
Knowledge Modelling in
WebOnto and OCML

A User Guide

John Domingue, Enrico Motta, and

Oscar Corcho Garcia

Version 2.4

Table of contents

Introduction

The WebOnto User Guide

1 Overview 1
2 Menu and tool Bars 4

2.1 FILE ...4
2.2 EDIT...5
2.3 OBJECT ..5
2.4 ONTOLOGY ..6
2.5 OPERATIONS ..7
2.6 ANNOTATIONS ...7
2.7 BROADCAST...7
2.8 TOOL BAR..8

3 Creating and Deleting Knowledge models 8
4 Item List 10
5 Graphical Display area. 10

5.1 EDIT MODE ..13
5.2 SCENARIO ..14
5.3 SUMMARY OF MOUSE GESTURES IN THE GRAPHICAL AREA ...21

6 known bugs 22

Knowledge Modelling in OCML

1 Types of Constructs in OCML 23
1.1 FUNCTIONAL TERMS ..23
1.2 CONTROL TERMS ...23
1.3 LOGICAL EXPRESSIONS ..24

2 Basic Domain Modelling in OCML 24
2.1 OCML RELATIONS ..24

2.1.1 Relation specification options ...24
2.1.2 Operationally-relevant relation options..25
2.1.3 A meta-option for non-operational specifications...26
2.1.4 OCML relations: summing up...27

2.2 OCML FUNCTIONS ..28
2.3 OCML CLASSES ..29
2.4 OCML INSTANCES ..30
2.5 OBJECT-ORIENTED AND RELATION-ORIENTED APPROACHES TO MODELLING...............................30
2.6 THE GENERIC TELL-ASK INTERFACE ...31

2.6.1 Tell: a generic assertion-making primitive ...31
2.6.2 Ask: a generic query-posing primitive ..32

2.7 OCML PROCEDURES ...33
2.8 RULE-BASED REASONING IN OCML..33

2.8.1 Backward rules..33
2.8.2 Forward rules..34

3 Functional View of OCML 35
4 Mapping 35

4.1 INSTANCE MAPPING ...36
4.2 RELATION MAPPING...38

5 Ontologies 40
6 Comparison with Other Languages 41
7 Synopsis 44

References 43

Appendix 1 - Additional Details on OCML

1 Functional Term Constructors 48
SETOFALL...48
FINDALL...49
THE ..49
IN-ENVIRONMENT...49
QUOTE..49
IF..49
COND ...50

2 Control Term Constructors 50
IN-ENVIRONMENT...50
IF..51
COND ...51
LOOP ..51
DO..52
REPEAT ..52
RETURN..52

3 Inheritance and Default Values 52
4 Interpreters and Proof System 53

4.1 THE OCML INTERPRETER FOR FUNCTIONAL TERMS ...53
4.2 THE OCML PROOF SYSTEM...54

4.2.1 Procedure for proving basic goal expressions in OCML..54
4.2.2 Proof rules for non-basic goal expressions...54

INTRODUCTION
This document is composed of three parts. The first part describes WebOnto, a tool
providing web-based visualisation, browsing and editing support for developing and
maintaining ontologies and knowledge models specified in OCML. The description is
user-oriented, in the sense that it is meant to provide guidance to a user, rather than to
describe the tool from a scholarly perspective. The second part of the document
describes OCML, an operational knowledge modelling language, which provides the
underlying representation for the ontologies and knowledge bases which can be
developed using WebOnto. This second part is a revised version of chapter 4 of (Motta,
1999). The third part (Appendix 1), gives more details about the interpreters and
reasoning facilities provided by OCML.

This document is available from the WebOnto home page at
http://kmi.open.ac.uk/projects/webonto.

Chapter 1

The WebOnto User Guide

John Domingue

1 OVERVIEW

You can start WebOnto by going to http://webonto.open.ac.uk/. This page has the
appearance of figure 1. The page contains an invisible applet from which the classes for
the WebOnto applet are loaded. After 20 seconds the applet frames shown in figures 2
and 3 should appear. We call these the main WebOnto window and the fine-grained view
window.

Figure 2 shows a screen snapshot of the WebOnto client browsing the knowledge base
called kmi-planet-kb-drafts-220799. The main window at the top has five areas, which
are:

• The title bar – this shows the name of the knowledge model currently being browsed
and the type of the components currently displayed in the Item List. OCML
distinguishes between four types of knowledge models: domain ontologies, problem
solving methods, task ontologies and knowledge bases. The title in figure 2 indicates
that we are currently viewing the classes in kmi-planet-kb-drafts-220799 knowledge
base.

• The menu bar – we describe the menu items in the following section.

• The tool bar – the tool bar icons are described in section 2.8.

• The graphical display area. Graphical representations of selected objects from the
Item list can be displayed here.

The WebOnto User Guide Page 2

Figure 1. The initial WebOnto page. The java classes are loaded from this page.

Item List

Tool Bar Title Bar Menu Bar Graphical Display Area

Figure 2. An annotated screen snapshot of WebOnto in browsing mode depicting
the applet components.

The WebOnto User Guide Page 3

Figure 3. A snapshot of the fine-grained view window currently showing the class
kmi-knowledge-enriched-intranet.

Figure 3 shows the fine-grained view window. Messages from the server and the internal

descriptions of OCML components (displayed using the icon) are displayed here. Any
text displayed in the fine-grained view window is automatically parsed and any word that
corresponds to an OCML item is displayed in a specific colour. The colour of a word
indicates the OCML type. The current colour coding is:

• Class – green,

• Instance - turquoise,

The WebOnto User Guide Page 4

• Relation – blue,

• Function – violet,

• Procedure – violet-red,

• Rule - maroon,

• Ontology – orange.

Highlighted items can be selected and operated on. In figure 3 the relation end-time is
currently selected. Double clicking on an item has the same effect as selecting it and

clicking on the (inspect) icon.

Items can be selected in the Item List, Graphical Display Area or the Fine-Grained View
window. Selecting an item in one area deselects any selected items in the other areas (but
see known bug 1 in section 6).

2 MENU AND TOOL BARS

We shall now describe the menu bar. The menu bar contains the following menu items:

2.1 File

• Reload Ontology - reload an ontology on the server. This need only be used when a
set of files have been placed on the server by the server administrator. All the
knowledge models are loaded when the server is started up. When import/export
facilities are added to WebOnto this menu item is expected to be more heavily used.

• Login – login into WebOnto. Note that one can only edit, create or delete knowledge
models when logged in. Contact j.b.domingue@open.ac.uk if you require a login
name and password.

• Logout – logout of WebOnto.

• Change Password – change the currently logged in user’s password.

• New Ontology – create a new knowledge model. This menu item is described in
section 3.

• Delete Ontology – delete a knowledge model. This is menu item described in section
3.

• Edit Ontology Properties – edit the properties of a knowledge model. The properties
include the author of the knowledge model and the additional users who are allowed
to edit the knowledge model. This menu item is described in section 3.

• Save diagram – save the currently displayed items in the display area to a file on the
server.

• Open diagram – open a previously saved diagram.

• Reinitialise OCML - clear all the currently defined OCML structures and reload the
entire library on the server. Only the root user can do this.

The WebOnto User Guide Page 5

• Display Source File – display a one of the source files for the current knowledge
model. The user is prompted with the names of the source files on the WebOnto
server where the current knowledge model is stored. The selected file is displayed in
a display source window.

• Debug - turn on an internal debugger that sends a trace of all operations to the Java
console window.

• Quit - quit WebOnto.

2.2 Edit

• Graphical Cut - remove the currently selected object from the graphical display area.

• Delete – delete the currently selected item (only available in edit mode).

• Edit Source - edit the currently selected object (only available in edit mode).

• View Source – display the OCML source of the currently selected object.

• New Class Instance – creates an instance definition form (see section 5.2), enabling
an instance of the selected class to be created (only available in edit mode).

• Search for String – search for OCML entities within the library which contain the
specified string.

• Clear Diagram - clear the graphical area.

• Clear Before Drawing – if selected the graphical area is always cleared before
drawing a new item.

• Node Highlighting - turn on node highlighting. This feature uses the semantics of
OCML to highlight which components are allowed to be connected to each other.
This prevents users from attempting to create links that have no defined semantics in
OCML (only available in edit mode).

• Edit Mode – when selected WebOnto is placed in edit mode. See section 5.1 for a
description of WebOnto’s edit mode.

2.3 Object

• Draw - draw the current item in the graphical display area.

• Draw Tree – draw a tree, in the graphical display area, if appropriate for the
currently selected item. Currently trees are drawn for classes, tasks, problem solving
methods and knowledge models.

• Inspect - inspect the currently selected object, displaying the result in the fine-
grained view window.

• Direct Instances - show the direct instances of the currently selected class in the fine-
grained view window.

• All Instances - show all the instances of the currently selected class in the fine-
grained view window.

The WebOnto User Guide Page 6

• Display Direct Instances - show the direct instances of the currently selected class in
the graphical-display area.

• Display All Instances - show all the instances of the currently selected class in the
graphical-display area.

• Draw Tree Vertically – if selected trees are drawn vertically rather than horizontally.

2.4 Ontology

• View Classes - display all the classes in the current knowledge model in the Item list.

• View Top_classes - display the classes with no parents in the current knowledge
model in the Item list.

• View Relations - display all the relations in the current knowledge model in the Item
list.

• View Functions - display all the functions in the current knowledge model in the
Item list.

• View Procedures - display all the procedures in the current knowledge model in the
Item list.

• View Rules - display all the rules in the current knowledge model in the item list.

• View Instances - display all the instances in the current knowledge model in the item
list.

• View Tasks - display all the tasks in the current knowledge model in the item list.

• View problem_solving_methods - display all the PSMs in the current knowledge
model in the item list.

• View All – display all the OCML structures in the current knowledge model in the
item list.

• View Only Items in Current Ontology – if selected OCML entities from inherited
knowledge models are not displayed.

• Include Base Ontology – if selected OCML entities from the base ontology are
displayed.

• Change Number of Viewable Items – set a limit on the number of items which can
be viewed in the item list. This option facilitates the browsing of large knowledge
models. The default value is 150.

• Add View Filter – this menu item allows the user to create a set of filters in order to
filter viewable items in the item list. They can be combined using the operators and
and or.

• Add a String Filter - show only items containing the specified string.

• Add a Not String Filter - show only items not containing the specified string.

The WebOnto User Guide Page 7

• Add a Letter Range Filter - show only items with their first letter in the
specified range.

• Add a Predicate Filter - show only items for which the given predicate is true.
For example, typing the class name person would cause only instances of person
to be displayed.

• Delete Filter – delete a defined previously filter.

• Select Ontology – reads in the OCML structures in the selected knowledge model
and displays all the classes in the item list. It should be noted that this is subtly
different from the View items above. ‘View’ selects between different OCML types
within a knowledge model. This item allows the user to switch knowledge models. It
is recommended that this item is used when changing knowledge models.

• Unlock Ontology – when a knowledge model is edited the WebOnto server locks it
so that no-one else can edit it at the same time. Unfortunately, if WebOnto crashes
whilst a knowledge model is being edited, the knowledge model can remain locked.
This item can be used to unlock the knowledge model. Only the root user can do this.

• Graph Entire Ontology Tree - draw a graph of the inheritance hierarchy of all the
knowledge models in library.

