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Abstract

In this document we present a library of generic, reusable components

whose purpose is to support the specification and operationalization of

classification problem solvers.  In addition, it is envisaged that this

library will provide a test case for future version of the IBROW

component brokering and configuration system.  The library has been

specified in the OCML modelling language, according to the IBROW

framework for reuse.  It comprises ontologies, task specifications and

problem solving methods.  It has been tested on a sample apple

classification domain, independently developed by the University of

Amsterdam. In the document we discuss our approach to modelling

classification problem solving, we describe the various parts of the

library, we illustrate examples from our application domain and we

discuss related work and open issues.
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1. INTRODUCTION

A knowledge-based system is typically described as a computer system which relies on a

body of domain knowledge to make decisions under uncertain conditions and carry out

complex tasks (Newell, 1982; Stefik, 1995). Research on problem solving methods

(Benjamins and Fensel, 1998) and ontologies (Gruber, 1995) aims (among other things) to

identify and formalise classes of generic components and reasoning patterns, which can be

reused across different domains to support the robust development of knowledge-based

systems.  Loosely speaking, an ontology defines a conceptual vocabulary that can be used to

describe a certain class of domains. For instance, the parametric design ontology developed

by one of us (Motta, 1999) specifies the various concepts and relations required to model

parametric design problems - e.g., parameters, constraints, requirements, design model, etc.

A problem solving method describes a generic reasoning behaviour which can be reused in

different applications. For instance, figure 1 shows the flow of inferences in the heuristic

classification model defined by Clancey (1985), which can be used to solve classification and

diagnostic tasks.  According to this model, these tasks can be solved by a sequence of

abstraction, matching and refinement operations, by which the available data are abstracted

(for instance from a reading of the temperature of a patient we can infer that such temperature

is high or low), matched to possible explanations (say, the patient has fever) and these can

then be refined (e.g., the final diagnosis could be ‘glandular fever’).

Data

Data
Abstractions

Abstraction

Heuristic Match
Solution

Abstractions

Solutions

Refinement

The essential role of ontologies and problem solving methods is to support reuse.  Hence, not

surprisingly, a number of libraries have been developed over the last few years. Some of the

libraries focus on problem solving methods - e.g., the Common KADS library (Breuker and

Van de Velde, 1994) and Benjamins’ library of diagnostic problem solving methods

(Benjamins, 1993); some focus on ontologies - e.g., the Stanford Ontolingua repository

(Farquhar et al., 1996); some include both ontologies and problem solving methods - e.g.,

Figure 1.  Clancey’s heuristic classification model.
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Motta’s library of parametric design components (Motta, 1999) and the WebOnto repository

of knowledge models (Domingue, 1998).  The rapid growth in the quantity, quality and size

of these repositories attests to the growing importance and maturity of the field.  Ontologies

are being developed in a variety of domains to support all sorts of computer-based activities,

including intelligent internet searches (Guarino et al., 1999; McGuinness, 1998), knowledge

acquisition (Motta et al., 2000) and system development (van Heijst, 1995; Motta, 1999), and

several success stories have been reported in the literature - see for instance (McGuinness,

1999; Mulholland et al., 2000).  Analogously success stories have also been reported about

the application of problem solving methods to industrial problems (Speel and Aben, 1997;

Hori and Yoshida, 1998).  Equally importantly, advances in knowledge modelling research

(i.e., in research on ontologies and problem solving methods) make it possible to put

knowledge system development on a more solid theoretical and engineering basis, thus

aligning knowledge engineering with other engineering disciplines - see Schreiber et al.

(2000) for an in-depth presentation of a comprehensive framework detailing a methodology

and a set of techniques for carrying out structured knowledge analysis and knowledge

engineering projects in organizations.

The main goal of the IBROW project is to develop an intelligent brokering service able to

retrieve software components from libraries distributed over the Internet and configure them

for particular applications in accordance with the stated user requirements.  In order to

achieve this goal a number of sub-goals need to be achieved.  These include: (i) to define an

epistemological framework and a formalism that make it possible for users to characterize

these components in such a way as to perform semi-automated identification and

configuration; (ii) to develop libraries of components according to the aforementioned

framework; (iii) to define a brokering agent, both able to reason about the functionalities and

costs of available library components and also able to carry out a dialogue with a customer

who requires such components; (iv) to define an appropriate interoperability infrastructure

which can make it possible to interface, configure and execute the selected components. The

first phase of the project has addressed primarily the first goal and has developed a

framework, called UPML, which characterizes the types of components which can be found

in an IBROW library and their relationships (Fensel et al., 1999a; 1999b).  A brief description

of UPML is provided in the next section.  In this document we focus mainly on the second

goal and we present a library of generic, reusable components whose purpose is to support the

specification and operationalization of classification problem solvers.  In what follows we

will discuss our approach to modelling classification problem solving, we will describe the

various parts of the library, we will illustrate examples from our application domain and we

will discuss related work and open issues. We will start the discussion by illustrating the

epistemological framework underlying the library.
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2. THE UPML FRAMEWORK FOR REUSE

The basic structure of UPML is illustrated in figure 2. UPML defines four main knowledge

components: Tasks, Problem Solving Methods, Domain Models, and Ontologies. A (generic)

task specifies a generic class of problems, e.g., parametric design problems (Motta, 1999;

Motta et al., 1999; Motta and Zdrahal, 1998). A task specification does not make any

assumption about how the problem can be solved, that is, task specifications only define a

generic goal, not how this can be achieved. A problem solving method provides a (possibly

partial) definition of how a generic task can be solved.  A domain model specifies a body of

knowledge about a particular application domain, with little or no focus on problem solving

behaviour.  For instance, a domain model could be a database of employees in a company,

which describes their role in the organization, their salary, their competences, their

performance, etc.  Tasks, methods and domain models can be linked to each other by means

of bridges and specialised by means of refiners - see (Fensel et al., 1999b) for more details.

An application can then be developed in a reuse-oriented fashion by selecting an appropriate

task model, mapping it to a domain by means of task-domain bridges, selecting the

appropriate problem solving method and then mapping this to both domain and task.  When

appropriate, refinements can be used to specialise components according to a particular

purpose - e.g., to modify a PSM for a particular domain.

The role of UPML is to provide an architectural framework and a precise characterization of

the main types of components, in particular tasks and PSMs, which can be found in libraries

of reusable knowledge components. UPML does not impose any commitment with respect to

a particular specification language. The idea here is that as long as libraries subscribe to the

IBROW architectural framework and components are specified in terms of their functional

capabilities, according to the UPML meta-ontology - e.g., PSMs must be characterized in

terms of preconditions, domain assumptions and postconditions, then the resulting library will

exhibit the correct degree of knowledge-level interoperability, which is required by the

IBROW broker.

To carry out the detailed modelling of the classification components we have used the OCML

language (Motta, 1999).  The advantages of this choice are several: i) our group has extensive

experience with this language, having used it for the past 5 years; ii) the language supports

both specification and operationalization of knowledge components, thus allowing rapid

prototyping and evaluation; iii) we can rely on an extensive library of models, developed in

the context of dozens of research projects, which provides an excellent platform for any new

modelling initiative; and iv) we have a sophisticated web-based environment, WebOnto

(Domingue, 1998), which makes it possible to browse the library from anywhere on the web

through a standard web browser, and also supports collaborative model development from

teams of developers located at distributed sites.  WebOnto is publicly available at

http://webonto.open.ac.uk and has now been used in over twenty projects, by research groups

from both European and non-European countries. A detailed description of the OCML
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language is given in (Motta, 1999); in what follows we will provide some details of OCML

constructs, when these are needed to clarify the description of library components.

3. MODELLING CLASSIFICATION PROBLEMS

As Stefik (1995) explains, “to classify something... is to identify it as a member of a known

class”.  Hence, classification can be seen as the problem of finding the solution (class) which

best explains a certain set of known facts (observables) about an unknown object, according

to some criterion. In the following we will discuss each of these concepts in turn.

3.1. Observables

As said above, we use the term ‘observables’ to refer to the known facts we have about the

object (or event, or phenomenon) that we want to classify.  Each observable can be

characterized as a pair of the form <f, v>, where f is a feature of the unknown object and v is

its value.  Here, we take a very generic viewpoint on the notion of feature. By feature we

mean anything which can be used to characterize an object, such that its value can be directly

Task
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Refiner

PSM
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Refiner
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Domain
Refiner

Domain
Model

PSM-Task
Bridge

PSM-Domain
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Task-Domain
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Figure 2.  The UPML framework for reuse.
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observed, or derived by inference. As is common when characterizing classification problems

- see, e.g., (Wielinga et al., 1998), we assume that each feature of an observable can only have

one value.  This assumption is only for convenience and does not restrict the scope of the

model.

3.2. Solution space

The solution space specifies a set of predefined classes (solutions) under which an unknown

object may fall. A solution itself can be described as a finite set of feature specifications,

which is a pair of the form <f, c>, where f is a feature and c specifies a condition on the values

that the feature can take. Then, we can say that an observable (f, v) matches a feature

specification (f, c) if v satisfies the condition c.

3.3. Criteria for classification tasks

As we have seen, generally speaking, classification can be characterized as the problem of

explaining observables in terms of pre-defined solutions. To assess the explanation power of a

solution with respect to a set of observables we need to match the specification of the

observables with that of a solution.  Given a solution, sol: ((fsol1, c1).....(fsolm, cm)), and a set of

observables, obs: ((fob1, v1).....(fobn, vn)), four cases are possible when trying to match them:

• A feature, say fj, is inconsistent if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj does not satisfy cj;

• A feature, say fj, is explained if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj satisfies cj;

• A feature, say fj, is unexplained if (fj, vj) ∈ obs but fj is not a feature of sol.

