for a particular
application the following types of knowledge must be instantiated:
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Solution Classes. In this scenario these will be the types of apples

Observables. This provides a case input, i.e., an input to be provided each time we
want to test the application for a particular case.

Match Criterion. By default we use the four-dimensional criterion discussed in section
33

Solution Admissibility Criterion. The choice of this criterion tends to vary depending
on whether we are interested in optimal or simply admissible solutions. In the latter
case we need a strong criterion, such as complete coverage (i.e., al observables should
be explained). In the former case aweaker criterion, such as positive coverage, may be
sufficient.

Apple Heuristic Classification
Application

Heuristic Classification Apple Classification-to-Class-Representation
PSMs Domain Model Mapping Ontology

i

( Heuristic Classification

Ontology

Classification Task
Specification

Classification Task
Ontology

Figure 7. Model inclusion structure in the apple classification application.

OCML provides a relation mapping mechanism to support the process of defining bridges.
Thus, we can link the task-level notion of sol uti on to the domain-level notion of appl e as
follows:

(def-rel ation-mappi ng sol ution :up
((solution ?x)
i f
(or (= ?x apple)
(subcl ass-of ?x apple))))
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The above definition defines an upward (or read-only) mapping from the domain level to the
task level. Basicaly it saysthat something is a solution if it is either the class appl e or one of
its subclasses. OCML also provides mechanisms for defining downward mappings (i.e., to
reflect down to the domain level knowledge inferred at the task level). More details on the
OCML mapping mechanism can be found in (Motta, 1999).

Anaogously we can use the relation mapping mechanism to link the generic notion of
observable and the associated relations has- obser vabl e- f eat ur e and has- obser vabl e- val ue tO
the simple list-based notation we are going to use to input observables to our problem solver.

(def-rel ati on-mappi ng observable :up
((observabl e ?x)
if

(== 2X ( ?2f ?v))

(or (and (slot-of ?f ?c)

(or (= ?c apple)

(subcl ass-of ?c apple)))
(= ?f sugar))))

(def-rel ation-mappi ng has-observabl e-feature :up
((has-observabl e-feature ?ob ?f)
if
== ?0b (?f ?v))))

(def-rel ati on- mappi ng has- observabl e-val ue : up
((has-observabl e-val ue ?0b ?v)
if
(== ?0b ( ?2f ?v))))

7.2.2. PSM Configuration

Our heuristic classification PSMs introduce three additional types of knowledge which have
to be supplied by the domain.

Abstraction Mechanisms. For illustration purposes we have augmented the domain
model developed at the University of Amsterdam to include two attributes, sugar -
I evel and sweet ness-1evel, such that it is possible to perform qualitative abstraction
from the former to the latter. The resulting abstraction mechanism is shown in the next
section.

Refinement Mechanisms. Given the class-based representation of the apple knowledge
base, we can use the generic refiner r ef i nement - t hr ough- subcl ass- of - I i nks, shown in
section 6.2.2.

Solution Exclusion Criterion. We will use the default one provided by the library,
which rules out inconsistent solutions.
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7.2.3. Abstractors

The definition below shows the sample abstraction mechanism defined for the apple
classification application. The definition abstracts the quantitative reading of the sugar level
in an apple to a qualitative sweetness value, which can be one of {high, medium, low}. The
abstraction mechanism can be applied if the input set of observables include the feature

sugar -1 evel .

(def-instance sugar-abstractor abstractor
((has-body ' (| anbda (?0bs)
(in-environment ((?v . (observabl es-feature-val ue
?o0bs 'sugar-1level)))
(cond ((>= ?v 70) '(sweetness-I|evel high))
((and (< ?v 70) (> ?v 40))
' (sweet ness-1 evel nedium)
((<= ?v 40) '(sweetness-level low))))))
(applicability-condition (kappa (?0bs)
(menmber ' sugar-| evel
(al |l -features-in-observabl es ?0bs))))))

7.2.4. Results

We have tested the application with a variety of case inputs and criteria to verify the library
and validate its applicability. The evaluation process has been satisfactory: the components
appears to be robust and, as illustrated by the above discussion on the application
configuration process, classification applications can be prototyped very quickly and very
little additional application knowledge is required. Below, we show sample outputs from the
apple classification application.