2.5 Operations

• Tell - prompt for an OCML expression to invoke with the OCML ‘tell’ operation.

• Ask - prompt for an OCML expression to invoke with the OCML ‘ask’ operation.

• Set of All - prompt for an OCML expression to invoke with the OCML ‘setofall’
operation.

• Unassert - prompt for an OCML expression to unassert in the current knowledge
model.

• Evaluate - prompt for an OCML expression to invoke with the OCML ‘evaluate’
operation.

2.6 Annotations

• Trail – if selected dragging with the mouse button pressed draws a trail, that is, a
freehand line.

• Trail Colour - choose the colour to trail in.

• Clear - clear the currently displayed trails and text annotations.

2.7 Broadcast

• Broadcast – when selected WebOnto ‘broadcasts’ all the user’s interface actions to
WebOnto clients in receive mode.

The WebOnto User Guide Page 8

• Receive – when selected all the broadcast interface actions are ‘received’ by the
current WebOnto. Receiving WebOnto clients are in effect ‘slaves’ of the
broadcasting WebOnto.

2.8 Tool Bar

Below the menu bar there is a tool bar containing the following icons:

 - Draw the selected OCML component in the graphical display area.

 - Create a graphical representation for the currently selected OCML component. If a
class is selected a class hierarchy is drawn. In figure 2 above the class hierarchy for the
kmi-technology class is displayed.

 - Inspect the currently selected OCML component. The results are displayed in the
fine-grained view window. In figure 3 above the kmi-technology class is currently being
inspected.

 - View the last item that was inspected. The fine-grained view window keeps a history
of all the items inspected. This icon enables the user to move back through the history.

 - View the next item in the fine-grained view window history.

 - View the OCML source of selected item.

 - Search for a string in the library of knowledge models.

 - Edit the source of the selected item (only available in Edit Mode).

 - Create new instance of the selected class (only available in Edit Mode).

3 CREATING AND DELETING KNOWLEDGE MODELS

We’ll now describe how WebOnto can be used to create, delete and edit the properties of
a knowledge model. Figure 4 shows the dialog created when the menu item “New
Ontology” (under the file menu) is chosen. The dialog is used to enter the four properties
for the knowledge model, namely:

1. Name – the name of the knowledge model. In figure 4 an ontology called vehicle-
ontology is being created.

2. Ontology Uses – the names of any knowledge models that this knowledge model
should use (i.e. inherit from). The snapshot in figure 4 specifies that the vehicle-
ontology will use the engineering-ontology ontology.

3. Allowed Editors – the names of any registered users or groups (each WebOnto user
belongs to a group) who can edit the knowledge model. Figure 4 specifies that angela
and any user belonging to the vehicle-design group will be allowed to edit the
ontology.

The WebOnto User Guide Page 9

4. Ontology Type – the type of the knowledge model, this can be one of: domain,
method, task or application/knowledge-base.

Figure 4. A screen snapshot of the ‘Create New Ontology’ dialog box.

The “Delete Ontology” menu item under the file menu allows users to delete any
knowledge models that they own. The dialogue box displayed for this menu item displays
any knowledge models that the current WebOnto user owns (not the ones that s/he is just
allowed to edit), except for the current knowledge model.

When a user selects the “Edit Ontology Properties” menu item under the file menu a
dialog containing a menu of all the knowledge models owned by the user is displayed. A
snapshot of this dialog is shown in figure 5. When the user selects the “OK” button the
dialog shown in figure 6 is displayed. This dialog is similar to the dialog for creating new
knowledge models. The only difference is that the dialog allows the author of the
knowledge model to be changed.

Figure 5. A screen snapshot of the first ‘Edit Ontology Properties’ dialog box. The
menu on the right contains all the knowledge models owned by the current user.

The WebOnto User Guide Page 10

Figure 6. A screen snapshot of the second ‘Edit Ontology Properties’ dialog box.

4 ITEM LIST

The item list displays items of the currently viewed knowledge model. The “Ontology”
menu (see section 2.4) allows the user to control which items within the knowledge
model are displayed. Using the “Ontology” menu the user can specify:

• That only items of a specified OCML type (classes, instances, relations, functions,
procedures, rules, PSMs, tasks) are displayed.

• Whether OCML entities inherited from ancestor knowledge models are displayed.

• Whether OCML entities from the base-ontology are displayed.

• An numeric limit on the number of items displayed - this is useful when browsing
very large ontologies,

• Filters which are used to cut down the number of items displayed. Again this is useful
when browsing very large ontologies.

5 GRAPHICAL DISPLAY AREA.

The WebOnto User Guide Page 11

Figure 7. A screen snapshot showing a user annotating part of a class hierarchy in
broadcast mode.

The graphical display area can be used for three different purposes:

• Knowledge model visualization –graphical representations of OCML entities can be
drawn in the area (using the or icon).

• Synchronous communication – when WebOnto is in broadcast mode, interface
actions are copied to all receiving WebOnto clients.

• Editing – OCML definitions can be created and edited using the graphical display
area.

Figure 7 shows a user using the sketching facilities in WebOnto to communicate with a
colleague whilst in broadcast mode. When the “Trail” menu item (under the
“Annotation” menu (see section 2.6)) is selected dragging the mouse with the left button
pressed draws a line in the selected “Trail Colour”. Clicking in the graphical area with the
control button pressed creates a prompt for a text annotation (note that WebOnto must be
in browsing mode). In figure 7 the user has drawn a red trail around a subclass link and
then created a text annotation.

When the “Trail” button is not selected then dragging with the left mouse button draws a
shaded area enabling multiple nodes to be selected. This is shown in figures 8 and 9
below. Single node selection is shown by four pimples – one at each corner of the node.
Multiple node selection, as shown in figure 9, is shown by dark shading.

The WebOnto User Guide Page 12

Figure 8. A screen snapshot showing a user selecting a number of nodes.

Figure 9. A screen snapshot showing 3 selected nodes. These nodes can be moved or
cut in a single operation if desired.

The WebOnto User Guide Page 13

5.1 Edit Mode

Figure 10. A screen snapshot showing how the appearance of WebOnto changes
when it is in edit mode.

Figure 10 shows how the appearance of WebOnto changes when it is put into edit mode.
Two new icons appear in the tool bar:

 - Edit the currently selected object, and

 - Create an instance of the currently selected class.

Additionally, a well from which new OCML definitions can be created is displayed. The
graphical display area can be used to create OCML definitions by direct manipulation.
WebOnto understands the semantics of OCML and prevents the user from creating
semantically incorrect definitions in four ways:

1. Node linking/highlighting - Nodes can only be linked if this action is semantically
correct. As the user moves the mouse around linkable nodes are highlighted. Node
highlighting can be turned using the “Node Highlighting” menu item under the “Edit”
menu.

2. Automatic creation of templates and forms - The manipulation of new nodes (e.g.
linking them to existing nodes) results in the automatically insertion of source code.
For example, if a new class class1 is linked to an existing class class2 the source

The WebOnto User Guide Page 14

code (defclass class1 (class2)) is written. The editing of instances is aided by the
automatic creation of forms. These are described in more detail in section 5.2.

3. Prompting for component parts - in figure 15 the user has linked the class academic to
the class url. When a user does this a selector (works-at in figure 15) is automatically
created. The selector contains all the slots within the academic class, so the user has to
merely select a slot rather than recall and type a slot’s name.

4. Semantic colour coding - all the links drawn by the user between graphical icons are
automatically colour coded depending on the type of link (e.g. class to subclass links
are dark green, and class to instance links are blue).

5.2 Scenario

We shall describe the features available in WebOnto’s edit mode using a short scenario.
In the scenario below we describe how a user adds some classes and instances to the
tutorial-ontology ontology. The user selects the ontology and initiates an editing
session in using the following steps. The user:

1. Selects “Clear Diagram Before Drawing” under the “Edit” menu.

2. Selects the “Graph Entire Ontology Tree” menu item under the “Ontology” menu (see
figure 11). Each knowledge model within the displayed tree is colour coded
according to the knowledge model type:

1. Beige – the basic-ontology,

2. Light gold – a domain ontology,

3. Light red – an application or knowledge base,

4. Light blue – a problem solving method,

5. Yellow – a task ontology.

3. Selects the node tutorial-ontology (see figure 11).

4. Selects the “Select Ontology” menu item under the “Ontology” menu.

5. Selects the “Edit Mode” menu item under the “Edit” menu.

The WebOnto User Guide Page 15

Figure 11. A screen snapshot of WebOnto displaying the structure of the knowledge
models within the library. This can be obtained by selecting the “Graph Entire
Ontology Tree” menu item under the “Ontology” menu. The colours indicate the
knowledge model type.

The user defines a new class senior_lecturer which is a subclass of the class academic
by using the following steps. Specifically, the user:

1. Selects the academic class in the item list” and clicks on the icon.

2. Drags the Class node from the well onto the graphical display area. Notice (see figure
12) that the node label for the new class Class1 is displayed in a bold italic font
because no definition for the node exists on the WebOnto server.

3. Clicks on the academic class node in the graphical display area with the mouse, whilst
holding the control key down, and drags a line to the Class1 node.

4. Selects the Class1 node and clicks on the icon. This creates the edit window
shown in figure 13.

5. Changes the name of the class in the edit window (see figure 13) to “senior_lecturer”
and hits the “Done” button.

The user then specifies that the has-web-address slot of the academic class should be of
type url by carrying out the following steps. The user:

1. Defines a new class url in the following manner. The user drags the Class node from

the well onto the graphical display area, clicks on the icon, edits the code in the
edit window changing the class name from “Class2” to “url” and then clicks on the
“Done” button.

2. Clicks on the class academic with the mouse and drags to the class url. The user
presses and holds down the “Shift” button and then releases the mouse button (see
figure 14).

The WebOnto User Guide Page 16

3. Clicks on the label “unset” and chooses “has-web-address” from the selector label
(see figure 15). The definition of the academic class is automatically changed to:

(def-class academic (educational-employee)
 ((has-web-address :type url)))

The user creates an instance of professor using the following steps:

1. Selects the professor node in the graphical display area and clicks on the icon.
The form shown in figure 16 appears. Each slot in an instance form is represented by
a row containing two or four columns. The first column contains a button with the
slot name. Pressing the button causes all examples of the use of the slot to be
displayed in the fine-grained view window. Figure 17 shows the output in the fine-
grained view window after the “works-at” button has been pressed. The second
column contains a text window into which a value can be typed. If the slot is typed a
third and fourth column are provided. The third column is a menu containing the
types defined for the slot and the subclasses of the defined types. The fourth column
is a menu containing the instances of the selected type.

2. Starts to fill in the works-at slot. Examples of how the works-at slot has been used
(shown in figure 17) are obtained by pressing the “works-at” button.

3. Selects “higher-educational-organization” from the type menu (see figure 18).

4. Selects “New Instance” from the instances menu (see figure 19). This causes a new
instance form for the class higher-educational-organization to be created (see
figure 20).

5. Fill in the instance form for the higher-educational-organization class.

6. Fill in the remainder of the professor instance slots and hits the “OK” button.

Finally, the user ends the session by selecting the “Edit Mode” menu item under the
“Edit” menu. WebOnto indicates that the persons-and-organizations ontology is now
unlocked. The appearance of WebOnto at the end of the session is shown in figure 21.

The WebOnto User Guide Page 17

Figure 12. A screen snapshot showing a new class node Class1 being dragged from
the well.