• A feature, say fj, is missing if (fj, cj) ∈ sol but fj is not a feature of obs.

Given these four cases, it is possible to envisage different solution criteria.  For instance, we

may accept any solution which explains some data and is not inconsistent with any data.  This

criterion is called positive coverage (Stefik, 1995).  Alternatively we may require a complete

coverage - i.e., a solution is acceptable if and only if it explains all data and is not inconsistent

with any data.  Thus, the specification of a particular classification task needs to include a

solution (admissibility) criterion.  This in turn relies on a match criterion, i.e., a way of

measuring the degree of matching between candidate solution and a set of observables.  By

default, our library provides a match criterion based on the aforementioned model. That is, a

match score between a solution candidate and a set of observables has the form (I, E, U, M),

where I denotes the set of inconsistent features, E the set of explained features, U the set of

unexplained features and M the set of missing features. Of course users of the library are free

to specify and make use of alternative criteria.

In many situations, specifying the conditions under which a candidate solution is indeed a

satisfactory solution is not enough.  In some cases we may be looking for the best solution,

rather than for any admissible one. In this cases we need to have a mechanism for comparing
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match scores and this comparison mechanism becomes then part of the specification of the

match criterion.  By default, our library includes the following score comparison criterion.

Given two scores, S1 = (i1, e1, u1, m1) and S2 = (i2, e2, u2, m2), we say that S2 is a better score

than S2 if and only if:

(i2 < i1) ∨

(i2 = i1 ∧ e1 < e2) ∨

(i2 = i1 ∧ e2 = e1 ∧ u2 < u1) ∨

(i2 = i1 ∧ e2 = e1 ∧ u2 = u1 ∧ m1 < m2)

The notation xi < xj indicates that the set xI contains less elements than the set xj.

The above criterion is of course completely generic.  It is possible to envisage domain and/or

application-specific comparison criteria that, for instance, give higher importance to some

features, rather than others.

In conclusion, our analysis characterizes classification tasks in terms of the following

concepts: observables, solutions, match criteria, solution criteria and score comparison

criteria.  In the next section we illustrate how we have modelled these concepts in OCML.

4. FORMALIZING THE CLASSIFICATION TASK

The ontology for the classification task consists of a group of formal specifications of

concepts needed for defining classification tasks. Here we will focus the discussion on the

main concepts discussed in the previous section. The complete specification of the ontology

can be found in Appendix 1.

4.1. Modelling observables

The definition below defines the notion of observables as an OCML class.

(def-class observables (set) ?obs

  "This is simply a set of observables.

   An important constraint is that there cannot be two values for the same

   feature

   in a set of observables"

   :iff-def (every ?obs observable)

   :constraint (not (exists (?ob1 ?ob2)

                            (and (member ?ob1 ?obs)

                                 (member ?ob2 ?obs)

                                 (has-observable-feature ?ob1 ?f)

                                 (has-observable-feature ?ob2 ?f)

                                 (has-observable-value ?ob1 ?v1)

                                 (has-observable-value ?ob2 ?v2)

                                 (not (= ?v1 ?v2))))))
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The definition states that each element of the class must be a set and that every element of the

set must be an observable. In addition it also states that no two members of a set of

observables can have the same feature - i.e. the set ((f1 v1)(f1 v2)) is not a legal set of

observables.

The class observable is defined as follows.

(def-class observable () ?ob

  "An observable is defined as a pair <feature, value> (logically, not

   necessarily physically).

   This definition assumes that a relation exists, legal-feature-value, which

   specifies whether a value is appropriate for a feature.

   In addition we also assume that only one value can be provided for each

   feature"

  ((has-observable-feature :type feature)

   (has-observable-value :max-cardinality 1))

  :constraint (=> (and (has-observable-feature ?ob ?f)

                       (has-observable-value ?ob ?v))

                  (legal-feature-value ?f ?v)))

The definition models an observable in terms of a feature and a value and states that only one

value can be specified for each observable (by means of the option :max-cardinality in slot

has-observable-value). The constraint associated with the class states that in an observable

the observable value must be legal with respect to the feature. Thus, specific applications and

domains can then impose their own legality constraints by providing specific definitions of

relation legal-feature-value.

Features are simply modelled as classes.  Our ontology also includes a subclass of class

feature, called contextual-feature, which can be used to model analyses of classification

problems such as the one carried out by Wielinga et al., (1998), which distinguish between

contextual and non-contextual features.

4.2. Modelling solution spaces

A solution space is defined simply as a set of solutions.

(def-class solution-space (Set) ?x

  "This is simply a set of solutions"

  :iff-def (every ?x solution))

A solution is in turn defined as a set of feature definitions.

(def-class solution () ?x

  "A solution is a set of feature definitions"

  :iff-def (every ?x feature-definition))
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A feature definition is specified in terms of two slots, a feature name and a feature value

specification.  The latter is a unary relation whose domain is a subset of the domain of

allowed values for the feature in question.  This requirement is specified by means of the

:constraint option given in the class definition.

 (def-class feature-definition () ?x

  "A feature definition is a pair <?f ?spec>, where ?f is a feature and ?spec

   is a unary relation.

   The idea here is that  ?spec defines a sub-domain of ?f, restricting the

   range of values which satisfy the solution"

  ((has-feature-name :type feature)

   (has-feature-value-spec :type unary-relation))

  :constraint (=> (and (has-feature-name ?x ?f)

                       (has-feature-value-spec ?x ?spec))

                  (=> (holds ?spec ?v)

                      (legal-feature-value ?f ?v))))

4.3. Modelling match criteria

A match criterion is defined in terms of a scoring mechanism and a match score comparison

relation. The former is used to measure the degree of matching between a solution and a set of

observables. The latter is used to compare two scores. While we provide a set of definitions

specifying these notions generically, the library also provides a specific match criterion, to be

used as a default.  We will start with the generic definitions.

A match criterion is modelled in terms of a match score mechanism and a score comparison

relation.

 (def-class match-criterion ()

 ((has-scoring-mechanism :type match-score-mechanism)

  (has-match-score-comparison-relation :type match-score-comparison-relation)))

A match score mechanism is modelled as a class match-score-mechanism with two slots, one

takes instances of the class macro-score-mechanism as value and the other takes instances of

the class feature-score-mechanism as value.

(def-class match-score-mechanism ()

  ((has-macro-scoring-mechanism  :type macro-score-mechanism)

   (has-feature-scoring-mechanism  :type feature-score-mechanism)))

Both classes macro-score-mechanism and feature-score-mechanism are subclasses of a class

function, which is defined in the OCML base ontology. The former specifies the class of

functions which take as input a set of observables, a solution and an instance of class feature-

score-mechanism and return a match score. The latter define the class of functions which take

as input a set of observables, a feature, a solution and the list of features associated with the

solution and return a feature-level score. Therefore a match-score mechanism works at two
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levels: one at which each individual <feature value> pair is scored, and the other at which all

the scores computed at first level are combined.

The score comparison relation is modelled as a binary relation predicated over instances of

class match-score.  We also require a score comparison relation to be a partial order.

(def-class match-score-comparison-relation (binary-relation) ?r

  "A match-score-comparison-relation is a binary relation which checks whether

   a score is better than another one"

  :axiom-def (defines-partial-order ?r)

  :constraint (and (domain ?r match-score)

                   (range ?r match-score)))

The main classes involved in defining the notion of match criterion are diagrammatically

shown in figure 3.

A concrete match criterion can then be defined as an instance of class match-criterion - see

Appendix 1 for the formal specification of the criterion discussed in section 3.3.

4.4. Solution admissibility criterion

Our class solution-admissibility-criterion comprises two slots: one specifies the class of

match scores for which this criterion is applicable and the other specifies the unary relation

defining the actual admissibility criterion.  This relation must be defined over a particular

class of match scores.  Associating a solution admissibility criterion with a match score

results in a cleaner model: whether or not something, say sol, qualifies as a solution is a

reflection of the results of the matching process between a set of observables and the

specification of sol.

Match Criterion

Match Score Comparison RelationMatch Score Mechanism

Macro Score Mechanism Feature Score Mechanism

Figure 3. The main classes involved in defining solution space
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(def-class solution-admissibility-criterion () ?c

  "This provides us with a way to specify when a solution is admissible.

   that is, we can express a threshold under which solutions are not

   feasible.  an admissibility criterion applies to a particular class of match

   scores and is realised through a admissibility relation.  This takes a score

   as input and returns true or false, depending on whether the solution is

   admissible"

 ((applies-to-match-score-type :type match-score-type)

  (has-solution-admissibility-relation :type unary-relation))

 :constraint (=> (and (solution-admissibility-criterion ?c)

                      (has-solution-admissibility-relation ?c ?r)

                      (domain ?r ?d))

                 (subclass-of ?d match-score)))

A solution admissibility criterion should be monotonic, that is, if a solution, sol, is admissible,

then any solution which is better than sol must also be admissible. Hence, our ontology

includes the following axiom.

