a m hML‘}’-:II; LEDGE \ll.‘_l_:l'l\

ENSISTITUTE

Knowledge Modelling in
WebOnto and OCML

A User Guide

John Domingue, Enrico Motta, and

Oscar Corcho Garcia

Version 2.4

Table of contents

| ntroduction

The WebOnto User Guide

'_\

3
4
5

6

Overview 1
Menu and tool Bars 4
2.1 L oot e et e e e be e e e bbe e e e —e e e e beeeaatteeeateeeabeeeaabreeeaaraeeaares 4
2.2] SRS 5
2.3 L] =02 SRS 5
2.4 [0V 0] 10) SR 6
25 (@21 71Ny T N PRSI 7
2.6 F AN NN 7 1 0 N SR 7
2.7 BROADCAST ...ttt ittt ettt et e et et e b e et e e be et e s be e sbesbe e s bestee b e etbesbeeabeebeeabeebeebesaeeebesaeeabeeneesbeenbenreens 7
2.8 TOOL BAR. .ottt ettt e e e et e e e e e e bbb e e e e e s st b e e e e e s sbbbeeeeeaaabbaaeeeeaaabareeeeeaantraeeeesatres 8
Creating and Deleting Knowledge models 8
[tem List 10
Graphical Display area. 10
51 [l I Y/ 0] o] =SSP PUPPP 13
5.2 0= N7 2 [O RRROUR 14
5.3 SUMMARY OF MOUSE GESTURES IN THE GRAPHICAL AREAcooviiiitieeeteeecetieeeeveeesveeesvae e 21
known bugs 22

Knowledge M odellingin OCML

1

2

Typesof Constructsin OCML 23

1.1 FUNCTIONAL TERMSutiieitiee ettt ettee ettt e ettt e et e e e etb e e e eatee e e ebaeeaebbeeeeabeeesabeeeanbaeseateeesabeeeanteeesnreas 23
1.2 CONTROL TERMS . ttiee ettt e ettt e ettt eeeate e e e tte e e e bt e e e etteaeeabeeeeateeeabeeeeabbeeeasbeeesabeeeatbeeaasseeessbeeesnteeeanns 23
1.3 LOGICAL EXPRESSIONSuttieiitieeeetteeeeiteeeaetteeeetteeesteeessaeesaasteeeanteseabseasasbeseansseeasaeasatseeeasseeesnsens 24
Basic Domain Modellingin OCML 24

2.1 OCIML RELATIONS ...uvtiiitteee ittt e eette e e etteeestteeeeette s eetteesstbeseasteeesbeeessbbeeeasbeeesabaeesbeeeaaseeeessbeeesreeesnes 24
211 Relation Specification OPLIONS ..o e 24
2.1.2 Operationally-relevant relation OPLiONS..........cccoeiiieiireiiei e 25
2.13 A meta-option for non-operational SPeCifications...........c.coovieriiiiiiie s 26
2.14 OCML relations: SUMMING Upcoereruereriereeneeieeeeeieeiesestesse e saesseseeseesseessessessessessesseses 27
2.2 OCIML FUNCTIONStteeiitet e ittt e ettt e e etteeestteeeette e e etteesstbeeeasteeesseeessteeeeasseeesssasesteeeaasneeessseeesseeesne 28
2.3 OCIML CLASSES ...vtivviiteetteite et sttt st e stesteesbesta e st e e bae st e eabeebeeabesbeeabesbeeabesbeesbesteesbeeteesbeenbesbeenbenreenns 29
2.4 (O 104 1Y/ I 1 NS 17 N = PSSP 30
25 OBJECT-ORIENTED AND RELATION-ORIENTED APPROACHES TO MODELLING.......cccvvevveeiieennreene 30
2.6 THE GENERIC TELL-ASK INTERFACEeeiittiitteiieeiteesieesteesreesteesseessesssssessesssseesssssssesssessnsesssessns 31
2.6.1 Tell: a generic assertion-making PrimitiVeccooiiiniininene e 31
2.6.2 Ask: a generic query-posing PrimitiVe ... s 32
2.7 OCIML PROCEDURESutvieitteeietteeeeteeestbeeeaetteeaetteesssbeseateeessseesstbesaastesesbesesateeeaassesssseeesnseeesnns 33
2.8 RULE-BASED REASONING IN OCIMLccuviiiiiiiiic sttt st 33
2.8.1 BACKWAIT FUIES........c.vievieite ettt ettt ettt be e be e sbe e et e e s beeeare e e 33

2.8.2 FOTWATT TUIES... .ottt e e st e e s et e s e et e e s st e e e s sb b e s sasbaeesareas 34

3 Functional View of OCML

4 Mapping
4.1 INSTANCE MAPPINGcctttieeeeiiittiee e e s sitteeeeesestbereeeesesatbeeeesssabbaeeeessaasseeessssnreeseessanses
4.2 RELATION MAPPINGcutittettesteestesteesiesteetesseestesseesseaseessesseesaeaseesseasaesseensesseensessennes