Figure 13. A screen snapshot showing the edit window created by selecting the
Class1 node shown in figure 9 and clicking on the icon.

The WebOnto User Guide Page 18

Figure 14. A screen snapshot just after the user has created a type link from the
academic class to the url class.

Figure 15. A screen snapshot just after the user has clicked on the “unset” label in
the type link in figure 14 and before selecting “has-web-address”.

The WebOnto User Guide Page 19

Figure 16. A screen snapshot of the professor instance form automatically created
by WebOnto.

Figure 17. A screen snapshot of the fine-grained view window showing examples of
the use of the slot works-at. This message was obtained by pressing on the “works-
at” button in the instance form show in figure 16 above.

Figure 18. A screen snapshot of type menu for the works-at slot of the professor
instance form.

The WebOnto User Guide Page 20

Figure 19. A screen snapshot of the instance menu for the type higher-educational-
organization for the work-at slot of the professor instance form.

Figure 20. A screen snapshot of the higher-education-organization instance form for
the slot works-at generated automatically by WebOnto.

The WebOnto User Guide Page 21

Figure 21. A screen snapshot showing WebOnto when the editing session has been
terminated.

5.3 Summary of Mouse Gestures in the Graphical Area

Within WebOnto a number of operations can be carried out using mouse gestures in the
Graphical Display window. The effect of a mouse gesture is dependent on WebOnto’s
current mode (browse or edit) and the gesture’s start and end points. We summarise the
possible operations in the following tables.

In Browse Mode

Gesture Start End Result

Mouse Down Node Select the node

Control Mouse Down Prompt for a text annotation

Mouse Drag Node Move a node

Mouse Drag Not over a Node Specify a select region

In Browse Mode with the “Trail” menu item under the “Annotation Menu” selected.

Gesture Start End Result

Mouse Drag Draw a freehand line

The WebOnto User Guide Page 22

In Edit Mode

Gesture Start End Result

Control Shift Mouse
Down

Node Create a text window to
change the node name

Control Mouse Drag Class Node1 Class
Node2

Create a superclass link
from node1 to node2

Control Mouse Drag Instance Node1 Class
Node2

Create an instance-of link
from node1 to node2

Control Mouse Drag Class Node1 Instance
Node2

Create a default-value link
from node1 to node2

Control (delayed Shift)
Mouse Drag

Class Node1 Class
Node2

Create a type-of link from
node1 to node2

6 KNOWN BUGS

Currently there are three known bugs which can not be fixed trivially.

1. Deselection of items - Whenever an item is selected in either the item list, graphical
area, or the fine-grained view window selected items in the other windows are deselected.
Unfortunately, it is not possible to detect a selection using a single mouse click in the
item list. You can select an item in the item list using a single mouse click but the event is
not sent to WebOnto. Consequently, when an item is selected in the item list the currently
selected items in the other two windows are not deselected.

2. Double clicking – Double clicking on an item in the item list or the fine-grained view
window causes the item to be inspected. Double clicking is not always detected. This
varies between hardware and operating system platforms.

3. No warnings before deleting a class - When deleting a class which has instances,
there is no warning on the feature that every instance of the class is also deleted.

Chapter 2

Knowledge Modelling in OCML

Enrico Motta

The modelling language described in this chapter, OCML, was originally developed in
the context of the VITAL project (Shadbolt et al., 1993), to provide operational
modelling capabilities for the VITAL workbench (Domingue et al., 1993). Over the
years the language has undergone a number of changes and improvements and in what
follows I will present an overview of the current version of the language (v6.3) and
compare it to alternative knowledge modelling languages. Moreover, I will also illustrate
a subset of the application development interface supporting the construction of OCML
models. This interface consists of a number of Lisp macros and functions which can be
used for retrieving and modifying OCML constructs, for evaluating functional and
control terms, and for querying an OCML model.

1 TYPES OF CONSTRUCTS IN OCML

OCML supports the specification of three types of constructs: functional and control
terms, and logical expressions.

1.1 Functional terms

A functional term - in short, a term - specifies an object in the current domain of
investigation. A functional term can be a constant, a variable, a string, a function
application or can be constructed by means of a special term constructor. This can be
one of the following: if, cond, the, setofall, findall, quote and in-environment1 - see
appendix 1 for a description of the semantics of these terms. Variables are represented as
Lisp symbols beginning with a question mark - e.g., ?x is a variable. Strings are
sequences of characters enclosed in double quotes, e.g. "string". A function application
is a term such as (fun {fun-term}*), where fun is the name of a function and fun-term a
functional term. Functions are defined by means of the Lisp macro def-function, which
is described in section 2.2.
Functional terms are evaluated by means of the OCML function interpreter.

1.2 Control terms

Modelling problem solving behaviour involves more than making statements and
describing entities in the world. Control terms are needed to specify actions and describe
the order in which these are executed. OCML supports the specification of sequential,
iterative and conditional control structures by means of a number of control term

1 In what follows I will use this font to refer to expressions in the OCML language.

Knowledge Modelling in OCML Page 24

constructors, such as repeat, loop, do, if, and cond2. A Lisp macro, def-procedure,
makes it possible to label parametrized control terms - i.e. to define procedures. Control
terms are evaluated by means of a control interpreter.

1.3 Logical expressions

OCML also provides the usual machinery for specifying logical expressions. The
simplest kind of logical expression is a relation expression, which has the form (rel {fun-
term}*), where rel is the name of a relation and fun-term is a functional term. More
complex expressions can be constructed by using the logical operators - and, or, not, =>,
<=> - and quantifiers - forall and exists. Operational semantics is provided for all
operators and quantifiers. Relations are defined by means of the Lisp macro def-
relation, which is described in section 2.1.

2 BASIC DOMAIN MODELLING IN OCML

In the previous section I have introduced the three types of constructs which are
supported by OCML. In this section I will go down at a more fine-grained level of
description and I will illustrate the various primitives which are provided in OCML to
support the specification of logical expressions, functional and control terms. In
particular, OCML provides mechanisms for defining relations, functions, classes,
instances, rules and procedures.

2.1 OCML relations

Relations allow the OCML user to define labelled n-ary relationships between OCML
entities. Relations are defined by means of a Lisp macro, def-relation, which takes as
arguments the name of a relation, its argument schema, optional documentation and a
number of relation options. An argument schema is a list (possibly empty) of variables.
Relation options play two roles, one related to the formal semantics of a relation, the
other to the operational nature of OCML. These roles are discussed in the next two
sections.

2.1.1 Relation specification options

From a formal semantics point of view the purpose of a relation option is to help to
characterize the extension of a relation. Table 2.1 shows the relation options which can
be used to provide formal relation specifications and, for each option, informally
describes its semantics. A formal semantics to these options can be given in terms of the
homonymous Ontolingua constructs.

2 The careful reader will have noticed that I have already mentioned if and cond when discussing

functional terms. In fact, if and cond can be used to construct both functional and control terms.
However this does not cause any problem. For instance, if an if construct is encountered when
expecting a functional term then an error will be generated if control terms are used in the body of the
if. The opposite however is not true: functional terms can always be used in place of control terms.

Knowledge Modelling in OCML Page 25

2.1.2 Operationally-relevant relation options

Relation options also play an operational role. Specifically, some relation options
support constraint checking over relation instances while others provide proof
mechanisms which can be used to find out whether or not a relation holds for some
arguments. Table 2.2 lists the relation options which are meaningful from an operational
point of view and informally describes their relevance to constraint checking and theorem
proving.
As shown in the table, constraint checking is supported by the following keywords:
:constraint, :def and :iff-def. While these have different model-theoretic semantics -
see table 2.1 - from a constraint checking point of view they are equivalent. They all
specify an expression which has to be satisfied by each known instance of the relevant
relation.

The relation options :iff-def, :sufficient, :prove-by and :lisp-fun provide

Relation Option Role in Specification

:iff-def Specifies both sufficient and necessary conditions
for the relation to hold for a given set of arguments.

:sufficient Specifies a sufficient condition for the relation to
hold for a given set of arguments.

:constraint Specifies an expression which follows from the
definition of the relation and must be true for each
instance of the relation.

:def This is for compatibility with Ontolingua: it
specifies a constraint which is also meant to provide
a partial definition of a relation.

:axiom-def A statement which mentions the relation to which it
is associated. It provides a mechanism to associate
theory axioms with specific relations.

Table 2.1. Relation specification options in OCML.

Relation
Option

Supports
constraint checking

Provides
proof mechanism

:sufficient No Yes

:prove-by No Yes

:lisp-fun No Yes

:iff-def Yes Yes

:constraint Yes No

:def Yes No

Table 2.2. Operationally-relevant relation options in OCML.

Knowledge Modelling in OCML Page 26

mechanisms for verifying whether or not a relation holds for some arguments. The first
two - :iff-def and :sufficient - also play a specification role - see table 2.1. The others
- :prove-by and :lisp-fun - only play an operational role.

Both :iff-def and :sufficient indicate logical expressions which can be used to prove
whether some tuple is an instance of a relation. From a theorem proving point of view
there is an important difference between them. Let’s suppose we are trying to prove that
a tuple, say T, satisfies a relation, say R. If a :sufficient condition is tried and failed,
the OCML proof system will then search for alternative ways of proving that T satisfies
R. If an :iff-def condition is tried and failed, then no alternative proof mechanism will
be attempted.

The relation options :prove-by and :lisp-fun are meant to support rapid prototyping and
early validation by providing efficient mechanisms for checking whether a tuple satisfies
a relation. The difference between :prove-by and :lisp-fun has to do with the
expressions which are used as values to the two options: :prove-by points to a logical
expression, :lisp-fun to a non-logical one (specifically a Lisp expression).

The box below provides an example of how the various types of relation options can be
used concurrently to specify a relation and to support constraint checking and efficient
proofs. This example is taken from a task ontology for parametric design problems
(Motta, 1999) – see http://chaucer.open.ac.uk:3000/webonto?ontology=parametric-design

The relation has-value, shown below, associates a design parameter to its value in a
design model. The definition specifies that ?v is the value of a parameter, ?p, in a design
model, ?dm, if and only if the pair (?p . ?v) is an element of ?dm. In addition, it also
specifies the constraint that the value of a parameter has to be a member of its value
range, if this has been specified. Finally, the definition includes a :prove-by option
whose value is an expression which can be used for verifying whether the relation is
satisfied for a triple, (?p ?v ?dm). This expression provides an efficient proof method
(by weakening the :iff-def statement which formally defines relation has-value) but
does not contribute to the specification.