(def-axiom admissibility-is-monotonic

  "This axiom states that the admissibility  criterion is monotonic. That is,

   if a solution, ?sol, is admissible, then any solution which is better than

   ?sol will also be admissible"

  (forall (?sol1 ?sol2 ?obs ?criterion)

          (=> (and (admissible-solution

                    ?sol1 (apply-match-criterion ?criterion ?obs ?sol1)

                    ?criterion)

                   (better-match-than ?sol2 ?sol1 ?obs ?criterion))

              (admissible-solution

               ?sol2 (apply-match-criterion ?criterion ?obs ?sol2)

               ?criterion))))

A specific solution admissibility criterion is defined as an instance of the class solution-

admissibility-criterion. In our specification we provide two concrete solution admissibility

criterions, corresponding to the two criteria discussed in section 3.3.  As an illustration we

give here the definition of the positive coverage criterion.  As usual, more details can be

found in Appendix 1.

(def-instance complete-coverage-admissibility-criterion

              solution-admissibility-criterion

  ((applies-to-match-score-type default-match-score)

   (has-solution-admissibility-relation

    complete-coverage-admissibility-relation)))

(def-relation complete-coverage-admissibility-relation (?score)

  "Score is a list (I, E, U, M).  According to this criterion a solution should

   be consistent, i.e. I = nil, and explain all features, i.e. U = nil"

  :constraint (default-match-score ?score)

  :iff-def (and (= (length (first ?score)) 0) (= (length (third ?score)) 0)))
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4.5. Relations ‘best-match’ and ‘admissible’

Solutions can be either optimal or simply admissible. Relation best-match is useful to specify

which solution is best out of a range of candidates; relation admissible-solution defines what

is an admissible solution. The two definitions are given below.   

(def-relation best-match (?obs ?sol ?candidates ?criterion)

  "?class is the best classification for ?obs wrt a set of

   classes if its score - with respect to some criterion - is better than

   that of any other candidate"

  :constraint (member ?sol ?candidates)

  :iff-def (and (member ?sol ?candidates)

                (sol-has-match-score ?sol ?obs ?score ?criterion)

                (not (exists ?sol2

                             (and (member ?sol2 ?candidates)

                                  (not (= ?sol2 ?sol))

                                  (sol-has-match-score ?sol2 ?obs ?score2

                                                       ?criterion)

                                  (better-match-score ?score2 ?score

                                                      ?criterion))))))

(def-relation admissible-solution (?sol ?score ?criterion)

  :iff-def (holds (the ?rel (has-solution-admissibility-relation ?criterion

                                                                 ?rel))

                  ?score))

Relation best-match states that a solution, sol, is the best with respect to a criterion and a set

of observables if its score is better than that of anybody else in the given set of candidates.  A

solution sol with a certain score is admissible with respect to a solution admissibility criterion

if the admissibility relation associated with the criterion holds for the given score.

4.6. Auxiliary relations and functions

The definition of the classification ontology involves a lot of auxiliary functions and relations,

many of which have been used in the examples given in this section.  For convenience we list

some of the most significant here.  The complete ontology contains 42 definitions.

Relations

better-match-than(?sol1, ?sol2, ?obs, ?mc) True if for the observables ?obs and match criterion ?mc,

?sol1 has better match score than sol2.

sol-has-match-score(?sol,?obs, ?score, ?mc) True if for observables ?obs and match criterion ?mc,

?sol has match score ?score.

better-match-score(?score1, ?score2, ?mc) True if ?score1 is a better score than ?score2 according

to match criterion ?mc

composable-solutions (?sol1 ?sol2) Two solutions are composable if they are not mutually

inconsistent with respect to some feature.
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Functions

apply-match-criterion (?mc ?obs ?sol) Return the score of ?sol for the observables ?obs and match

criterion ?mc

the-better-match-score (?d1 ?d2 ?mc) Return the better score according to match criterion ?mc

all-features-in-observables (?obs) This function extracts the features from a set of observables

observables-feature-value (?obs ?f) This function retrieves the value of a feature in a set of

observables. The assumption is that a feature can at most have

one value in a set of observables. If ?f does not appear in ?obs,

then :nothing is returned

all-features-in-solution (?sol) "This returns all the features in a solution

solution-feature-spec (?sol ?f) "This returns the spec associated with a particular feature in a

solution"

5. CLASSIFICATION TASK SPECIFICATION

Having defined the task ontology, we are now in a position to present a formal specification

of a family of classification tasks. In UPML a task is specified in terms of its input and output

roles, preconditions, assumptions and goal.  The same approach is taken in the OCML base

ontology, which formally defines the notion of task used in OCML.  In particular, the OCML

base ontology defines a goal as a kappa expression  (i.e., an anonymous relation) with two

arguments: the task itself and a value.  The latter is meant to be a possible result from carrying

out the task. The goal of a task, say task, is satisfied for a value v, if the associated kappa

expression holds for arguments task and v.

Several definitions of classification tasks can be provided. In some cases we may be asking

for optimal solutions, in other cases we just want to find an admissible one.  Hence, here we

provide a family of task specifications.  We start with a generic definition, which defines the

input and output roles of classification tasks, the relevant preconditions and a default goal

specification. Different variants on the classification task can then be easily defined as

refinements of this generic definition.
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(def-class classification-task (goal-specification-task) ?task

  ((has-input-role :value has-candidate-solutions

                          :value has-observables

                          :value has-match-criterion

                          :value has-solution-admissibility-criterion)

   (has-output-role :value has-solutions)

   (has-candidate-solutions :type solution-space)

   (has-observables :type observables)

   (has-match-criterion :type match-criterion

                        :default-value default-match-criterion)

   (has-solution-admissibility-criterion

    :type solution-admissibility-criterion

    :default-value default-solution-admissibility-criterion)

   (has-solutions :type solution-space)

   (has-precondition

    :value (kappa (?task)
                  ∃?x ∃?y (member  ?x ?task.has-observables) ∧
                          (member ?y ?task.has-candidate-solutions))

   (has-goal-expression

    :documentation "The goal is to find one or more admissible solutions"

    :default-value (kappa (?task ?sols)
                  ∀ ?sol (member ?sol ?sols) →
                              (admissible-solution

                               ?sol (apply-match-criterion

                                     ?task.has-match-criterion

                                     ?task.has-observables

                                     ?sol)

                               ?task.has-solution-admissibility-criterion))

The above definition specifies four input roles:

• has-candidate-solutions whose filler must be an instance of class solution-space.

• has-observables whose filler must be an instance of class observables.

• has-match-criterion whose filler must be an instance of class match-criterion. A

default value is also provided for this role, default-match-criterion.

• has-solution-admissibility-criterion whose filler must be an instance of class

solution-admissibility-criterion. A default value is also provided for this role,

default-solution-admissibility-criterion.

The output role is the following:

• has-solutions whose filler must be an instance of class solution-space.

The task precondition states that a classification task is meaningful if and only if some

observables and some candidate solutions are provided. The (default) goal expression states

that each solution output must be admissible with respect to the given solution admissibility

criterion.

In many cases we know that only one solution to a classification task exists (or alternatively

we may not care about retrieving multiple solutions, one will do). We can model this situation
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by refining the above definition and introducing an assumption which states that the output of

the task will include at most one solution.  This assumption can then be used by the IBROW

broker when choosing an appropriate problem solving method and when instantiating the task

for a particular domain. A single-solution classification task can then be formalised as

follows:

(def-class single-solution-classification-task (classification-task) ?task

  "A classification task which assumes only one solution is found.  The

   assumption just states that the output of the task will contain at most one

   solution. It does not say anything about whether only one solution actually

   exists."

  ((has-assumption

    :value (kappa (?task)

                  (< (Length ?task.has-solutions) 2)))))

Finally we give the definition of a classification task which requires a solution to be optimal

with respect to the given match criterion.

(def-class optimal-classification-task (classification-task) ?task

 ((has-goal-expression

       :default-value (kappa (?task ?sols)
                   ∀ ?sol (member ?sol  ?sols) →
                              ((admissible-solution

                                 ?sol

                                 (apply-match-criterion

                                  ?task.has-match-criterion

                                  ?task.has-observables

                                 ?sol)

                                 ?task.has-solution-admissibility-criterion)
                                ∧
                                (best-match ?task.has-observables

                                            ?sol

                                            ?task.has-candidate-solutions)

                                            ?task.has-match-criterion))))))

6. PROBLEM SOLVING METHODS FOR CLASSIFICATION

6.1. Classification problem solving

Classification involves searching the space of possible solutions to find one which explains

the given observables in accordance with the given solution criterion.  The choice of a method

depends on many factors, such as whether the goal is to find one, all or the best solution;

whether all observables are known at the beginning or are uncovered opportunistically

(maybe at some cost) during the problem solving process; whether or not the solution space is

structured according to a refinement hierarchy; whether solutions can be composed together,

or alternatively, whether each solution presents a different, self-contained alternative.  The

current version of the library provides support to deal with most of these scenarios.  However
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it currently does not offer any method to acquire observables incrementally, nor it supports

composite solutions. It is envisaged that support for these problem solving approaches will be

added to future versions of the library.

If we restrict ourselves to a scenario in which observables are not acquired incrementally

during the classification process, then only a data-directed approach can be taken.  That is,

from the given set of observables we identify the most promising solutions and, in those cases

where a refinement hierarchy is provided, we can then search the latter to home in on the most

appropriate solutions.  A data-directed approach does not however imply that the set of

observables remain the same during the problem solving process.  In many cases we can have

abstraction mechanisms, which generate new observables from existing ones, in accordance

with Clancey’s model shown in figure 1. From this discussion it follows that we can use the

heuristic classification model as the basis of our library of problem solving methods for

classification.  Simpler problem solving methods can simply be defined as ‘degenerations’ of

the heuristic classification model – e.g., these may not include abstraction and/or refinement

mechanisms.  More complex PSMs – e.g., PSMs which allow for composite solutions to be

generated, will instead extend this model with additional inference mechanisms.