5 Ontologies

6 Comparison with Other Languages

7 Synopsis

References

Appendix 1 - Additional Detailson OCML

1

~ W

Functional Term Constructors

L= I N RO

Inheritance and Default Values
Interpretersand Proof System

41 THE OCML INTERPRETER FOR FUNCTIONAL TERMS ..vvviiiiiiiiiiieeiiiiiriieeessiirieneessnnns
4.2 THE OCML PROOF SYSTEM.....cctvtiieiiiiitiieeeeiiintiessessiiiesesesisssssesssssssssssssssissssessessnnes
4.2.1 Procedure for proving basic goal expressions in OCML.........c..cccceeveveinenn,

4.2.2 Proof rules for non-basic goal eXpressions.........cccvvevereieveneereereereeeeenens

35

35
36
38

40
41

43

INTRODUCTION

This document is composed of three parts. The first part describes WebOnto, a tool
providing web-based visualisation, browsing and editing support for developing and
maintai ning ontologies and knowledge models specified in OCML. The descriptionis
user-oriented, in the sense that it is meant to provide guidance to a user, rather than to
describe the tool from a scholarly perspective. The second part of the document
describes OCML, an operational knowledge modelling language, which provides the
underlying representation for the ontol ogies and knowledge bases which can be
developed using WebOnto. This second part is arevised version of chapter 4 of (Motta,
1999). Thethird part (Appendix 1), gives more details about the interpreters and
reasoning facilities provided by OCML.

This document is available from the WebOnto home page at
http://kmi.open.ac.uk/projects/webonto.

Chapter 1
The WebOnto User Guide
John Domingue

1 OVERVIEW

Y ou can start WebOnto by going to http://webonto.open.ac.uk/. This page has the
appearance of figure 1. The page contains an invisible applet from which the classes for
the WebOnto applet are loaded. After 20 seconds the applet frames shown in figures 2
and 3 should appear. We call these the main WebOnto window and the fine-grained view
window.

Figure 2 shows a screen snapshot of the WebOnto client browsing the knowledge base
called kmi-planet-kb-drafts-220799. The main window at the top has five areas, which
are:

Thetitle bar — this shows the name of the knowledge model currently being browsed
and the type of the components currently displayed in the Item List. OCML
distinguishes between four types of knowledge models: domain ontologies, problem
solving methods, task ontologies and knowledge bases. Thettitlein figure 2 indicates
that we are currently viewing the classes in kmi-planet-kb-drafts-220799 knowledge
base.

The menu bar — we describe the menu items in the following section.
The tool bar —the tool bar icons are described in section 2.8.

The graphical display area. Graphical representations of selected objects from the
Item list can be displayed here.

The WebOnto User Guide Page 2

., WebOnto Page - Neltscape
Fle Edi View Go Window Help
T

WebOnto

KNOWLEDGE MEDIA

KMI

INSTITUTE

Welcome to WehOnto, canstructed within the HOREMA Praject This system was implemented by
John Domingue with input from Sarico Motta, Mare Fisenstadt and Zdensk Zdrahal You can
find some usefid documents (suck as the user guide) at the webanto home page

=l 1Applet johnd ladzeban tadzsbac unning. %

Figure 1. Theinitial WebOnto page. Thejava classes are loaded from this page.

Title Bar

Menu Bar

Tool Bar Graphical Display Area

Egjj'Bmwsing kmi-planet-kb-drafts-220799: all
File Edit

SR & El

krni-phd-student .l
krni-plaret-story
krni-professor
krni-project
krni-project-officer
krni-ré.d-project
kmi-research-area
kmi-research-assis
krni-research-fellow
krni-rezearch-praje
kmi-research-them
kri-zecretary
krni-zenior-lecturer
kmi-senighfesearc
kmi-software-visus
krni-zpztem-manag

kmitechrl LSl 2 el

i ¢ o H.i_l' -]
ﬂ_l D 4 | | 3
=8| |[JavaApplet Window

Item List .

Figure 2. An annotated screen snapshot of WebOnto in browsing mode depicting
the applet components.

Object Ontalogy Operationz Annotation Broadcast

The WebOnto User Guide Page 3

E.I e s Ik roa- kv bl g e wmanid - Byl nll et HWE
Wwlasan lmd-Enowrledige - encdcheid-intzanet &

Mome UntoLowy: coi-siio
Docmertation:
Technology being us=d Lor Eorcich Braisnt.
Sagprr ClaEses!
WD —a T - LR DL oy
Ewmr=pod=l liog=-tecbhino Logy
weh-besed-Dna -techroo Lagnr
ImhErl el Sab T
Ak el R o)
Erpe; dacotiom
FEard - i
CFOEi CANE—RoInT