(def-relation HAS-VALUE (?p ?v ?dm)
 "Parameters have values w.r.t a particular design model"
 :iff-def (and (parameter ?p)
 (design-model ?dm)
 (element-of (?p . ?v) ?dm))
 :constraint (or (and (exists ?vr
 (has-value-range ?p ?vr))
 (element-of ?v ?vr))
 (not (exists ?vr
 (has-value-range ?p ?vr))))
 :prove-by (element-of (?p . ?v) ?dm))

2.1.3 A meta-option for non-operational specifications

As shown above, OCML provides a number of relation options, which play both a
specification and an operational role. However, in some cases we might want to use a

Knowledge Modelling in OCML Page 27

keyword only for specification and not operationally, for instance when we know that the
value of the keyword in question is a non-operational expression. To cater for these
situations, OCML provides a special meta-keyword, :no-op, which can be used to
indicate that the enclosed relation option only plays a specification role. An example of
its use is shown by the definition of relation range, which is shown below. In the
example the keyword :no-op is used to indicate that the :iff-def specification of the
relation is not operational - in particular it is not normally feasible to test the range of a
function on all its possible inputs!3

(def-relation RANGE (?f-r ?relation)
 "The range of a function or a binary relation is a relation which is
 true for any possible output of the function or second argument of
 the binary relation"
 :no-op (:iff-def (or
 (and (function ?f-r)
 (forall (?args ?result)
 (=> (= (apply ?f-r ?args) ?result)
 (holds ?relation ?result))))
 (and (binary-relation ?f-r)
 (forall (?x ?y)
 (=> (holds ?f-r ?x ?y))
 (holds ?relation ?y))))))

In the above definition it is worth highlighting the use of the special meta-relation holds.
An expression such as (holds <r> <arg1>....<argn>) is satisfied if and only if the
expression (<r> <arg1>....<argn>) is satisfied. Thus holds has variable arity: it can take
one or more arguments. In particular the number of additional arguments in a holds
statement reflects the arity of the relation passed as first argument. The relation holds
has a ‘special status’ because it is the only relation with variable arity supported by
OCML.4

2.1.4 OCML relations: summing up

The set of relation options discussed here aims to provide a flexible and versatile range of
modelling constructs supporting various styles of modelling. While the emphasis is on
operational modelling, OCML also supports formal specification. Moreover, it provides
facilities for integrating a specification with efficient proof mechanisms.

3 Ontolingua-aware readers may have induced from the definition of the relation range that, in contrast

with Ontolingua, OCML does not considers functions as relations. This has to do with the operational
nature of the language: functions are dealt with by the OCML interpreter, relations by the proof system.

4 This constraint is only a limitation of the current implementation of the language: in principle there is
no reason why variable-arity relations should not be supported. Moreover, in contrast with relations,
OCML functions can have variable arity. To specify that a function can take an indefinite number of
arguments OCML uses the same convention as Lisp: the symbol &rest is used before the last argument
of a function argument schema.

Knowledge Modelling in OCML Page 28

2.2 OCML functions

A function defines a mapping between a list of input arguments and its output argument.
Formally functions can be characterized as a special class of relations, as in KIF
(Genesereth and Fikes, 1992). However, in operational terms there is a significant
difference between a function and a relation: functions are applied to ground terms to
generate function values; relation expressions can be asserted or queried. Thus, in
accordance with the operational nature of OCML, functions are distinguished from
relations.
Functions are defined by means of a Lisp macro, def-function. This takes as argument
the name of a function, its argument list, an optional variable indicating the output
argument (as in Ontolingua this is preceded by an arrow, ->), optional documentation and
zero or more function specification options. These are :def, :constraint, :body and
:lisp-fun.

The option :constraint provides a way to constrain the domain (i.e. the set of possible
inputs) of a function. It specifies a logical expression which must be satisfied by the
input arguments of the function. The :def option indicates a logical expression which
‘defines’ the function. This expression should be predicated over both (some) input
arguments and the output variable. Operationally, the expression denoted by the
:constraint option provides a mechanism for testing the feasibility of applying a
function to a set of arguments. The expression denoted by :def provides a mechanism
for verifying that the output produced by a function application is consistent with the
formal definition of the function.5

Finally, the options :body and :lisp-fun provide effective mechanisms for computing
the value of a function. The former specify a functional term which is evaluated in an
environment in which the variables in the function schema are bound to the actual
arguments. The latter makes it possible to evaluate an OCML function by means of a
procedural attachment, expressed as a Lisp function. The arity of this Lisp function
should be the same as that of the associated OCML function.

(def-function filter (?l ?rel) -> ?sub-l
 "Returns all the elements in ?l which satisfy ?rel"
 :def (and (unary-relation ?rel)
 (list ?l))
 (list ?sub-l)
 (=> (and (member ?x ?sub-l)
 (holds ?rel ?x))
 (member ?x ?l)))
 :body (if (null ?l)
 ?l
 (if (holds ?rel (first ?l))
 (cons (first ?l)
 (filter (rest ?l) ?rel))
 (filter (rest ?l) ?rel))))

5 These constraint-checking mechanisms can be switched off, if they are not required.

Knowledge Modelling in OCML Page 29

The above definition shows an example of the use of def-function. The OCML function
filter takes as arguments a list, ?l, and a unary relation, ?rel, and returns the elements
of ?l which satisfy ?rel. As illustrated by the definition, the :def option provides a
declarative way of specifying a function; the option :body an effective way of computing
its value, for a given set of input arguments.

2.3 OCML classes

OCML also supports the specification of classes and instances and the inheritance of slots
and values through isa hierarchies.
Classes are defined by means of a Lisp macro, def-class, which takes as arguments the
name of the class, a list (possibly empty) of superclasses, optional documentation, and a
list of slot specifications, as illustrated by the definitions in the next box. These show a
number of classes taken from the domain model for the Sisyphus-I office allocation
problem (Linster, 1994). This problem consists of allocating members of the YQT
laboratory to the appropriate offices, according to a number of constraints.

(def-class YQT-member ()
 ((has-project :type project)
 (smoker :type boolean :cardinality 1)
 (hacker :type boolean :cardinality 1)
 (works-with :type YQT-member)
 (belongs-to-group :type research-group :value yqt)))

(def-class researcher (YQT-member))

(def-class secretary (YQT-member))

(def-class manager (YQT-member))

OCML provides support for the usual slot specification machinery which is found in
frame-based languages. Specifically, it provides the following slot options.

:value . A value which is inherited by all instances of a class.

:default-value . A value which is inherited by all instances of a class, unless
overridden by other values.

:type . The value of this option should be a class, say C. This option specifies
that all values of the associated slot should be instances of C. It is also
possible to specify that a slot value must belong to one or more classes, say
C1,...., Cn, by using the notation (or C1 C2..Cn).

:max-cardinality . The maximum numbers of slot values allowed for a slot.

:min-cardinality . The minimum numbers of slot values required for a slot.

:cardinality . The numbers of slot values required for a slot. This option
subsumes both :min-cardinality and :max-cardinality.

Knowledge Modelling in OCML Page 30

:documentation . The value of this option is a string providing documentation
for a slot.

:inheritance . The inheritance mechanism used for dealing with default
values. If :merge is used, then all default values inherited from different
ancestors are collected. If :supersede is used, then default values inherited
from more specific ancestors override those inherited from more generic ones
- see appendix 1 for more details on the inheritance mechanism in OCML.

2.4 OCML instances

Instances are simply members of a class. An instance is defined by means of def-
instance, which takes as arguments the name of the instance, the parent of the instance
(i.e. the most specific class the instance belongs to), optional documentation and a
number of slot-value pairs. An example of instance definition, taken from the Sisyphus-I
domain model, is shown in the box below.

(def-instance harry_c researcher
 ((has-project babylon)
 (smoker no)
 (hacker yes)
 (works-with jurgen_l thomas_d)))

In particular the above definition shows that a slot can have multiple values. In this case
harry_c works both with jurgen_l and thomas_d.

2.5 Object-oriented and relation-oriented approaches to modelling

When describing classes and instances I made use of standard object-oriented
terminology and talked about slots having values and instances belonging to classes.
This object-centred approach is in a sense orthogonal to the relation-centred one which I
used when discussing relations and logical expressions. The former focuses on the
entities populating a model and then associates properties to them; the latter centres on
the type of relations which characterize a domain and then uses these to make statements
about the world. These two approaches to modelling/representation have complementary
strengths and weaknesses and for this reason they are often combined in knowledge
representation and modelling languages, to provide hybrid formalisms (Fikes and Kehler,
1985; Yen et al., 1988).
In the context of a knowledge modelling language (rather than a knowledge
representation one) the main advantage gained from combining multiple paradigms is one
of flexibility. Both object-oriented and relation-oriented approaches provide conceptual
frameworks which make it possible to impose a view over some domain. The choice
between one or the other can be made for ideological or pragmatic reasons - e.g. whether
the target delivery environment is a rule-based shell or an object-oriented programming
environment. In the specific context of an operational modelling language, such as
OCML, another benefit, which is gained by providing support for both object-oriented
and relation-oriented modelling, is that these approaches are naturally associated with
particular types of inferences. Object-orientation provides the structure for inheritance

Knowledge Modelling in OCML Page 31

and automatic classification; relation-orientation is normally associated with constraint-
based and rule-based reasoning.

While the integration of multiple paradigms provides the aforementioned benefits, when
describing or interacting with a knowledge model, it is useful to abstract from the various
modelling paradigms and inference mechanisms integrated in the model and characterize
it at a uniform level of description. Specifically, in accordance with a view of knowledge
as a competence-like notion (Newell, 1982), it is useful to decouple the level at which we
describe what an agent knows from the level at which we describe how the agent
organizes and infers knowledge. Such an approach is used - for instance - in the Cyc
system (Lenat and Guha, 1990), which integrates multiple knowledge representation
techniques (the heuristic level), but provides a uniform interface to the Cyc knowledge
base (the epistemological level). A similar approach is also followed by Levesque
(1984), which describes a logic-based query language which can be used to communicate
with a knowledge base at a functional level, independently from the data and inference
structures present in the knowledge base.

In particular, in the case of OCML, this generic idea of providing a uniform level of
description to a hybrid formalism has been instantiated by providing a Tell-Ask interface
(Levesque, 1984), which use logical expressions (i.e. a relation-oriented view) when
modifying or querying an OCML model, independently of whether the query in question
concerns a class, a slot, or a ‘ordinary’ relation. The key to this integrated view is the
fact that classes and slots are themselves relations; classes are unary relations and slots
are binary ones. In addition to supporting a generic Tell-Ask interface, this property
makes it possible to provide ‘rich’ specifications of classes and slots. In particular,
because these are relations, it is possible to characterize them by means of the relation
options discussed in section 2.1.1. For instance, the definition below specifies the class
of empty sets in terms of an :iff-def relation option.

(def-class EMPTY-SET (set) ?set
 :iff-def (not (exists ?x (element-of ?x ?set))))

2.6 The generic Tell-Ask interface

2.6.1 Tell: a generic assertion-making primitive

OCML provides a generic assertion-making primitive, tell, which provides a uniform
mechanism for asserting facts6, independently of whether these refer to slot-filling
assertions, new class instances, or simply relation instances. For example we can use
tell to add a new value to the list of projects carried out by harry_c as follows.

6 Formally a fact (or assertion) is a ground relation expression. A relation expression is an expression

such as (<r> <arg1>....<argn>), where <r> is a relation and argi is a functional term. A ground

expression (or term) is an expression (or term) which does not contain variables.

Knowledge Modelling in OCML Page 32

? (tell (has-project harry_c mlt))

(HAS-PROJECT HARRY_C MLT)

Analogously we can add a new instance of class researcher simply by stating:

? (tell (researcher mickey_m))

(RESEARCHER MICKEY_M)

2.6.2 Ask: a generic query-posing primitive

The relation-centred view makes it possible to examine the contents of an OCML model
simply by asking whether a logical statement is satisfied. The OCML proof system will
then carry out the relevant inference and retrieval operations, depending on whether the
relation being queried is a slot, a class, or an ‘ordinary’ relation. The process is however
transparent to the user. For instance, we can find out about the projects in which harry_c
is involved - after the assertion shown above these are now babylon and mlt - by using
the Lisp macro ask to pose the query (has-project harry_c ?c). The resulting
interaction with the OCML proof system is shown below.