As we did in the previous section we will present our PSM specification in two steps: first we

define a method ontology, which formalises the necessary concepts, relations and functions.

Then we will define the actual PSMs.

6.2. A method ontology for classification problem solving

The heuristic classification model includes two notions not already covered by our

classification task ontology: abstractors and refiners.  These are defined below.

6.2.1. Abstractors

Data abstraction consists of inferring new observables from existing ones by means of domain

knowledge.  We model this kind of knowledge by means of abstractors. Formally, an

abstractor is a function which takes a set of observables as input and produces an observable

as output. Hence, we can model it as a subclass of class function with an additional slot,

called applicability-condition, whose filler must be an instance of class abstractor-

applicability-condition-class. This slot can be used to specify precisely additional

domain-specific conditions associated with a particular class of abstractors.

 (def-class abstractor (function)

  ((domain :value observables)

   (range :value observable)

   (applicability-condition :type abstractor-applicability-condition-class)))

The applicability condition for an abstractor is defined as a relation whose domain is a subset

of class observables.
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 (def-class abstractor-applicability-condition-class (unary-relation) ?x

    :iff-def (subset (the ?d (domain ?x ?d)) observables))

Abstractors implicitly introduce a hierarchy structure in the data space: directly observed data

are at the lowest level of the hierarchy, higher level data are obtained by applying abstractors

to lower level data.

6.2.2. Refiners

Solution refinement consists of taking a solution as input and generating more specialised

ones – i.e., solutions which cover a subset of the phenomena explained but the ‘parent’

solution. In this process, domain knowledge about the solution is used. We model this kind of

knowledge by means of refiners.  Refinement can be seen as the inverse process to

abstraction, rather than going from concrete data to abstract ones, here we go from abstract

solutions to more concrete ones.  Hence, not surprisingly we model the class of refiners much

the same way as we modelled the class of abstractors, as a subclass of class function

augmented with a slot which can be used to specify additional, domain-dependent

applicability conditions.

 (def-class refiner (function)

  ((domain :value solution)

   (range :value solution-space)

   (applicability-condition :type refiner-applicability-condition-class)))

The applicability condition for a refiner must be a relation and its domain must be a subset of

class solution.

 (def-class refiner-applicability-condition-class (unary-relation) ?r

   :iff-def (subset (the ?x (domain ?r ?x)) solution))

Refiners also introduce a hierarchy structure in the solution space: the level of the solution

appearing in the slot domain of a refiner can be viewed as one level higher than that of the

solutions appearing in the slot range of the refiner.

A typical case is that in which solutions are represented as classes and the class/subclass

hierarchy is used to represent the space of refinements.  To cover this obvious scenario our

library provides the following refiner instance, which returns all direct subclasses of the input

class (i.e., solution).
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 (def-instance refinement-through-subclass-of-links refiner

  "If the solution space is specified by means of classes arranged in a

  subclass-of hierarchy, then this is a good refiner to use"

  ((has-body '(lambda (?sol)

                (setofall ?sub (direct-subclass-of ?sub ?sol))))

   (applicability-condition ‘(kappa (?sol)

                                    (and (class ?sol)

                                         (exists ?sub

                                           (direct-subclass-of

                                            ?sub ?sol)))))))

6.2.3. Candidate exclusion criterion

As pointed out earlier, classification problem solving can be seen as the process of searching a

solution space, in accordance with the given application criteria.  Loosely speaking efficient

search requires the ability to identify promising paths and the ability to stay away from dead

ends.  Our task ontology already provides generic components which make it possible for

developers to represent ‘positive notions’ such as when a solution is admissible.  Here, we

provide ontological support for specifying ‘negative notions’, such as a criterion to be used to

decide when a candidate solution and its refinements can be removed from the solution search

space.  We call this the candidate exclusion criterion.  As in the case of the solution

admissibility criterion, we model it as a class with two slots, which specify the relevant match

score type and the actual relation used to test whether a solution should be ruled out.

(def-class candidate-exclusion-criterion ()

   ((applies-to-match-score-type :type match-score-type)

    (has-candidate-exclusion-relation :type unary-relation) ))

A correct candidate exclusion criterion is monotonic in the sense that if a solution, sol, is

ruled out, then any solution which has a worse score than sol will also be ruled out. Hence,

our ontology includes the following axiom.

 (def-axiom exclusion-is-monotonic
    ∀ ?sol1 ∀?sol2 ∀?obs ∀?criterion
     (ruled-out-solution ?sol1 (apply-match-criterion ?criterion ?obs ?sol1)
                         ?criterion) ∧
     (¬(better-match-than ?sol2 ?sol1 ?obs ?criterion))
   →
   (ruled-out-solution ?sol2 (apply-match-criterion ?criterion ?obs  ?sol2)

                       ?criterion)

In addition we also require that the admissibility and exclusion criteria associated with the

same match criterion have to be congruent: no solution should ever satisfy both. Formally we

have:
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(def-axiom congruent-admissibility-and-exclusion-criteria
  ∀?sol ∀?task
    (member ?sol (the-virtual-solution-space

                  ?task.has-candidate-solutions

                  ?task.has-refiners))
   →
     ¬ ((admissible-solution ?sol (apply-match-criterion
                                    ?task.has-match-criterion

                                    ?task.has-observables

                                    ?sol)

                             ?task.has-solution-admissibility-criterion)
        ∧
         (ruled-out-solution ?sol (apply-match-criterion

                                    ?task.has-match-criterion

                                    ?task.has-observables

                                    ?sol)

                             ?task.has-solution-exclusion-criterion)))

Our library provides a default solution exclusion criterion which rules out inconsistent

solutions – see definitions below.

(def-instance default-solution-exclusion-criterion solution-exclusion-criterion

  ((applies-to-match-score-type default-match-score)

    (has-candidate-exclusion-relation default-candidate-exclusion-relation)))

 (def-relation default-candidate-exclusion-relation (?score)

   :constraint (default-match-score ?score)

   :iff-def (> (length (first ?score)) 0))

6.2.4. Auxiliary relations and functions

Our method ontology for classification problem solving includes many auxiliary relations and

functions. Below we list some of the most significant.

Functions

the-virtual-solution-space (?init-space ?refs) Return the solution space generated by refinement

application from an initial solution space

apply-abstract-operator (?ab ?obs--in) Return a new observable obtained by applying

abstractor ?ab to observables ?obs-in.

apply-refiner-operator (?ref ?solution)s Return refined solutions obtained by applying

?ref to observables ?obs-in.
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Relations

ruled-out-solution (?sol ?score ?sec) True if the ?score of the solution ?sol satisfies the

relation defined in the solution exclusion criterion

?sec.

abstractor-is-applicable? (?ab ?obs) True if abstractor ?ab can be applied to

observables ?obs

generalized-abstract-from (?obs-out ?obs-in ?abs) True if ?obs-out is obtained by applying

abstractors ?abs to observables ?obs-in.

generalised-abstract-link (?ob1 ?ob2 ?abs) ?ob1 is in a chain of abstraction which stems from

?ob2

observable-abstracted-from (?ob ?obs ?ab) True if observable ?ob is abstracted from

observables ?obs using abstractors in ?abs

refiner-is-applicable? (?ref ?sol) True if abstractor ?ref can be applied to solution

?sol

some-refiner-is-applicable? (?refs ?sol) True if there is a refiner in ?refs that is applicable

to ?sol

generalised-refinement-of (?sols-out ?sols-in ?refs) True if ?sols-out is obtained by applying refiners

?refs to solutions ?sols-in.

6.3. Specification of heuristic classification problem solving methods

A problem solving method in OCML is defined as a subclass of a predefined class problem-

solving-method, whose main slots are as follows:

• has-input-role: all inputs to the method are listed here;

• has-output-role: the output produced by the method;

• has-precondition: the preconditions associated with the method;

• has-postcondition: the postconditions associated with the method;

• has-assumption: the domain assumptions imposed by the method;

• has-body: the control structure of the method.

Basically, the pre- and post-conditions together describe the competence of the method. The

slot has-body specifies its procedural behaviour.  In general the same competence can be

achieved by different procedural behaviours.  The slot has-assumption specifies the

conditions which have to be satisfied by the domain knowledge to ensure that the specified

behaviour can deliver the method’s competence for a particular domain.

Our library comprises two basic generic methods, one for dealing with classification tasks

where optimal solutions are not required, the other for dealing with classification tasks where

optimal solutions are sought.  We will first describe the former.
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6.3.1. PSM heuristic-admissible-sol-classifier

This is a basic method for finding a single admissible solution to a classification problem.

More precisely it can tackle instances of class single-solution-classification-task. The

single solution assumption greatly reduces the complexity of the search. This method uses a

backtracking hill-climbing solution to home in on the most promising solutions.  It is a

heuristic, hierarchical classifier, as it provides for both abstraction and refinement

mechanisms. These are however are optional.  In particular, if no refinement mechanisms are

provided, then the psm just reduces to a 'flat' classifier.

For the sake of explanation, we will discuss the various parts of the specification separately.

(def-class heuristic-admissible-sol-classifier (problem-solving-method) ?psm

  ((has-input-role :value has-abstractors

                   :value has-refiners

                   :value has-observables

                   :value has-candidate-solutions

                   :value has-solution-exclusion-criterion)

   (has-output-role :value has-solution)

   (has-abstractors :type abstractors)

   (has-refiners :type refiners)

   (has-observables :type observables)

   (has-solution-exclusion-criterion

    :type candidate-exclusion-criterion

    :default-value default-candidate-exclusion-criterion)

   (has-candidate-solutions :type solution-space)

   (has-solution :type solution)

................................