? (appl e-single-sol-classification ' ((area china)
(background green)

(rusty no)))
Resul t:  CHI NESE- GRANNY

? (appl e-optimal -classification
' ((background green) (area china) (sugar-level 30)))

Result: (LOWM SWEET- GRANNY)

8. RELATED WORK

Classification problem solving has been investigated by many researchers (Clancey 1985,
Clancey 1992, Stefik 1995, Wielinga et al. 1998, Althoff et. a.1994). The basic heuristic
classification pattern was first identified by Clancey (1985), which also discussed several
control strategies:
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Data-directed search. The program works forwards from data to abstraction, matching
all solutions until all possible (or non-redundant) inferences have been made.

Solution-directed search. The program works backwards from solutions,
opportunistically collecting evidence to support them.

Opportunistic search. The program combines data and solution-directed reasoning.
Data abstraction rules tend to be applied as soon as data become available but the
system is also able to reason in a solution-directed style. This approach is typical of
blackboard systems (Hayes-Roth and Hayes-Roth, 1979).

The current version of our library only supports data-directed search, although we also plan to
extend it with methods for solution-directed search in the future. From a more general point
of view the main difference between our analysis and that of Clancey is that we use a much
more sophisticated framework, which combines a generic epistemology of reusable
components with the recent advances in the areas of ontologies and PSMs. As a result, our
analysis is both more detailed and more principled. From an analytical viewpoint we provide
a precise specification of a family of classification tasks, as well as the specification of the
competence and domain assumptions associated with classification PSMs. From an
engineering viewpoint our aim is to support application development by reuse. Hence, our
components are also operational and can be rapidly configured for specific application
domains. In particular, the separation between tasks, PSMs, domain models and applications
provides us with a high degree of flexibility in organising and maintaining the library and in
configuring it for specific applications.

Stefik (1995) provides a very good overview of classification problem solving in the context
of histextbook on knowledge systems. Indeed one of our goals in developing the library was
to provide effective support for the range of classification phenomena discussed by Stefik. A
basic difference between our work here and Stefik’s analysis is the one already highlighted
when comparing our work with Clancey’s: our aim is to provide an effective library resource,
rather than simply to analyse classification problem solving. In addition, an important feature
of our classification task specification is that we explicitly include the match and solution
admissibility criteria as input roles of the task. Thus, the variations on the basic classification
model discussed by Stefik can be obtained by providing different fillers for a classification
task’s input criteria.  Our principled separation between task and PSM specification also
allows us to separate clearly those aspects of Stefik’s analysis associated with classification
problems (e.g., match and admissibility criteria) from those associated with the problem
solving process (e.g., the solution exclusion criterion). Another interesting consequence of
including the criteria in the declarative specification of classification tasks and PSMs is that
these criteria can then be reasoned about by the problem solver itself. For instance, it is
relatively straightforward to define a flexible problem solver which starts with a complete
coverage criterion and then relaxes it to a positive coverage one if no complete explanation is
found.
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Classification is aso discussed in (Wielinga et a 1998). Their analysis of classification
problem solving is carried out in the context of illustrating their competence theory for KBS
development, the main goal of the paper. As aresult their analysis only covers the basic of
classification problem solving, athough it is carried out in a formal way and makes
interesting suggestions, such as the separation between contextual and non-contextual
features.

The classification problem has also been considered by researchers in the case-based
reasoning area (Althoff et. al. 1994). Thiswork mainly focuses on similarity measures, which
correspond to our match criterion. Indeed, in the aforementioned paper Althoff et. al. present
a similarity measure function which is very similar to the default match criterion discussed in
section 3.3.

9. CONCLUDING REMARKS

The work described in this document serves four main purposes:

To carry out a thorough analysis of classification tasks and classification problem
solving.

To provide a useful engineering resource to support the development of classification
problem solvers by reuse.

To provide a concrete set of components on which to test future versions of the
IBROW brokering system.

To assess the suitability of OCML to support the IBROW approach and in particular to
identify any possible discrepancies in the underlying meta-models.

We will discuss each of these objectivesin turn.

9.1. Yet another analysisof classification tasks and classification problem solving

Classification problem solving has been thoroughly analysed in the literature, so it may seem
a bit strange that new analyses are needed. Nevertheless it seems to us that our analysis may
provide an additional useful contribution to the literature. It is the only analysis we know of
which develops in detail a task and a PSM ontology for classification, thus highlighting and
formalizing both the various types of knowledge needed for classification and the
assumptions introduced by PSMs which perform a search in the space of candidate solutions.