? (ask (has-project harry_c ?c))

Solution: ((HAS-PROJECT HARRY_C BABYLON))

More solutions? (y or n) y

Solution: ((HAS-PROJECT HARRY_C MLT))

More solutions? (y or n) y

No more solutions

This uniform, relation-centred view over OCML models also provides a way to index
inferences. For instance, when answering the above query, the OCML proof system will
first retrieve and order all inference mechanisms applicable to a query of type has-
project - e.g., these might include assertions of type has-project, relation options
associated with has-project and the relevant backward rules7 - and will then try these in
sequence, to generate one or more solutions to the query (more details on the OCML
proof system are given in appendix 1).

7 See section 2.8.1 for a description of OCML backward rules.

Knowledge Modelling in OCML Page 33

2.7 OCML procedures

Procedures define actions or sequences of actions which cannot be characterized as
functions between input and output arguments. For example, the procedure below
defines the sequence of actions needed to set the value of a slot. These include a
unassert statement, which removes any existing value from the slot, and a tell
statement, which adds the new value. Both tell and unassert are procedures. The
former takes a ground logical expression and adds it to the current model. The latter
takes a relation expression and removes from the current model all assertions which
match it. Note that in accordance with the uniform view of a knowledge model, slot
changes are carried out by means of generic assertion and deletion operations (i.e. in
terms of tell and unassert).

(def-procedure SET-SLOT-VALUE (?i ?s ?v)
 :constraint (and (instance-of ?i ?c)
 (slot-of ?s ?c))
 :body (do
 (unassert (list-of ?s ?i ?any))
 (tell (list-of ?s ?i ?v))))

2.8 Rule-based reasoning in OCML

2.8.1 Backward rules

OCML also supports the specification of backward and forward rules. A backward rule
consists of a number of backward clauses, each of which is defined according to the
following syntax:

backward-clause ::= (relation-expression {if {logical-expression}+})8

Each backward clause specifies a different goal-subgoal decomposition. When carrying
out a proof by means of a backward rule the OCML interpreter will try to prove the
relevant goal by firing the clauses in the order in which these are listed in the rule
definition. As in Prolog, depth-first search with chronological backtracking is used to
control the proof process.

8 I use the following notational conventions when describing the syntax of OCML constructs. Braces, {

and }, are used to indicate that the enclosed item is optional. For instance, the notation {x} means that
x may or may not be present but, if it is present, it can only appear once. The notation {x}+ means that
x can appear 1 or more times (i.e. it must appear at least once), while the notation {x}* indicates that x
can appear 0 or more times. Square brackets within braces are used in situations in which a number of
alternatives for a non-terminal item are possible, but each alternative can be used only once. For
example, let’s consider a non-terminal item, x, for which alternatives a and b are possible. In this
context the notation {[x] y}* indicates that any number of xy sequences are possible, but a or b can only
appear once (in practice this means that we can have between 0 and 2 sequences). Braces can also be
nested. For instance, the notation {x {y}} means that both x and y are optional but y can only appear if
x does. Finally, I use italics to denote non-terminal items and a vertical bar, |, to indicate mutually
exclusive alternatives.

Knowledge Modelling in OCML Page 34

Both semantically and operationally a backward chaining rule is the same as a
:sufficient relation option: they both provide an expression which is sufficient to verify
that a tuple holds for a relation. Thus, one might wonder whether rules are needed at all.
In practice the advantage of including backward rules in the language is that these
provide a modular mechanism for refining existing (possibly generic) relation
specifications, for instance in cases where application-specific knowledge is needed to
complete the specification of a relation. To clarify this point let’s consider an example
taken from the KMi office allocation problem. This was a real-world problem that our
institute faced when moving to a new building, back in 1997.

The relation has-value-range is defined in the parametric design task ontology to
characterize the set of possible values which can be assigned to a design parameter.
When building an application model the generic has-value-range specification is usually
refined, so that the space of possible values that can be assigned to a particular parameter
is precisely defined. A modular way to achieve this is to refine the definition of the
relation by means of the appropriate backward chaining rules. The rules shown below
fulfil this purpose for two of the classes of parameters present in the KMI office
allocation domain: professors and secretaries. In this example the former can only go
into a double room; the latter into a large room next to the entrance.

(def-rule has-value-range-1
 ((has-value-range-gen ?m ?l)
 if
 (professor (domain-reference ?m))
 (= ?l (setofall ?r (double-a-type-room ?r usable yes)))))

(def-rule has-value-range-2
 ((has-value-range-gen ?m ?l)
 if
 (secretary (domain-reference ?m))
 (= ?l (setofall ?r
 (and (room ?r size ?n usable yes)
 (> ?n 1)
 (close-to ?r kmi-entrance))))))

2.8.2 Forward rules

OCML also allows the user to define forward rules. A forward rule comprises zero or
more antecedents and one or more consequents. Antecedents are restricted to relation
expressions, while any logical expression can be a consequent. When a forward rule is
executed, OCML treats each consequent as a goal to be proven and attempts to prove
them, until one fails. This mechanism makes it possible to integrate data-driven and
goal-driven reasoning and to specify arbitrarily complex right hand sides.
A special operator, exec, is provided to allow OCML users to introduce control (and
therefore functional) terms in the right hand side of a rule. In particular, two useful
procedures are tell, to assert new facts, and output, to produce output. A simple
example showing how to use these in a forward chaining rule is given below.

Knowledge Modelling in OCML Page 35

(def-rule foo
 (has-project ?x ?y)
 then
 (exec (tell (project-covered-by ?y ?x)))
 (exec (output "has project ~S ~S" ?x ?y)))

While forward rules can be useful in a number of situations when building application
models (e.g. to define watchers, which are triggered whenever some situation arises in a
knowledge base), they are not essential to the model building process. The reason for
this is that knowledge-level modelling is mainly about constructing definitions, while
forward-chaining rules are about behaviour. Thus they can be used in place of
procedures to describe behaviour but they cannot replace constructs for relation or
function specification.

3 FUNCTIONAL VIEW OF OCML

A functional view of a knowledge representation system focuses on the services the
system provides to the user (Levesque, 1984; Brachman et al., 1985). Basically, there are
three kinds of services provided by OCML: i) operations for extending/modifying a
model; ii) interpreters for functional and control terms; and iii) a proof system for
answering queries about a model. Extensive details on the model extension/modification
facilities provided by OCML were given in earlier sections.

4 MAPPING

OCML is meant to support both the specification of library components and the
development of partial or complete application models, according to the Task-Method-
Domain-Application (TMDA) framework described in (Motta, 1999). The role of the
TMDA framework is to support application development by reuse and to this purpose it
distinguishes between domain-generic tasks and problem solving methods on one side
and domain(-specific) models on the other. Applications are created by instantiating
generic problem solving components (tasks and methods) in a particular domain.
Earlier versions of the language provided support for task and method specification by
means of special-purpose modelling constructs. The current version does away with
these task and method-specific constructs and only provides a basic set of domain
modelling facilities; the extension to the language required to specify tasks and methods
is then defined as a particular representation ontology (the task-method sub-ontology of
the OCML base ontology). The advantage of this approach is that it separates the core
set of logical primitives (the OCML kernel) from additional, framework-specific
epistemological commitments. Thus, only special-purpose primitives for defining
mapping knowledge are required, in addition to ‘standard’ domain modelling capabilities.
This mapping knowledge support application modelling, by allowing the customization
of generic components in a particular domain. In the next sections I will discuss the two
kinds of mapping constructs supported by OCML: relation mapping and instance
mapping.

Knowledge Modelling in OCML Page 36

Figure 2.1. Mapping domain to method ontologies.

4.1 Instance mapping

Figure 2.1 illustrates a simple example in which a class of concepts at the task/method
level (parameter) is mapped to a class of concepts at the domain level (employee). This
is a very common situation when developing systems through reuse: a problem solving,
domain-independent model imposes a particular view over a set of domain concepts
(Fensel and Straatman, 1996).
A simple case is one in which a domain view is constructed by direct association of task
level concepts to domain level concepts. For instance, a parametric design view over the
Sisyphus-I domain can be imposed simply by creating parameter instances and
associating them to YQT members. Thus, the set of parameters and the set of YQT
members are associated but kept distinct. This solution is appealing for two reasons: it
supports reuse of modular components and does not confuse the two different types of
concepts; parameters and YQT members maintain different sets of properties and
different semantics, thus avoiding a situation in which a design parameter has a wife and
a YQT member has a value range.

Instance mapping is supported in OCML by means of the Lisp macro def-upward-class-
mapping. This takes the names of two classes as arguments and associates each instance
of the first class to a purpose-built instance of the second class. By default the relation
maps-to is used to associate the task level instance to the domain level one.

In the Sisyphus-I application model we should then state:

(def-upward-class-mapping yqt-member yqt-parameter)

The above form iterates over each instance of class yqt-member, say I, creating a new
instance of class yqt-parameter, say Meta-I, and associating this to I, i.e., asserting
(maps-to Meta-I I). Hence, if we now ask for the mapping between parameters and
YQT members we get the following results.

Knowledge Modelling in OCML Page 37

? (ask (maps-to ?z ?x)t)

Solution: ((MAPS-TO YQT-PARAMETER-EVA_I EVA_I))

Solution: ((MAPS-TO YQT-PARAMETER-MONIKA_X MONIKA_X))

Solution: ((MAPS-TO YQT-PARAMETER-ULRIKE_U ULRIKE_U))

Solution: ((MAPS-TO YQT-PARAMETER-UWE_T UWE_T))

Solution: ((MAPS-TO YQT-PARAMETER-JOACHIM_I JOACHIM_I))

Solution: ((MAPS-TO YQT-PARAMETER-HANS_W HANS_W))

Solution: ((MAPS-TO YQT-PARAMETER-MICHAEL_T MICHAEL_T))

Solution: ((MAPS-TO YQT-PARAMETER-ANGY_W ANGY_W))

Solution: ((MAPS-TO YQT-PARAMETER-JURGEN_L JURGEN_L))

Solution: ((MAPS-TO YQT-PARAMETER-KATHARINA_N KATHARINA_N))

Solution: ((MAPS-TO YQT-PARAMETER-THOMAS_D THOMAS_D))

Solution: ((MAPS-TO YQT-PARAMETER-HARRY_C HARRY_C))

Solution: ((MAPS-TO YQT-PARAMETER-ANDY_L ANDY_L))

Solution: ((MAPS-TO YQT-PARAMETER-MARC_M MARC_M))

Solution: ((MAPS-TO YQT-PARAMETER-WERNER_L WERNER_L))

The advantage of this solution is that parameters and YQT members maintain their
separate identities, as shown in the next box.

Knowledge Modelling in OCML Page 38

? (describe-instance 'YQT-PARAMETER-WERNER_L)

Instance YQT-PARAMETER-WERNER_L of class YQT-PARAMETER

HAS-VALUE-RANGE: (C5-123 C5-122 C5-121 C5-120 C5-119 C5-117 C5-116 C5-113 C5-
114 C5-115)

? (describe-instance 'WERNER_L)

Instance WERNER_L of class RESEARCHER

HAS-PROJECT: RESPECT
SMOKER: NO
HACKER: YES
WORKS-WITH: ANGY_W, MARC_M
GROUP: YQT

Formally, a mapping can be characterized as an association between an object, say o, and
its meta-object, m-o, so that the entity denoted by the entity denoted by m-o is the same as
the entity denoted by o (Genesereth and Nilsson, 1988). This notion can be formalized in
OCML by means of the following definition.