   (has-output-mapping

    :value '(lambda (?psm ?result) (list-of ?result)))

  :own-slots ((tackles-task-type single-solution-classification-task)))

The above definition shows the role definition part of the method specification. In addition to

the input roles inherited from the definition of the classification task, this method also uses

knowledge about abstraction and refinement and a candidate exclusion criterion.  None of

these types of knowledge actually need to be provided by the user.  By default, the method

will assume that no refinement or abstraction mechanisms exist and it will use the default

candidate exclusion criterion described in the previous section.

The definition also points out that the PSM has been defined to tackle single-solution

classification tasks and that the output from the PSM needs to be modified, in order to

conform to the list format expected from classification tasks - this is specified by means of

slot has-output-mapping.  This facility provides a simple adaptation mechanism for adapting

PSMs to tasks - see section 9.4 for a discussion of the extent to which the OCML adaptation

facilities support the UPML framework.

The method also includes four assumptions.  The first two state that the abstraction and

refinement hierarchies have to be free of cycles.
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(kappa (?psm)

        (not (exists (?ob1 ?ob2)

                     (and (or (member ?ob1 ?psm.has-observables)

                              (exists ?ob

                                      (and (member ?ob ?psm.has-observables)

                                           (generalised-abstract-link

                                            ?ob1 ?ob ?psm.has-abstractors))))

                          (generalised-abstract-link

                           ?ob2 ?ob1 ?psm.has-abstractors)

                          (generalised-abstract-link

                           ?ob1 ?ob2 ?psm.has-abstractors)))))

(kappa (?psm)

       (not (exists (?sol1 ?sol2)

            (and (or (member ?sol1 ?psm.has-candidate-solutions)

                     (exists ?sol (and (member

                                        ?sol ?psm.has-candidate-solutions))

                                       (generalised-refinement-of

                                        ?sol1 ?sol ?psm.has-refiners))))

                 (generalised-refinement-of

                  ?sol2 ?sol1 ?psm.has-refiners)

                 (generalised-refinement-of

                  ?sol1 ?sol2 ?psm.has-refiners))))

The third assumption states that the PSM assumes the existence of a solution in the virtual

solution space - i.e., if such a solution exists, the PSM will find it.

(kappa (?psm)

       (exists ?sol

               (and (admissible-solution

                     ?sol

                     (apply-match-criterion ?psm.has-match-criterion

                                            ?psm.has-observables

                                            ?sol)

                     ?psm.has-solution-admissibility-criterion)

                    (member ?sol

                            (the-virtual-solution-space

                             ?psm.has-candidate-solutions

                             ?psm.has-refiners)))))

The final assumption states that the method assumes that the exclusion criterion is monotonic

with respect to the refinement hierarchy.  That is, it assumes that if a solution is excluded, all

its refinements can be excluded too.



IBROW Deliverable D1 Page 24

(kappa (?psm)

       (forall (?sol ?score)

               (=>

                (and

                 (sol-has-match-score ?sol

                                      ?psm.has-observables

                                      ?score

                                      ?psm.has-match-criterion)

                 (ruled-out-solution ?sol ?score

                                     ?psm.has-solution-exclusion-criterion))

                (not (exists

                      ?sol2

                      (and (generalised-refinement-of

                            ?sol2 ?sol ?psm.has-refiners)

                           (admissible-solution

                            ?sol2

                            (apply-match-criterion ?psm.has-match-criterion

                                                   ?psm.has-observables

                                                   ?sol2)

                            ?psm.has-solution-admissibility-criterion)))))))

The postcondition of the method states that the output solution satisfies the admissibility

criterion - i.e., assuming the domain assumptions are satisfied, the method will return an

admissible solution.

(has-postcondition

 :value (kappa (?psm ?sol)

               (admissible-solution

                ?sol

                (apply-match-criterion ?psm.has-match-criterion

                                       ?psm.has-observables

                                       ?sol)

                ?psm.has-solution-admissibility-criterion)))

The body of the PSM is very simple - see definition below.  It calls the abstraction task, to

apply all available abstractors and then calls a search procedure which is able to search the

solution space for an admissible solution.

begin
  ?obs := (achieve-generic-subtask ?psm abstraction
                                   has-observables ?psm.has-observables

                                   has-abstractors ?psm.has-abstractors)

  (admissible-solution-search ?psm ?obs ?psm.has-refiners

                              ?psm.has-candidate-solutions

                              ?psm.has-solution-match-criterion

                              ?psm.has-solution-admissibility-criterion

                              ?psm.has-solution-exclusion-criterion)

end

The admissible-solution-search procedure works as follows.  If one of the candidate solution

given as input is an admissible solution (according to the given criterion), then the procedure
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stops and return the solution it has found.  Otherwise it ranks the candidates according to the

given match criterion (recall that a match criterion also includes a score comparison relation)

and then explore the refinement space of each one in turn, until it finds a solution.  This

behaviour is analogous to hill climbing with backtracking.  At each stage of the search

process the most promising path is explored, but if it is found to be a dead end then the

procedure is able to backtrack to the next one in the most recent branching point.

(def-procedure admissible-solution-search (?psm ?obs ?refs ?candidates

                                             ?m-criterion ?a-criterion

                                             ?e-criterion)

 :body

   begin
    if  ∃ ?sol ((member ?sol  ?candidates) ∧
                (admissible-solution ?sol (apply-match-criterion

                                           ?m-criterion ?obs ?sol)

                                     ?a-criterion))

     then return ?sol

     else

      begin
       ?ranked-candidates := (achieve-generic-subtask ?psm rank-solutions
                              has-observables ?obs

                              has-candidate-solutions ?current-sols

                              has-match-criterion ?m-criteria)

           loop for ?candidate in ?ranked-candidates do
            if  ¬ (ruled-out-solution ?candidate
                                      (apply-match-criterion ?m-criteria

                                                             ?obs

                                                             ?candidate)

                                      ?e-criteria)

              then
                begin ?refined-sols := (achieve-generic-subtask
                                           ?psm refinement

                                           has-candidate-solution ?candidate

                                           has-observables ?obs

                                           has-refiners  ?refs)
                     if  ?refined-sols ≠ nil then
                        begin
                          ?result := (admissible-solution-search
                                          ?psm ?obs ?refs ?refined-sols

                                          ?m-criterion ?a-criterion e-criterion)
                               if ?result ≠ :nothing  then return ?result
                          end if

                        end

                  end if

                end

            end if

          end loop

      end

    end if

  end
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6.3.2. PSM heuristic-optimal-sol-classifier

This PSM can be used to tackle classification tasks which require a solution to be optimal

with respect to the given match criterion. The method carries out an exhaustive search looking

for an optimal solution and uses the exclusion criterion to prune the search space.  It returns

one or more optimal solutions.

This method has the same input role specification and assumptions as the PSM described in

the previous section, therefore we only need to describe its postcondition and its control

regime.  Its postcondition is defined as follows.

(kappa (?psm ?sols)

       (forall ?sol

               (=> (member ?sol ?sols)

                   (and

                    (admissible-solution

                     ?sol

                     (apply-match-criterion ?psm.has-match-criterion

                                            ?psm.has-observables)

                                            ?sol)

                     ?psm.has-solution-admissibility-criterion)

                    (best-match

                     ?psm.has-observables

                     ?sol

                     (the-virtual-solution-space

                      ?psm.has-observables

                      ?psm.has-candidate-solutions)

                      ?psm.has-match-criterion)))))

The definition given above states that any solution returned by the optimal classification

method will be both admissible and optimal with respect to the given admissibility and match

criteria.

The next definition gives the control regime of the optimal classification method.  The

method works as follows.  It first performs data abstraction and ranks the input candidates in

terms of the given match criterion.  Then it initializes the current solutions, by checking

whether the best ranked candidate, say sol, is already an admissible solution.  If this is the

case, then  the PSM makes use of the monotonicity property of solution admissibility criteria

to add to the list of current solutions all the given candidates whose score is not worse than

sol.  Then the method checks whether any candidate can be ruled out.  It does so by going

through the ranked candidates in reverse order (from the worst to the best) and stopping as

soon as it finds a candidate which cannot be ruled out.  Here the PSM makes use of the

monotonicity property of solution exclusion criteria: if a candidate sol1 cannot be ruled out,

then a candidate sol2 which is better than sol1 cannot be ruled out either. Once the set of

current solutions and ranked candidates have been initialized, then the PSM invokes

procedure complete-optimal-search to perform a complete search of the solution space.
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begin
  ?obs :=  (achieve-generic-subtask
            ?psm abstraction has-observables ?psm.has-observables

                             has-abstractors ?psm.has-abstractors)
  ?psm.has-ranked-candidates := (achieve-generic-subtask
                                 ?psm rank-solutions

                                  has-observables ?obs

                                  has-candidate-solutions

                                  ?psm.has-candidate-solutions

                                  has-match-criterion ?psm.has-match-criterion)

  ;;Initialize current solutions
  ?psm.has-current-solutions := nil
  if (admissible-solution (first ?psm.has-ranked-candidates)

                          (apply-match-criterion

                             ?psm.has-match-criterion ?obs

                             (first ?psm.has-ranked-candidates)

                        ?psm.has-solution-admissibility-criterion)

    then
     begin ?psm.has-current-solutions := (List-of
                                           (first ?psm.has-ranked-candidates))

           loop for ?candidate in (rest ?psm.has-ranked-candidates)

              do

             if (better-match-than (first ?psm.has-ranked-candidates)