9.2. Alibrary of reusable componentsfor classification

This is the most obvious contribution of this work to researchers and practitioners. Our
classification library provides a practical resource which is freely accessible on the web
through the WebOnto server and that can be used to develop applied classification problem
solvers.
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9.3. A testbed for the I BROW brokering system

The main aim of the IBROW project is to provide brokering support for knowledge
component reuse over the World-Wide-Web. In order to test whether this goal is feasible we
need to develop libraries organized according to the IBROW framework. The library
described in this document fulfils this role. However, we should note that the current version
of the library hardly provides any branching points (i.e., alternative PSMs) for any particular
(sub-)task. We have already commented that this may be both a side-effect of the richness of
our framework (we can achieve a great degree of differentiation in problem solving ssimply by
providing different task specifications and criteria) and a feature of classification problem
solving (i.e., it is arelatively simple class of problems). Nevertheless this relative ssimplicity
of the library may be actualy an advantage: in the first instance we can focus the work on
developing intelligent support for acquiring a task specification from a user and
operationalizing it in a scenario were only few problem solving alternatives are present.

9.4. IBROW and OCML

At a coarse-grained level of analysis there is very little difference between the IBROW
framework for reuse (Fensel et al., 1999a; 1999b) and the TMDA framework which underpins
the definition of the OCML language (Motta, 1999). This is of course not surprising given
than one of us (Motta) has developed OCML and has aso been one of the main contributors
to the UPML specification. The main difference between the TMDA and UPML frameworks
for reuse is that the former emphasizes the distinction between application-specific problem
solving knowledge and mapping knowledge, while the latter appears to consider al
application knowledge as part of the mapping knowledge required to define task-domain or
PSM-domain bridges.

At afiner level of abstraction we need to check to what extent OCML supports the notions of
refinements and bridges which are crucial to the UPML modelling philosophy.

9.4.1. Refinement mechanismsin OCML

Classes, as well as class-based entities, such as tasks and PSMs can be specialized (i.e.,
refined) using the standard class/subclass hierarchy provided by OCML. No refinement
mechanism is available for functions, although of course sub-ontologies can override the
definition of afunction inherited from a super-ontology, thus providing a crude emulation of a
refinement mechanism. The same situation applies to relations, although in cases in which a
relation is defined through a set of rules, it can be refined simply by adding more rules.

9.4.2. Bridge mechanismsin OCML

Task and PSM specifications can be linked to domain definitions by means of the mapping
mechanisms illustrated in section 7.2.1. OCML aso provides instance mapping mechanisms
which alow instances defined at the task level to be directly mapped to instances at the
domain level. In our experience - see also (Motta, 1999) for examples from parametric design
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applications - these mechanisms, which are normally part of a wider application ontology, are
sufficient to bridge the gap between task and PSMs on one side and domain models on the
other side.

Where OCML exhibit some weakness is in the support for mapping PSMs to tasks. The
current meta-ontology characterizing these notions in OCML assumes that the input roles of a
PSM include (and maybe extend) those of the task to which it is applied; no explicit role
adaptation mechanism is provided, except of course that such adaptation can occur implicitly
in the body of the PSM. As mentioned in section 6.3.1 a fairly simple adaptation mechanism
is provided for output roles, through the combined use of the template slot has- out put -
meppi ng and the own glot tackl es-task-type. This facility makes it possible to specify for
which class of tasks a PSM has been defined and whether any further processing of the output
of the PSM is required to conform to the requirement of the related generic task.

9.5. Final remarks

The library described in this document covers a range of classification phenomena and has
been extensively tested and validated on the apple domain. Thus, it provides the necessary
degree of robustness to be used for developing applications and as a test case for the IBROW
broker. Future work will aim at extending the library, in particular by providing support for
solution-directed approaches to classification. We aso plan to try out the library on more
complex problems: we are currently looking at a problem requiring the identification and
selection of manufacturing technology and we aso plan to investigate scientific classification
problems.

The library is accessible online through the WebOnto web server. However, WebOnto only
provides limited support for configuring and running PSMs. Future work will therefore also
investigate ways to improve such support.
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