 (def-relation maps-to (?x ?y)
 "This relation allows the user to specify an association between
 an object at the task layer and one at the domain layer.
 Formally ?y denotes the object denoted by the object denoted by ?x"
 :no-op (:iff-def (= ?y (denotation ?x))))

4.2 Relation mapping

Instance mapping works only in those cases in which imposing a view over a domain can
be reduced to creating task-level ‘mirror images’ for a finite number of domain-level
objects. A more general scenario is one in which there is some relation defined at the
task/method level which needs to be reflected to the domain level in a dynamic fashion.
A well known example is that in which domain concepts or statements are viewed as
hypotheses at the problem solving level. This association is typically dynamic, given that
hypotheses are considered as such only for a particular time-slice of the problem solving
process. These situations can be modelled in OCML by means of relation mappings.
A relation mapping provides a mechanism to associate rules and procedures to a relation,
say R, so that when a query of type R is posed, or assertions of type R are made at the
task/method level, these events can be reflected to the domain level. The purpose of
these reflection actions is to ensure that the consistency between domain and task/method
levels is maintained.

An example of an upward relation mapping is illustrated by the definition below, which
is taken from an application model developed for the Sisyphus-I problem. The mapping
is an upward one, in the sense that it is used to lift (van Harmelen and Balder, 1992) the
office allocation statements existing at the domain level to the problem solving level.

Knowledge Modelling in OCML Page 39

Specifically, the goal of this mapping is to associate the relation current-design-model,
which is used by the parametric design problem solver to indicate the design model
associated with the current design state, to the set of in-room assertions present in the
current snapshot of the domain knowledge base. The relation maps-to is used to retrieve
the parameter associated with each particular YQT member.

(def-relation-mapping current-design-model :up
 ((current-design-model ?dm)
 if
 (= ?dm (setofall (?p . ?v)
 (and (in-room ?x ?v)
 (maps-to ?p ?x))))))

An upward relation mapping ensures that when a task/method level relation is needed the
relevant information is obtained from the domain level. Of course, problem solving is
also about inferring knowledge and retracting previously held assertions. Hence, OCML
also supports downward relation mappings. These divide into two categories, :add and
:remove. The former specifies a procedure which is activated when a new relation
instance is asserted. The latter specifies a procedure which is activated when a relation
instance is removed. In the case of relation current-design-model relation mappings are
needed to ensure that when the design model considered by the problem solver is
modified, the relevant changes are reflected onto the domain model - see definition
below.

(def-relation-mapping current-design-model (:down :add)
 (lambda (?x)
 (do
 (unassert (in-room ?any-m ?any-r))
 (loop for ?pair in ?x
 do
 (if (maps-to (first ?pair) ?z)
 (tell (in-room ?z (rest ?pair))))))))

Finally, the definition below shows the :remove downward mapping associated with
relation current-design-model: it simply removes the domain level assertions associated
with the design model which is passed as argument to the relation instance being
retracted.

(def-relation-mapping current-design-model (:down :remove)
 (lambda (?x)
 (loop for ?pair in ?x
 do
 (if (maps-to (first ?pair) ?z)
 (unassert (in-room ?z (rest ?pair)))))))

Knowledge Modelling in OCML Page 40

5 ONTOLOGIES

OCML also provides support for defining ontologies. When an ontology is defined, say
O, it is possible to specify which ontologies are included in O and as a result O will
include all the definitions from its parent ontologies. When conflicts are detected (e.g.,
the same concept is defined in two different parent ontologies), a warning is issued.
Primitives for loading and selecting ontologies are also provided.
By default all ontologies are built on top of the OCML base ontology. This comprises
twelve sub-ontologies which include the basic definitions required to reason about basic
data types (e.g. lists, numbers, sets and strings), the OCML system itself and the OCML
frame representation. Specifically, the following sub-ontologies are provided:

Meta. This ontology defines the concepts required to describe the OCML language.
It includes constructs such as ‘OCML expression’, ‘functional term’, ‘rule’,
‘relation’, ‘function’, ‘assertion’, etc. This ontology is particularly important to
construct reasoning components which can verify OCML models.

Functions. Defines the concepts associated with functions - e.g., it includes
relations such as domain, range, unary-function, binary-function, etc.

Relations. Defines the various notions associated with relations. These include the
universe and the extension of a relation, the definition of reflexive and transitive
relations, partial and total orders, etc.

Sets. This ontology defines the notions associated with sets - e.g., ‘empty set’,
‘union’, ‘intersection’, ‘set partition’, ‘set cardinality’, etc.

Numbers. Defines the various concepts and operations required for reasoning about
numbers and for performing calculations.

Lists. Defines the concepts and operations associated with lists. It includes classes
such as list and atom; functions such as first, rest and append; and relations such
as member.

Strings. Specifies the concepts and operations associated with strings - e.g., string,
string-append, etc.

Mapping. This ontology defines the concepts associated with the mapping
mechanism described earlier. It includes only three definitions: relation maps-to and
functions meta-reference and domain-reference. The former takes a domain-level
instance and returns the associated task/method level instance. The latter performs
the inverse function.

Frames. Defines the concepts associated with the frame-based representation used
in OCML. It comprise (meta-) classes such as class and instance; functions such as
direct-instances and all-slot-values; relations such as has-one and has-at-most;
and procedures such as append-slot-value.

Inferences. The purpose of this ontology is to provide a repository for defining
functions and relations supporting the specification of KADS-like inferences. So far

Knowledge Modelling in OCML Page 41

only a few such inferences have been added to this ontology to support different
types of selection and sorting.

Environment. This ontology provides a kind of ‘environmental support’ for the
construction of OCML models. It includes special operators like exec, which makes
it possible to invoke procedures from rules, and procedures such as output, which
prints out a message.

Task-Method. This ontology provides the concepts required to model tasks and
problem solving methods, i.e. to support the construction of task and problem
solving models.

This set of ontologies provides a rich modelling platform from which to build other
ontologies and/or problem solving models. It is natural to compare the OCML and
Ontolingua base ontologies (Farquhar et al., 1996). There are two aspects which
distinguish these two sets of ontologies: their nature and their scope.

The first difference is related to the operational nature of OCML. The Ontolingua base
ontology is not concerned with operationality and therefore includes many non-
operational definitions. The OCML base ontology is concerned with providing support
for the construction of operational models. As a result it attempts to minimize the
number of non-executable specifications. A typical approach is to weaken a non-
operational definition to make it executable. For instance let’s consider the function
universe. In the Ontolingua base ontology the universe of a relation is defined as the set
of all objects for which the relation is true. Of course this is not an operational definition.
However, we can provide a weaker version of universe, called known-universe, which
returns the set of all entities which are part of a tuple satisfying the relation in question.
This function can be either defined separately from universe or attached to it to provide
an operational definition.

The second difference concerns the scope of the two base ontologies. Both the
Ontolingua and OCML base ontologies provide a rich set of definitions for domain
modelling. In order to comply with the requirements imposed by the TMDA framework,
the OCML base ontology provides support also for specifying tasks and problem solving
methods.

6 COMPARISON WITH OTHER LANGUAGES

In the previous section I compared the base ontologies provided by OCML and
Ontolingua and emphasized that the differences between them have mainly to do with the
conceptual requirements imposed by the TMDA framework on OCML and with its
operational nature. If we compare OCML and Ontolingua purely as modelling
languages, their main difference has to do with the fact that while Ontolingua is
concerned exclusively with ontologies - i.e. term specification - OCML aims to model
behaviour as well. For this reason OCML also provides support for defining control
terms. Apart from this aspect, the current version of OCML closely mirrors many of the
constructs in Ontolingua. Thus, while OCML extends Ontolingua in various respects, it
is possible (although reductive) to view OCML as an environment for prototyping

Knowledge Modelling in OCML Page 42

Ontolingua models, thus moving away from the batch-oriented, translation-based
operationalization model suggested for Ontolingua (Gruber, 1993).
The design philosophy underlying the KARL language (Fensel, 1995) has many points in
common with OCML. In particular both KARL and OCML are operational modelling
languages and are therefore suitable for rapid prototyping of knowledge level models.
Moreover, both KARL and OCML are part of comprehensive knowledge engineering
frameworks providing methodological support for KBS development. However, there
are also differences. KARL is an executable, formal specification language where the
emphasis is on formalization: its main strength is the provision of a formal semantics for
its modelling constructs. The design philosophy of OCML has more to do with
pragmatic considerations: its main goal is to provide a flexible modelling environment
able to support different approaches to modelling: rapid prototyping and structured
development, executable and non-executable constructs, formal and informal
specifications. The two languages also differ in terms of the modelling frameworks they
employ: KARL is based on the KADS four-layer framework, while OCML (more
precisely the task-method ontology) is based on the TMDA framework. An important
difference is also that while the primitives in the KARL language closely reflect the
KADS approach, the OCML kernel is approach-neutral. Its commitment to the TMDA
framework is defined by means of the appropriate ontology. This approach has the
advantage of flexibility: different modelling frameworks can then be supported through
the specification of the relevant ontologies.

A more recent version of KARL, which is called New-KARL (Angele et al., 1996), does
away with the strong KADS-oriented approach used by KARL and focuses instead on the
specification of task-method structures and ontology mappings. Thus New-KARL
subscribes to a modelling framework which has much more in common with the OCML
task ontology than the one underlying KARL. However, in contrast with OCML, New-
KARL also ‘hardwires’ these task and method-centred primitives in the language itself,
rather than in a particular ontology.

Other formal specification languages exist for KADS models - see (Fensel and van
Harmelen, 1994) for an overview. While the formal details of these languages of course
vary, similar conclusions to those drawn above can be reached when comparing them to
OCML: these languages tend to emphasize formal aspects and are based on a KADS
approach. OCML emphasizes operationality and flexibility and does not presuppose
(although it can support) a KADS approach. Indeed, the original raison d’être for OCML
was to provide an operational alternative to a formal specification language, KBSSF
(Jonker and Spee, 1992), in the context of the VITAL workbench (Domingue et al.,
1993).

Among the informal notations available for knowledge modelling the most notable is the
CML language (Schreiber et al., 1994), which supports ontological specifications and the
construction of Common KADS models. CML supports the definition of various
constructs, including concepts, attributes, tasks, methods, relations, structures and
expressions. Obviously, the main difference between CML and OCML is that the former
is only meant to be an informal notation while the latter is a fully operational language.
Another important difference is that CML is committed to supporting the Common

Knowledge Modelling in OCML Page 43

KADS framework, while the kernel of the OCML language is framework-independent.
In addition to the KADS-related commitments CML also embodies other modelling
commitments: it provides primitives for representing structures and part-of relations.
This approach has both advantages and disadvantages. On the plus side it extends the
range of modelling primitives provided by the language and supports notions which occur
frequently in conceptual modelling. On the other hand there are two possible problems
with this approach. The first one has to do with embedding ontological commitments in a
conceptual modelling language. In particular different approaches to modelling structure
and aggregation can be found in the literature - e.g. compare the analysis by Martin and
Odell (1995) with that by Lenat and Guha (1990). Embedding one particular approach in
the kernel of a conceptual modelling language prevents users from extending the
language according to an alternative approach. The second problem is caused by the
provision of different levels of description - i.e. logical, epistemological and conceptual
(Brachman, 1979) - within the same formalism. Much work in knowledge representation
over the past twenty years has focused on identifying the different levels at which
knowledge representation languages can be specified (Brachman, 1979; Guarino 1994).
In particular the paper by Brachman clearly illustrates that much of the confusion
surrounding the field of knowledge representation in the seventies was caused by the fact
that researchers were comparing formalisms which were situated at different levels - e.g.
logical and conceptual. Thus, it seems to me that including ontological primitives (e.g.
structures) in a language characterized at the logical level is a potential source of
confusion. This is especially the case with informal languages, given that eventual
ambiguities are not explained by the underlying formal theory.