                                      ?candidate ?obs

                                      ?psm.has-match-criterion)

                 then return :nothing

                 else
                   ?psm.has-current-solutions := (cons
                                                  ?candidate

                                                  ?psm.has-current-solutions)

              end if

            endloop

     end

  end if

  ;;We now remove ruled out candidates.

  loop for ?candidate in (reverse ?psm.has-ranked-candidates)

        do

         if (ruled-out-solution ?candidate (apply-match-criterion

                                             ?psm.has-match-criterion

                                             ?obs ?candidate)

                                           ?psm.has-exclusion-criterion)
             then ?psm.has-ranked-candidates := (remove ?candidate
                                                        ?psm.has-ranked-candidates)

              else return :nothing

         end if

  endloop

  if ?psm.has-ranked-candidates = nil

   then ?psm.has-current-solutions

   else (complete-optimal-search ?psm ?obs ?psm.has-refiners

          (first ?psm.has-ranked-candidates)

          (rest ?psm.has-ranked-candidates) ?psm.has-match-criterion

          ?psm.has-solution-admissibility-criterion

          ?psm.has-solution-exclusion-criterion

  end if

end
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(def-procedure complete-optimal-search (?psm ?obs ?refs ?candidate

                                        ?other-candidates ?current-solutions

                                        ?match-criterion ?admissibility-criterion

                                        ?exclusion-criterion)

  begin
    ?good-refined-sols := (filter (achieve-generic-subtask ?psm refinement
                                  has-candidate-solution ?candidate

                                  has-observables ?obs has-refiners ?refs)

                                 (kappa (?sol)
                                  ¬(ruled-out-solution ?sol
                                    (apply-match-criterion

                                      ?match-criterion ?obs ?sol)

                                    ?exclusion-criterion))))

    if ?good-refined-sols = nil

     then if ?other-candidates = nil

            then ?current-solutions

            else (complete-optimal-search

                   ?psm ?obs ?refs (first ?other-candidates)

                   (rest ?other-candidates) ?current-solutions ?match-criterion

                   ?admissibility-criterion ?exclusion-criterion))

           end if

     else

     begin   ;;there are some new useful refinements
       ?ranked-candidates := (achieve-generic-subtask
                              ?psm rank-solutions

                              has-observables ?obs

                              has-candidate-solutions

                                 (append ?other-candidates ?good-refined-sols)

                              has-match-criterion  ?match-criterion)
       ?new-admissible-solutions := (filter ?good-refined-sols
                                           '(kappa (?sol)

                                              (admissible-solution

                                               ?sol

                                               (apply-match-criterion

                                                 ?match-criterion ?obs ?sol)))

                                               ?admissibility-criterion)

       if ?new-admissible-solutions = nil
        then ?new-current-solutions := ?current-solutions
        else ?ranked-sols := (achieve-generic-subtask
                               ?psm rank-solutions has-observables ?obs

                               has-candidate-solutions

                                (append ?current-solutions

                                        ?new-admissible-solutions)

                               has-match-criterion ?match-criterion)
             ?new-current-solutions :=  (cons (first ?ranked-sols)
                                              (filter (rest ?ranked-sols)

                                                      '(kappa (?sol)
                                                        (¬ (better-match-than
                                                            (first ?ranked-sols)

                                                            ?sol ?obs

                                                            ?match-criterion)))))))

       end if

       (complete-optimal-search ?psm ?obs ?refs (first ?ranked-candidates)

                                (rest ?ranked-candidates)

                                ?new-current-solutions ?match-criterion

                                ?admissibility-criterion ?exclusion-criterion)

 end
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If no candidates exist (maybe because they have been ruled out by the solution exclusion

criterion), then the method returns the set of current solutions.

This search is implemented by the search procedure complete-optimal-search.  This takes as

input a PSM, a set of observables, a set of refiners, the current best candidate, a ranked list of

other possible candidate solutions, the list of currently best solutions and the match,

admissibility and exclusion criteria.  Its output is the list of best solutions generated after

exhaustive search of the refinement space.  The procedure assumes that both the current best

candidate and any other candidate in the other-candidates list are possible solutions - i.e.,

they have passed the exclusion criterion test.

The procedure works as follows. First, it calls task refinement to generate the refinements of

the current candidate solution and it uses the solution exclusion criterion to filter out the ‘bad’

candidates.  If no good refinements have been found and there are no other candidates, then

the current set of solutions is returned.  Otherwise, if some other candidate can be tried, a

recursive call of complete-optimal-search is invoked. The only case left is the one in which

some ‘good’ refinements have been generated from the current candidate.  In this scenario we

do the following: i) we rank the list obtained my merging the current set of candidates with

the new refined solutions according to the match criterion and ii) we check whether any of the

refined solutions is an admissible solution to our current classification problem.  If there are

new solutions, then we check whether any of these is better than our current set of solutions

(remember that we are looking for optimal solutions) and we update the list of optimal

solutions accordingly.  Then we recursive invoke complete-optimal-search with the updated

set of current solutions, the current top candidate and the other candidates in order of ranking.

Thus, in accordance with the best-first search strategy (Stefik, 1995), this PSM always

explores the best node currently known, rather than performing only local backtracking steps.

6.4. Subtasks

The two PSMs we have introduced for classification tasks share the same input specification,

assumptions and subtasks.  Essentially, they provide different ways of searching a solution

Classification

Heuristic Classification PSM

Abstraction RefinementRank Solutions

Figure 4. Main tasks for classification problem solving.
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space.  Figure 4 shows the direct subtasks of these PSMs: abstraction, refinement and solution

ranking.  In this section we present the specifications of each of these subtasks in turn.

6.4.1. Abstraction task and abstraction PSM

The goal of the abstraction task is to abstract from the given observables, using the given

abstraction mechanisms.  The output includes both the original (non-abstracted) observables

and those inferred by means of abstraction mechanisms.  The goal expression states also that

the available abstraction mechanisms should be applied exhaustively.

(def-class abstraction (goal-specification-task) ?task

  "The goal of this task is to abstract from the given observables, using the given

   abstractors.  Note that the output also includes the original (non-abstracted)

   observables"

  ((has-input-role :value has-observables

                   :value has-abstractors)

   (has-output-role :value has-abstract-observables)

   (has-observables :type observables)

   (has-abstract-observables :type observables)

   (has-abstractors :type list)

   (has-goal-expression

    :value (kappa (?task ?observables)

                  (and (forall ?ob

                               (=> (member ?ob ?observables)

                                   (or (member ?ob ?task.has-observables)

                                       (generalized-abstract-from

                                        ?observables

                                        ?task.has-observables

                                        ?task.has-abstractors))))

                       (not (exists (?ab ?new-ob)

                                    (and (member ?ab ?task.has-abstractors)

                                         (abstractor-is-applicable?

                                          ?ab ?observables)

                                         (= ?new-ob (apply-abstract-operator

                                                     ?ab ?observables))

                                         (not (member ?new-ob

                                                      ?observables))))))))))

Our classification library contains an ‘obvious’ method which applies abstractors to the given

data space (observables) repeatedly until no more abstractions can be performed.  It returns

the complete set of observables - i.e., both those inferred by abstraction and those given as

input.
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(def-class abstraction-psm (primitive-method) ?psm

  ((has-control-role :value has-current-observables

                     :value has-current-abstractors)

   (has-current-observables :type observables)

   (has-current-abstractors :type list)

   (has-body

    :value  '(lambda (?psm)

               (do

                 (set-role-value ?psm 'has-current-observables

                                 ?psm.has-observables)

                 (set-role-value ?psm 'has-current-abstractors

                                 ?psm.has-abstractors)

                 (repeat

                  (in-environment

                   ((?ab . (achieve-generic-subtask

                            ?psm select-abstractor

                            'has-observables

                            ?psm.has-current-observables

                            'has-abstractors

                            ?psm.has-current-abstractors)))

                   (if (abstractor ?ab)

                     (do

                       (set-role-value

                        ?psm 'has-current-abstractors

                        (remove ?ab

                                (role-value ?psm 'has-current-abstractors)))

                       (in-environment

                        ((?obs . (the ?obs2 (has-current-observables ?psm ?obs2)))

                         (?ob . (achieve-generic-subtask ?psm one-step-abstraction

                                                         'has-abstractor ?ab

                                                         'has-observables ?obs)))

                        (if (and (observable ?ob)

                                 (not (member ?ob ?obs)))

                          (set-role-value ?psm 'has-current-observables

                                          (cons ?ob ?obs)))))

                     (return ?psm.has-current-observables)))))))))

The abstraction PSM makes use of two subtasks, select-abstractor and one-step-

abstraction.  The former selects an abstraction mechanisms from those available and the

latter performs each individual abstraction inference.  These tasks and the associated PSMs

are fairly trivial and therefore we do not need to discuss them here.  The full specification of

these components is provided in Appendix 2.

6.4.2. Solution Ranking

The goal of task rank-solutions is to produce a list of solutions ordered according to the

given match criterion - see next definition.
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(def-class rank-solutions (goal-specification-task) ?task

  ((has-input-role :value has-candidate-solutions

                   :value has-observables

                   :value has-match-criterion)

   (has-output-role :value has-solutions)

   (has-candidate-solutions :type solution-space)

   (has-observables :type observables)

   (has-match-criterion :type match-criterion

                        :default-value default-match-criterion)

   (has-solutions :type solution-space)

   (has-goal-expression

    :documentation

    "The goal is to rank the classes according to the match criterion.

     The output should be a list of solutions, in which no solution follows

     one which is worse"

    :value (kappa (?task ?solutions)

                  (forall (?sol1 ?sol2)

                          (=> (and (member ?sol1 ?solutions)

                                   (member ?sol2 ?solutions)

                                   (precedes ?sol1 ?sol2 ?solutions))

                              (not (better-match-score ?sol2 ?sol1))))))))

The definition below shows the control regime of a PSM which can be used to solve the rank-

solutions task.

(def-class rank-solutions-psm (composite-method) ?psm

  (....

   (has-body

      :value '(lambda (?psm)

                (do

                  (loop for ?candidate in ?psm.has-candidate-solutions

                      do

                      (set-role-value

                       ?psm has-sol-score-pairs

                       (cons (list-of ?candidate

                                      (achieve-generic-subtask

                                       ?psm basic-heuristic-match

                                       'has-observables ?psm.has-observables

                                       'has-candidate-solution ?candidate

                                       'has-match-criterion

                                           ?psm.has-match-criterion))

                              ?psm.has-sol-score-pairs)))

                  (map 'first

                       (sort ?psm.has-sol-score-pairs

                             '(kappa (?pair1 ?pair2)

                                    (better-match-score

                                     (second ?pair1)(second ?pair2)

                                     ?psm.has-match-criterion)))))))))

The above method uses subtask basic-heuristic-match to compute the score of each

candidate solution and then sorts the resulting <solution, score> pairs according to the score

comparison relation associated with the given match criterion. The specification of the basic-
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heuristic-match task and a related PSM can be found in Appendix 2. The task itself is very

straightforward: the interesting aspect of the matching process is not computational but

ontological.  In other words, our library provides a generic framework for heuristic matching,

which is generic with respect to the various match criteria which can be defined. This

approach facilitates the reuse and configuration of our library: it is much easier to configure

an application by acquiring or selecting components than by modifying behaviour.

6.4.3. Refinement and refinement-PSM

The goal of this task is to take a solution at a given level of refinement, say n, and generate all

its possible refinements, using the given set of refiners. If a solution at level n cannot be

refined, the method returns the empty list.

(def-class refinement (goal-specification-task) ?task

  ((has-input-role :value has-candidate-solution

                   :value has-observables

                   :value has-refiners)

   (has-output-role :value has-refined-solutions)

   (has-candidate-solution :type solution)

   (has-observables :type observables)

   (has-refined-solutions :type solution-space)

   (has-refiners :type list)

   (has-goal-expression

    :value

    (kappa (?task ?solutions)

           (forall ?sol

                   (=> (member ?sol ?solutions)

                       (exists ?ref

                               (and (member ?ref ?task.has-refiners)

                                    (member ?sol

                                            (apply-refiner-operator

                                             ?ref

                                             ?task.has-candidate-solution))))))))))

The PSM given below provides a way to carry out solution refinement.  It uses task collect-

applicable-refiners to identify all the applicable refinements and task apply-refiners to

generate the refined solutions.  The definitions of these tasks can be found in Appendix 2.

(def-class vanilla-refinement-psm (decomposition-method) ?psm

  "This method applies all refiners applicable to the given input solution"

  ((has-body

    :value

    '(lambda (?psm)

       (in-environment

          ((?sol . ?psm.has-candidate-solution)

           (?refs . (achieve-generic-subtask

                     ?psm collect-applicable-refiners

                     has-solution ?sol

                     has-refiners ?psm.has-refiners)))

        (achieve-generic-subtask ?psm apply-refiners

                                 has-solution ?sol

                                 has-refiners ?refs)))))
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6.5. Summing up

Figure 5 summarizes the main tasks and PSMs discussed in this section.  As shown in the

figure the two classification PSMs presented here share the same task-method structure.

Essentially they provide alternative search methods on classification search spaces. This

relative simplicity of the task-method structure is not accidental and it is unlikely to change

even when extensions to the library are made.  The lesson seems to be that once a

sophisticated task ontology is provided, then different behaviours result mainly from the

nature of the task, the chosen search methods and the selected match, solution admissibility

and solution exclusion criteria.

Figure 5.  Main tasks and PSMs in the classification library

7. AN EXAMPLE: APPLE CLASSIFICATION

In this section we provide an example of the use of the library on a simple problem of apple

classification.  The goal of the application is to identify an unknown apple from its features,

e.g., from her background colour, foreground colour, foreground pattern, size, taste, etc.  The

domain model we use has been provided by the University of Amsterdam and was developed

prior to the development of the library.  Hence it is totally independent of the task and method

components of the library. The only changes we made to the original domain model were i) to

translate if from a Prolog notation to OCML and to augment it with some new knowledge

about types of apple, to allow us to illustrate the abstraction and refinement mechanisms.  We

should emphasize that these new types of apples added by us are complete fantasies.

7.1. Domain model

Our domain model consists of a hierarchy of apple types structured by means of

class/subclass links.  Figure 6 shows an illustrative subset of the domain model, which in total

abstraction

heuristic-classification-psm

classification

rank-solutions refinement

basic-heuristic-matchselect-abstractor one-step-abstraction collect-refiners apply-refiners

abstraction-psm refinement-psmrank-solutions-psm
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contains 29 classes.  Each class is described by a number of single-valued attributes, such as

her colour, size, taste, etc.  For instance, granny apples are represented as follows:

(def-class granny (apple)

  "Granny Smith"

  ((has_foreground :value no)

   (background :value green)

   (rusty :value no)))

It is important to emphasize that, in order to test the reusability of both the domain model and

the library components, no changes were made to the given domain model, other than

translating to OCML and augmenting it with some extra classes.

7.2. Application configuration

The application configuration process involves defining an application ontology, which

comprises both the domain model and the task and PSMs specifications included in the

library.  These in turn are based on the associated ontologies.  The resulting model inclusion

structure is shown in figure 7. This shows that the apple classification application ontology

also includes a generic task-domain mapping ontology, which configures the generic notions

of solution feature for the class representation used in the apple domain model.  Because such

approach (representing solutions as classes and specifying features through class slots) is far

from unusual, this generic mapping mechanism is provided as part of the classification

library.

7.2.1. Task Configuration

In order to configure the generic specification of a classification task for a particular

application the following types of knowledge must be instantiated:

fruit

apple

present

us-granny

deliciousnoblegranny

eu-granny

high-sweet-granny low-sweet-grannymiddle-sweet-granny

Figure 6.  Illustrative subset of the domain model.
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• Solution Classes.  In this scenario these will be the types of apples

• Observables.  This provides a case input, i.e., an input to be provided each time we

want to test the application for a particular case.

• Match Criterion.  By default we use the four-dimensional criterion discussed in section

3.3.

• Solution Admissibility Criterion.  The choice of this criterion tends to vary depending

on whether we are interested in optimal or simply admissible solutions.  In the latter

case we need a strong criterion, such as complete coverage (i.e., all observables should

be explained).  In the former case a weaker criterion, such as positive coverage, may be

sufficient.

OCML provides a relation mapping mechanism to support the process of defining bridges.

Thus, we can link the task-level notion of solution to the domain-level notion of apple as

follows:

(def-relation-mapping solution :up

  ((solution ?x)

   if

   (or (= ?x apple)

       (subclass-of ?x apple))))

Classification Task
Ontology

Heuristic Classification
Ontology

Apple Heuristic Classification
Application

Classification Task
Specification

Classification-to-Class-Representation
Mapping Ontology

Apple
Domain  Model

Heuristic Classification
PSMs

Figure 7.  Model inclusion structure in the apple classification application.
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The above definition defines an upward (or read-only) mapping from the domain level to the

task level.  Basically it says that something is a solution if it is either the class apple or one of

its subclasses.  OCML also provides mechanisms for defining downward mappings (i.e., to

reflect down to the domain level knowledge inferred at the task level).  More details on the

OCML mapping mechanism can be found in (Motta, 1999).

Analogously we can use the relation mapping mechanism to link the generic notion of

observable and the associated relations has-observable-feature and has-observable-value to

the simple list-based notation we are going to use to input observables to our problem solver.

(def-relation-mapping observable :up

  ((observable ?x)

   if

   (== ?X ( ?f ?v))

   (or (and (slot-of ?f ?c)

            (or (= ?c apple)

                (subclass-of ?c apple)))

       (= ?f sugar))))

(def-relation-mapping has-observable-feature :up

  ((has-observable-feature ?ob ?f)

   if

   (== ?ob (?f ?v))))

(def-relation-mapping has-observable-value :up

  ((has-observable-value ?ob ?v)

   if

   (== ?ob ( ?f ?v))))

7.2.2. PSM Configuration

Our heuristic classification PSMs introduce three additional types of knowledge which have

to be supplied by the domain.

• Abstraction Mechanisms.  For illustration purposes we have augmented the domain

model developed at the University of Amsterdam to include two attributes, sugar-

level and sweetness-level, such that it is possible to perform qualitative abstraction

from the former to the latter. The resulting abstraction mechanism is shown in the next

section.

• Refinement Mechanisms.  Given the class-based representation of the apple knowledge

base, we can use the generic refiner refinement-through-subclass-of-links, shown in

section 6.2.2.

• Solution Exclusion Criterion.  We will use the default one provided by the library,

which rules out inconsistent solutions.
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7.2.3. Abstractors

The definition below shows the sample abstraction mechanism defined for the apple

classification application.  The definition abstracts the quantitative reading of the sugar level

in an apple to a qualitative sweetness value, which can be one of {high, medium, low}. The

abstraction mechanism can be applied if the input set of observables include the feature

sugar-level.