The LOOM language (MacGregor, 1991) is strictly speaking a knowledge representation
rather than a knowledge modelling language (i.e., it also includes symbol-level
representation constructs). However, its formal kernel - i.e., what are called the
terminological and assertional components - provides purely logical and epistemological
primitives and therefore it can be used for knowledge modelling and ontology
specification. The main feature of LOOM is its powerful classification mechanism which
integrates a sophisticated concept definition language with rule-based reasoning. This
approach allows a wider range of inferences to be drawn than those available from
‘traditional’ frames+rules systems such as KEE. The existence of a powerful classifier is
an important advantage that LOOM maintains over OCML. On the other hand, viewed
purely as a knowledge modelling language, LOOM exhibits a number of limitations.9

When building knowledge models it may be necessary to make statements about the
model being developed, which do not have a direct inferential purpose. For this reason
OCML allows the inclusion of non-operational statements and supports the specification
of axioms about the current model. In contrast, LOOM only provides operational

9 The following points should not be construed as criticisms of the LOOM language. This is primarily a

knowledge representation language and should be of course judged with respect to knowledge
representation criteria. However, given the high-level of support provided by the language, its ‘organic
relationship’ with the Ontolingua effort and its sound theoretical basis, it makes sense to consider it as a
plausible candidate for knowledge modelling. Indeed LOOM has been used for ontological work
(Swartout et al., 1996).

Knowledge Modelling in OCML Page 44

constructs. Another possible problem related to LOOM is that while it supports different
knowledge representation paradigms (frames, rules, message-passing) it integrates the
various constructs according to a classification-centred viewpoint. While this approach
obtains nice results in terms of inferential capabilities, it nevertheless can be a constraint
for the knowledge analyst, who is forced to frame the current problem within a
classification-centred framework. In contrast with this approach OCML provides a
number of alternative modelling constructs, e.g. rules, functions, classes and procedures
which, while integrated, are themselves ‘primitive modelling components’ and can be
used within different modelling approaches.

The notion of mapping presented in this chapter plays a role similar to that of mediators
in heterogeneous information systems (Wiederhold and Genesereth, 1997), connectors in
software architectures (Shaw and Garlan, 1996), and adapters in design patterns (Gamma
et al., 1995). The idea underlying all of these approaches is essentially the same: some
kind of ‘external kit’ is required in order to allow the interaction of reusable components
and their configuration for different computational scenarios. The externalization of this
adaptation process has the advantage that the original components remain unchanged,
while they become usable in the new situation.

7 SYNOPSIS

The role of the OCML language is to provide operational knowledge modelling facilities.
To this end it includes interpreters for functional and control terms, as well as a proof
system which integrates inheritance with backward chaining, function evaluation and
procedural attachments. While the emphasis here is on operationality, OCML aims to
support different styles of knowledge modelling. Therefore OCML provides for first-
order logic definitions and allows the user to explicitly distinguish non-operational from
operational definitions. Moreover, it supports an extensive set of Ontolingua constructs
and therefore can be used as an interpreter for Ontolingua definitions.

References

Angele, J., Decker, S., Perkuhn, R. and Studer, R. (1996). Modeling Problem Solving
Methods in New KARL. In B. Gaines and M. Musen (Editors), Proceedings of the
10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff,
Alberta, Canada.

Brachman, R. J. (1979). On the Epistemological Status of Semantic Networks. In N. V.
Findler (Editor), Associative Networks: Representation and Use of Knowledge by
Computers. Academic Press, New York, pp. 3-50.

Brachman, R. J., Fikes, R. E. and Levesque, H. J. (1985). KRYPTON: A Functional
Approach to Knowledge Representation. In R. J. Brachman and H. J. Levesque
(Editors). Readings in Knowledge Representation. Morgan Kaufmann, Los Altos,
CA.

Domingue, J., Motta, E. and Watt, S. (1993) The Emerging Vital Workbench. In Ed.
Aussenac, N., Boy, G., Gaines, B., Linster, M., Ganascia, J.-G. and Kodratoff, Y.
Knowledge Acquisition for Knowledge-Based Systems 7th European Workshop,
EKAW'93 Toulouse and Caylus, France, September, pp. 320-339, Springer-Verlag.

Domingue J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. Proceedings of the 11th Banff Knowledge Acquisition
Workshop, Banff, Alberta, Canada, April 18-23, 1998.

Farquhar, A., Fikes, R., and Rice, J. (1996). The Ontolingua Server: A Tool for
Collaborative Ontology Construction. In B. Gaines and M. Musen (Editors),
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, Alberta, Canada.

Fensel, D. (1995). The Knowledge Acquisition and Representation Language KARL.
Kluwer, Dordrecht.

Fensel, D. and van Harmelen, F. (1994). A Comparison of Languages which
Operationalize and Formalize KADS Models of Expertise. The Knowledge
Engineering Review, 9(2).

Fensel, D. and Straatman, R. (1996). Problem solving methods: Making Assumptions for
Efficiency Reasons. In N. Shadbolt, K. O’Hara, and Schreiber, G. (Editors).
Advances in Knowledge Acquisition - EKAW ‘96. Lecture Notes in Artificial
Intelligence, 1076. Springer-Verlag, Heidelberg.

Fikes, R. E. and Kehler, T. (1985). The Role of Frame-Based Representation in
Reasoning. Communications of the ACM, 28(9), September 1985.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns. Addison-
Wesley.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format, Version 3.0.
Technical Report Logic-92-1, Computer Science Department, Stanford University.

References Page 46

Genesereth, M. R. and Nilsson, N. J. (1988). Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Los Altos, CA.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2).

Guarino, N. (1994). The Ontological Level. In R. Casati, B. Smith and G. White
(Editors), Philosophy and the Cognitive Science. Holder-Pichler-Tempsky, Vienna,
Austria.

van Harmelen, F. and Balder, J. R., (1992). (ML)2: A Formal Language for KADS
Models of Expertiese. Knowledge Acquisition, 4(1), pp. 127-161.

Jonker, W. and Spee, J. W. (1992). Yet Another Formalization of KADS Conceptual
Models. In Th. Wetter, K.-D. Althoff, J. Boose, B.R. Gaines, M. Linster and F.
Schmalhofer (Editors) Current Developments in Knowledge Acquisition - EKAW ‘92,
pp. 112-32. LNAI 599, Springer-Verlag, Berlin.

Lenat, D.B. and Guha, R.V. (1990). Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Addison-Wesley, Reading, MA.

Levesque, H. J. (1984). Foundations of a functional approach to knowledge
representation. Artificial Intelligence 23(2), pp. 155-212.

Linster, M. (1994). Problem Statement for Sisyphus: Models of Problem Solving.
International Journal of Human-Computer Studies 40(2), pp. 187-192.

MacGregor, R. (1991). Using a Description Classifier to Enhance Deductive Inference.
Proceedings of the 7th IEEE Conference on AI Applications. Miami, Florida,
February 1991.

Martin, J. and Odell, J. J. (1995). Object-Oriented Methods: A Foundation. Prentice-
Hall, Englewood Cliffs, New Jersey.

Motta E. Reusable Components for Knowledge Models: Principles and Case Studies in
Parametric Design. IOS Press, 1999.

Newell A. (1982). The knowledge level. Artificial Intelligence, 18(1), pp. 87-127.

Riva, A. and Ramoni, M. (1996) LispWeb: a Specialised HTTP Server for Distributed AI
Applications. Computer Networks and ISDN Systems, 28,7-11 (1996), 953-961.

Schreiber, A.Th., Wielinga B. J., Akkermans, H., van de Velde, W., and Anjewierden, A.
(1994). CML: The CommonKADS Conceptual Modelling Language. In L. Steels,
A. T. Schreiber, and W. van de Velde (Editors), A Future for Knowledge Acquisition,
Proceedings of the 8th European Knowledge Acquisition Workshop. Springer Verlag,
LNAI 867, pp. 283-300.

Shadbolt, N., Motta, E., and Rouge, A. (1993) Constructing Knowledge-Based Systems.
IEEE Software, 10, 6, pp. 34-39, November 1993.

Shaw, M. and Garlan, D. (1996). Software Architectures. Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

References Page 47

Wiederhold, G. and Genesereth, M. (1997). The Conceptual Basis for Mediation
Services, IEEE Expert, September/October Issue, pp. 38-47.

Yen, J., Neches, R. and MacGregor, R. (1988). Classification-based Programming: A
Deep Integration of Frames and Rules. Technical Report ISI/RR-88-213.
USC/Information Science Institute, March 1988.

Appendix 1

Additional Details on OCML

1 FUNCTIONAL TERM CONSTRUCTORS

A BNF specification of each term constructor is provided as well as an informal description of
its operational semantics.

Setofall

setofall finds all solutions (i.e. environments) to basic-log-expression and then returns the list
obtained by instantiating template in all the returned environments, ensuring that the list
contains no duplicates. If no solutions are found then the empty list (i.e. nil) is returned.

setofall-term ::= setofall template basic-log-expression

template ::= nil | (term . term)

term ::= constant | variable | string | (fun {term}*) |
findall-term | the-term |
in-env-term | quote-term |
if-term | cond-term

fun ::= the name of a function or a term constructor

constant ::= A symbol whose first character is not ‘?’

variable ::= A symbol whose first character is ‘?’

string ::= A lisp string, e.g. "string".

log-expression ::= quant-log-expression | basic-log-expression

quant-log-expression ::= (forall schema-or-var log-expression)|
(exists schema-or-var log-expression)

basic-log-expression ::= (and {log-expression}+) |
(or {log-expression}+) |
(=> log-expression log-expression) |
(<=> log-expression log-expression)
(not log-expression) |
rel-expression

Appendix 1 – Additional Details on OCML Page 49

schema-or-var ::= schema | variable

schema ::= (variable . schema) | nil

rel-expression ::= (rel {term}*)

rel ::= a symbol naming a relation

Findall

findall is the same as setofall except that it does not remove duplicate solutions.

findall-term ::= findall template basic-log-expression

The

the finds one solution (i.e. environment) to basic-log-expression and then returns the list
obtained by instantiating template in the returned environment. If no solutions are found then
the constant :nothing is returned.

the-term ::= the template basic-log-expression

In-environment

The primitive in-environment takes a list, possibly empty, of pairs ((var1 . term1)...) and a
body, and returns the result of evaluating this in an environment in which each vari is bound to
termi.

in-env-term ::= in-environment pairs body

pairs ::= nil | (pair . pairs)

pair ::= (variable . term)

body ::= term

Quote

The value of an expression such as (quote term) is term.

quote-term ::= 'term | (quote term)

If

The first action which is carried out when evaluating an if-term is to check whether log-
expression is satisfied. If this is the case, then then-term is evaluated in the environment which
satisfies log-expression. If log-expression cannot be satisfied in the current model, then there
are two possibilities. If else-term is specified, then this is evaluated, and the value obtained is
returned as the value of the if-term. If else-term is not present and log-expression cannot be
proved, then the constant :nothing is returned.