(def-instance sugar-abstractor abstractor

  ((has-body '(lambda (?obs)

                (in-environment ((?v . (observables-feature-value

                                        ?obs 'sugar-level)))

                                (cond ((>= ?v 70) '(sweetness-level high))

                                      ((and (< ?v 70) (> ?v 40))

                                       '(sweetness-level medium))

                                      ((<= ?v 40) '(sweetness-level low))))))

   (applicability-condition (kappa (?obs)

                                   (member 'sugar-level

                                            (all-features-in-observables ?obs))))))

7.2.4. Results

We have tested the application with a variety of case inputs and criteria to verify the library

and validate its applicability.  The evaluation process has been satisfactory: the components

appears to be robust and, as illustrated by the above discussion on the application

configuration process, classification applications can be prototyped very quickly and very

little additional application knowledge is required. Below, we show sample outputs from the

apple classification application.

? (apple-single-sol-classification ' ((area china)

                                      (background green)

                                      (rusty  no)))

Result:  CHINESE-GRANNY

? (apple-optimal-classification

   '((background green) (area china) (sugar-level 30)))

Result:  (LOW-SWEET-GRANNY)

8. RELATED WORK

Classification problem solving has been investigated by many researchers (Clancey 1985,

Clancey 1992, Stefik 1995, Wielinga et al. 1998, Althoff et. al.1994). The basic heuristic

classification pattern was first identified by Clancey (1985), which also discussed several

control strategies:
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• Data-directed search. The program works forwards from data to abstraction, matching

all solutions until all possible (or non-redundant) inferences have been made.

• Solution-directed search. The program works backwards from solutions,

opportunistically collecting evidence to support them.

• Opportunistic search. The program combines data and solution-directed reasoning.

Data abstraction rules tend to be applied as soon as data become available but the

system is also able to reason in a solution-directed style.  This approach is typical of

blackboard systems (Hayes-Roth and Hayes-Roth, 1979).

The current version of our library only supports data-directed search, although we also plan to

extend it with methods for solution-directed search in the future.  From a more general point

of view the main difference between our analysis and that of Clancey is that we use a much

more sophisticated framework, which combines a generic epistemology of reusable

components with the recent advances in the areas of ontologies and PSMs. As a result, our

analysis is both more detailed and more principled.  From an analytical viewpoint we provide

a precise specification of a family of classification tasks, as well as the specification of the

competence and domain assumptions associated with classification PSMs. From an

engineering viewpoint our aim is to support application development by reuse.  Hence, our

components are also operational and can be rapidly configured for specific application

domains.  In particular, the separation between tasks, PSMs, domain models and applications

provides us with a high degree of flexibility in organising and maintaining the library and in

configuring it for specific applications.

Stefik (1995) provides a very good overview of classification problem solving in the context

of his textbook on knowledge systems.  Indeed one of our goals in developing the library was

to provide effective support for the range of classification phenomena discussed by Stefik.  A

basic difference between our work here and Stefik’s analysis is the one already highlighted

when comparing our work with Clancey’s: our aim is to provide an effective library resource,

rather than simply to analyse classification problem solving.  In addition, an important feature

of our classification task specification is that we explicitly include the match and solution

admissibility criteria as input roles of the task.  Thus, the variations on the basic classification

model discussed by Stefik can be obtained by providing different fillers for a classification

task’s input criteria.  Our principled separation between task and PSM specification also

allows us to separate clearly those aspects of Stefik’s analysis associated with classification

problems (e.g., match and admissibility criteria) from those associated with the problem

solving process (e.g., the solution exclusion criterion). Another interesting consequence of

including the criteria in the declarative specification of classification tasks and PSMs is that

these criteria can then be reasoned about by the problem solver itself.  For instance, it is

relatively straightforward to define a flexible problem solver which starts with a complete

coverage criterion and then relaxes it to a positive coverage one if no complete explanation is

found.
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Classification is also discussed in (Wielinga et al 1998). Their analysis of classification

problem solving is carried out in the context of illustrating their competence theory for KBS

development, the main goal of the paper.  As a result their analysis only covers the basic of

classification problem solving, although it is carried out in a formal way and makes

interesting suggestions, such as the separation between contextual and non-contextual

features.

The classification problem has also been considered by researchers in the case-based

reasoning area (Althoff et. al. 1994).  This work mainly focuses on similarity measures, which

correspond to our match criterion.  Indeed, in the aforementioned paper Althoff et. al. present

a similarity measure function which is very similar to the default match criterion discussed in

section 3.3.

9. CONCLUDING REMARKS

The work described in this document serves four main purposes:

• To carry out a thorough analysis of classification tasks and classification problem

solving.

• To provide a useful engineering resource to support the development of classification

problem solvers by reuse.

• To provide a concrete set of components on which to test future versions of the

IBROW brokering system.

• To assess the suitability of OCML to support the IBROW approach and in particular to

identify any possible discrepancies in the underlying meta-models.

We will discuss each of these objectives in turn.

9.1. Yet another analysis of classification tasks and classification problem solving

Classification problem solving has been thoroughly analysed in the literature, so it may seem

a bit strange that new analyses are needed.  Nevertheless it seems to us that our analysis may

provide an additional useful contribution to the literature.  It is the only analysis we know of

which develops in detail a task and a PSM ontology for classification, thus highlighting and

formalizing both the various types of knowledge needed for classification and the

assumptions introduced by PSMs which perform a search in the space of candidate solutions.

9.2. A library of reusable components for classification

This is the most obvious contribution of this work to researchers and practitioners.  Our

classification library provides a practical resource which is freely accessible on the web

through the WebOnto server and that can be used to develop applied classification problem

solvers.
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9.3. A testbed for the IBROW brokering system

The main aim of the IBROW project is to provide brokering support for knowledge

component reuse over the World-Wide-Web.  In order to test whether this goal is feasible we

need to develop libraries organized according to the IBROW framework.  The library

described in this document fulfils this role.  However, we should note that the current version

of the library hardly provides any branching points (i.e., alternative PSMs) for any particular

(sub-)task. We have already commented that this may be both a side-effect of the richness of

our framework (we can achieve a great degree of differentiation in problem solving simply by

providing different task specifications and criteria) and a feature of classification problem

solving (i.e., it is a relatively simple class of problems).  Nevertheless this relative simplicity

of the library may be actually an advantage: in the first instance we can focus the work on

developing intelligent support for acquiring a task specification from a user and

operationalizing it in a scenario were only few problem solving alternatives are present.

9.4. IBROW and OCML

At a coarse-grained level of analysis there is very little difference between the IBROW

framework for reuse (Fensel et al., 1999a; 1999b) and the TMDA framework which underpins

the definition of the OCML language (Motta, 1999).  This is of course not surprising given

than one of us (Motta) has developed OCML and has also been one of the main contributors

to the UPML specification.  The main difference between the TMDA and UPML frameworks

for reuse is that the former emphasizes the distinction between application-specific problem

solving knowledge and mapping knowledge, while the latter appears to consider all

application knowledge as part of the mapping knowledge required to define task-domain or

PSM-domain bridges.

At a finer level of abstraction we need to check to what extent OCML supports the notions of

refinements and bridges which are crucial to the UPML modelling philosophy.

9.4.1. Refinement mechanisms in OCML

Classes, as well as class-based entities, such as tasks and PSMs can be specialized (i.e.,

refined) using the standard class/subclass hierarchy provided by OCML.  No refinement

mechanism is available for functions, although of course sub-ontologies can override the

definition of a function inherited from a super-ontology, thus providing a crude emulation of a

refinement mechanism.  The same situation applies to relations, although in cases in which a

relation is defined through a set of rules, it can be refined simply by adding more rules.

9.4.2. Bridge mechanisms in OCML

Task and PSM specifications can be linked to domain definitions by means of the mapping

mechanisms illustrated in section 7.2.1.  OCML also provides instance mapping mechanisms

which allow instances defined at the task level to be directly mapped to instances at the

domain level.  In our experience - see also (Motta, 1999) for examples from parametric design
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applications - these mechanisms, which are normally part of a wider application ontology, are

sufficient to bridge the gap between task and PSMs on one side and domain models on the

other side.

Where OCML exhibit some weakness is in the support for mapping PSMs to tasks.  The

current meta-ontology characterizing these notions in OCML assumes that the input roles of a

PSM include (and maybe extend) those of the task to which it is applied; no explicit role

adaptation mechanism is provided, except of course that such adaptation can occur implicitly

in the body of the PSM.  As mentioned in section 6.3.1 a fairly simple adaptation mechanism

is provided for output roles, through the combined use of the template slot has-output-

mapping and the own slot tackles-task-type.  This facility makes it possible to specify for

which class of tasks a PSM has been defined and whether any further processing of the output

of the PSM is required to conform to the requirement of the related generic task.

9.5. Final remarks

The library described in this document covers a range of classification phenomena and has

been extensively tested and validated on the apple domain.  Thus, it provides the necessary

degree of robustness to be used for developing applications and as a test case for the IBROW

broker.  Future work will aim at extending the library, in particular by providing support for

solution-directed approaches to classification.  We also plan to try out the library on more

complex problems: we are currently looking at a problem requiring the identification and

selection of manufacturing technology and we also plan to investigate scientific classification

problems.

The library is accessible online through the WebOnto web server.  However, WebOnto only

provides limited support for configuring and running PSMs.  Future work will therefore also

investigate ways to improve such support.
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