Appendix 1 – Additional Details on OCML Page 50

if-term ::= (if log-expression then-term {else-term})

then-term ::= term

else-term ::= term

Cond

The interpreter iterates through each clause of a cond-term, until it finds one whose log-
expression is satisfied. If none is found, then :nothing is returned. Otherwise, let’s assume
cond-clausei. is the first clause whose log-expression is satisfied. In this case the value of the
cond-term is obtained by evaluating the term associated with cond-clausei.

cond-term ::= (cond {cond-clause}+)

cond-clause ::= (log-expression term)

2 CONTROL TERM CONSTRUCTORS

A BNF specification of each control term constructor is provided as well as an informal
description of its operational semantics.

In-environment

The primitive in-environment takes a list, possibly empty, of pairs ((var1 . term1)...) and a
control-body, and returns the result of evaluating this in an environment in which each vari is
bound to termi.

in-env-control-term ::= in-environment pairs control-body

pairs ::= nil | (pair . pairs)

pair ::= (variable . term)

control-body ::= control-term

control-term ::= term | in-env-control-term | if-control-term |
cond-control-term | do-control-term |
loop-control-term | repeat-control-term |
return-control-term

if-control-term ::= (if log-expression then-control-term {else-control-term})

then-control-term ::= control-term

else-control-term ::= control-term

Appendix 1 – Additional Details on OCML Page 51

cond-control-term ::= (cond {cond-control-clause}+)

cond-control-clause ::= (log-expression control-term)

loop-control-term ::= (loop for variable in term do

{control-term}+)

do-control-term ::= (do-actions {control-term}+)

repeat-control-term ::= (repeat-actions {end-test} {control-term}+) |
(repeat-actions {control-term}+ {end-test})

end-test ::= while test | until test

test ::= log-expression

return-control-term ::= (return term)

If

The first action which is carried out when evaluating an if-control-term is to check whether
log-expression is satisfied. If this is the case, then then-control-term is evaluated in the
environment which satisfies log-expression. If log-expression cannot be satisfied in the current
model, then there are two possibilities. If else-control-term is specified, then this is evaluated,
and the value obtained is returned as the value of the if-control-term. If else-control-term is
not present and log-expression cannot be proved, then the constant :nothing is returned.

if-control-term ::= (if log-expression then-control-term {else-control-term})

Cond

The interpreter iterates through each clause of a cond-control-term, until it finds one whose
log-expression is satisfied. If none is found, then :nothing is returned. Otherwise, let’s
assume cond-clausei. is the first clause whose log-expression is satisfied. In this case the value
of the cond-control-term is obtained by evaluating the control-term associated with cond-
clausei.

cond-control-term ::= (cond {cond-control-clause}+)

Loop

The control construct loop provides a simple mechanism for iterating over lists. It first
evaluates a term, which should return a list, say L. Then it iterates over each element of L, say
I, and evaluates control-term in an environment in which variable is bound to I.

loop-control-term ::= (loop for variable in term do

{control-term}+)

Appendix 1 – Additional Details on OCML Page 52

Do

The control construct do is a simple sequencing primitive. The control terms in its body are
evaluated sequentially, once only.

do-control-term ::= (do-actions {control-term}+)

Repeat

The control term constructor repeat repeats the control term(s) specified in its body until the
end test is satisfied, if the test has the form ‘until test’. Otherwise, if the test has the form
‘while test’, then repeat-actions stops as soon as the test fails. If the end test is specified after
the control terms, then the control terms are carried out at least once - i.e. the end test is
verified at the end of each cycle. If the end test is specified before the control terms, then the
test is verified at the beginning of each cycle. If no test is provided, then all control expression
in the body of a repeat-actions are repeated ad infinitum.

repeat-control-term ::= (repeat-actions {end-test} {control-term}+) |
(repeat-actions {control-term}+ {end-test})

Return

This is a simple way of exiting from the body of a loop or repeat construct. When a control
term such as (return term) is encountered, the most specific loop or repeat construct in the
current execution stack is exited and the value obtained from evaluating term is returned.

return-control-term ::= (return term)

3 INHERITANCE AND DEFAULT VALUES

Generally speaking default values are values which apply unless other alternatives can be used.
In the OCML language the notion of default value is operationalized as follows.
Instances inherit values and default values from their superclasses down the inheritance
hierarchy specified by instance-of and subclass-of links. For a given slot, say s, of a sample
instance, say I, the following scenarios can arise:

1. I has not inherited any default value. In this case the value of s in I is given by all the
values I has inherited from its superclasses, plus any value locally specified for slot s
of I.

2. I has inherited some default values as well as non-default ones. In this case the default
values are ignored and rule (i) is applied. We say that the default values are
overridden by the non-default ones.

3. I has inherited only default values and local values have been specified. As in the
previous case, the default values are ignored and only the local values are considered.

4. I has inherited only default values and no local values have been specified. In this case
there are two possibilities. If the :inheritance facet has not been specified, or it has
been specified and it is :merge, all default values apply. If the :inheritance facet has
been specified and it is :supersede, then the value of s in I is obtained by (i) ranking
the ancestors of I according to the class precedence order of the parent of I, and (ii)

Appendix 1 – Additional Details on OCML Page 53

retrieving the default value of the first class in the class precedence order which
specifies a (default) value for s. The details of the algorithm used to compute the class
precedence order are given at pp. 782-786 of the Common Lisp specification (Steele,
1992). This algorithm produces a total order (if this exists) based on two ordering
principles: (i) a class, say C, precedes all its direct superclasses, and (ii) a direct
superclass of C precedes the direct superclasses of C specified to its right in the list of
direct superclasses of C.

4 INTERPRETERS AND PROOF SYSTEM

4.1 The OCML interpreter for functional terms

The OCML interpreter is implemented by means of a Lisp macro, ocml-eval. This evaluates a
functional term, term, in an environment, env, according to the following rules.

1. If term is a variable, then the binding of term in env is returned.

2. If term is a string or a constant, then term is returned.

3. If term has the format (pfun term0,, termn), with n ≥ 0, where pfun is a primitive term
constructor, then term is evaluated in env, according to criteria which depend on pfun.

4. If term has the format (fun term0,, termn), with n ≥ 0, where fun is the name of a
function, and a Lisp body associated with fun exists, then ocml-eval returns the value
obtained by applying the Lisp body to the values obtained by evaluating each termi in env.

5. If term has the format (fun term0,, termn), with n ≥ 0, where fun is the name of a
function, and no Lisp body associated with fun exists, then ocml-eval returns the value
obtained by applying the body of fun to the values obtained by evaluating each termi in env.

6. In all other cases ocml-eval signals an error.

7. The OCML interpreter for control terms

8. Control terms are interpreted in a manner analogous to functional terms. The control term
interpreter is implemented by a Lisp macro, ocml-control-eval, which has the following
behaviour.

9. If term is a functional term, then it is evaluated according to the rules given in section 4.1.

10. If term has the format (proc term0,, termn), with n ≥ 0, where proc is a primitive control
operator, then term is evaluated in env, according to criteria which depend on proc.

11. If term has the format (proc term0,, termn), with n ≥ 0, where proc is the name of a
procedure, and a Lisp body associated with proc exists, then ocml-control-eval returns the
value obtained by applying the Lisp body to the values obtained by evaluating each termi in
env.

12. If term has the format (proc term0,, termn), with n ≥ 0, where proc is the name of a
procedure, and no Lisp body associated with proc exists, then ocml-control-eval returns
the value obtained by applying the body of proc to the values obtained by evaluating each
termi in env.

13. In all other cases ocml-control-eval signals an error.

Appendix 1 – Additional Details on OCML Page 54

4.2 The OCML proof system

4.2.1 Procedure for proving basic goal expressions in OCML

Let’s suppose we want to find all solutions to a basic goal expression, say G, with format (rel
{fun-term}*), where rel is the name of a relation and fun-term a functional term. In general we
might be interested in one, some or all solutions. Therefore the order in which solutions are
generated might be important. The algorithm used by the OCML proof system is as follows.

1. If rel is not a defined relation, then signal an error. Otherwise initialize SOL1, SOL2,
SOL3, SOL4, SOL5 and SOL6 to the empty set and go to step 2.

2. Retrieve all the assertions present in the current model, whose type (i.e. first element) is rel.
Match each assertion with G. All successful matches, we call this set SOL1, provide
solutions to G. Go to step 3.

3. If a Lisp attachment exists for rel, then evaluate it in the Lisp environment to find eventual
additional solutions to G, say SOL2. Go to step 8.

4. If a :prove-by proof condition, say prove-rel-expression, has been specified for relation
rel, then compute all solutions to prove-rel-expression, say SOL3. Each of these is also a
solution to G. Go to step 8.

5. If a :iff-def proof condition, say iff-rel-expression, has been specified for relation rel,
then compute all solutions to iff-rel-expression, say SOL4. Each of these is also a solution
to G. Go to step 8.

6. If a :sufficient proof condition, say suff-rel-expression, has been specified for relation
rel, then compute all solutions to suff-rel-expression, say SOL5. Each of these is also a
solution to G. Go to step 7.

7. If a backward chaining rule has been specified, associated with relation rel, then invoke it
to find all other solutions to G, say SOL6. Go to step 8.

8. The set of all solutions to query G is obtained by appending the lists SOL1, SOL2, SOL3,
SOL4, SOL5 and SOL6.

The algorithm shown above provides an operational semantics for the various relation-forming
constructs provided by OCML. In particular the following two points should be highlighted.

Assertions inherited through an isa hierarchy are always cached at definition time.
This means that they are retrieved at step 2, when the goal is matched against the
current set of known facts.

The results returned by non-logical mechanisms such as Lisp attachments and :prove-
by are only merged with the results obtained by simple assertion-matching (step 2).
In other words they are meant to provide efficient proof mechanisms which
override those provided by definition-forming options, such as :iff-def and
:sufficient.

4.2.2 Proof rules for non-basic goal expressions

The bullet points below describe how non-basic goal expressions are proven in OCML.

Appendix 1 – Additional Details on OCML Page 55

(and A B). This expression is satisfied if both A and B can be proven in the current
model.

 (or A B). This expression is satisfied if either A or B can be proven in the current
model.

 (=> A B). This expression is satisfied if either A cannot be proven, or, if B can be
proven in each environment which is a solution to A .

 (<=> A B). This expression is satisfied if both (=> A B) and (=> B A) can be proven.

 (not A). This expression is satisfied if A cannot be proven in the current model.

 (exists schema-or-var A). This expression is satisfied if A can be proven in the
current model.

 (forall schema-or-var (=> A B)). This expression is satisfied if either A cannot be
proven, or, if B can be proven in each environment which is a solution to A..

Thus, the proof mechanism supported by OCML is not complete with respect to first-order
logic statements. In particular, disjunctions can only be proved by proving each clause
separately and negated expressions are only proved by default.