L
Cypat Clee-poinc
PIESSE AR FS
CFPE: pPECEOn
o
wadiler iled i i I -
Eypes | orngmmisatinn
hzydpors - platfoims
typer hacdomre-plactorn

CFOB! DpErAning-gyaten
O L e — gLt e el
cypEd Boftosrs-bschnology
wEabEe
CYER:! ECCTUErD-HoCle
Fe v dorees B - 1 el =omrg
e - el
FpE! E=chemal ogsr
el e ooy - e

Expes: kmi-remencchk-thenne

AnstanrsEn
e Nl e - T e e T - e TS E T
= 500 ol | 1 1T F BRI, | = it
ECn-ENr I EnE-1 N rensT-EXpeL I EOns—SEC0] s

el el cheil (| 1i 'kl
Melotion Dot nom
Hher s

(mil) ﬁ

Figure 3. A snapshot of the fine-grained view window currently showing the class
kmi-knowledge-enriched-intranet.

Figure 3 shows the fine-grained view window. Messages from the server and the internal

descriptions of OCML components (displayed using the i icon) are displayed here. Any
text displayed in the fine-grained view window is automatically parsed and any word that
corresponds to an OCML item is displayed in a specific colour. The colour of aword
indicates the OCML type. The current colour coding is:

Class—green,

Instance - turquoise,

The WebOnto User Guide Page 4

Relation — blue,
Function —violet,
Procedure — violet-red,
Rule - maroon,
Ontology — orange.

Highlighted items can be selected and operated on. In figure 3 the relation end-time is
currently selected. Double clicking on an item has the same effect as selecting it and

clicking on the &7 (inspect) icon.
Items can be selected in the Item List, Graphical Display Areaor the Fine-Grained View

window. Selecting an item in one area desel ects any selected items in the other areas (but
see known bug 1 in section 6).

2 MENU AND TOOL BARS
We shall now describe the menu bar. The menu bar contains the following menu items:

21 File

Reload Ontology - reload an ontology on the server. This need only be used when a
set of files have been placed on the server by the server administrator. All the
knowledge models are loaded when the server is started up. When import/export
facilities are added to WebOnto this menu item is expected to be more heavily used.

Login —login into WebOnto. Note that one can only edit, create or delete knowledge
models when logged in. Contact j.b.domingue@open.ac.uk if you require alogin
name and password.

L ogout — logout of WebOnto.
Change Passwor d — change the currently logged in user’ s password.

New Ontology — create a new knowledge model. This menu item is described in
section 3.

Delete Ontology — delete a knowledge model. Thisis menu item described in section
3.

Edit Ontology Properties— edit the properties of a knowledge model. The properties
include the author of the knowledge model and the additional users who are allowed
to edit the knowledge model. This menu item is described in section 3.

Save diagram — save the currently displayed itemsin the display areato afile on the
server.

Open diagram — open a previously saved diagram.

Reinitialise OCML - clear al the currently defined OCML structures and reload the
entire library on the server. Only the root user can do this.

The WebOnto User Guide Page 5

Display Source File — display a one of the source files for the current knowledge
model. The user is prompted with the names of the source files on the WebOnto
server where the current knowledge model is stored. The selected fileisdisplayed in
adisplay source window.

Debug - turn on an internal debugger that sends atrace of all operations to the Java
console window.

Quit - quit WebOnto.

2.2 Edit
Graphical Cut - remove the currently selected object from the graphical display area.
Delete — delete the currently selected item (only available in edit mode).
Edit Source - edit the currently selected object (only available in edit mode).
View Sour ce —display the OCML source of the currently selected object.

New Class I nstance — creates an instance definition form (see section 5.2), enabling
an instance of the selected class to be created (only available in edit mode).

Sear ch for String — search for OCML entities within the library which contain the
specified string.
Clear Diagram - clear the graphical area.

Clear Before Drawing —if selected the graphical areais always cleared before
drawing anew item.

Node Highlighting - turn on node highlighting. This feature uses the semantics of
OCML to highlight which components are allowed to be connected to each other.
This prevents users from attempting to create links that have no defined semanticsin
OCML (only available in edit mode).

Edit M ode —when selected WebOnto is placed in edit mode. See section 5.1 for a
description of WebOnto’s edit mode.

2.3 Object
Draw - draw the current item in the graphical display area.

Draw Tree—draw atree, in the graphical display area, if appropriate for the
currently selected item. Currently trees are drawn for classes, tasks, problem solving
methods and knowledge models.

I nspect - inspect the currently selected object, displaying the result in the fine-
grained view window.

Direct I nstances - show the direct instances of the currently selected classin the fine-
grained view window.

All Instances - show al the instances of the currently selected classin the fine-
grained view window.

The WebOnto User Guide Page 6

Display Direct I nstances - show the direct instances of the currently selected classin
the graphical-display area.

Display All Instances - show al the instances of the currently selected classin the
graphical-display area.

Draw Tree Vertically —if selected trees are drawn vertically rather than horizontally.

2.4 Ontology
View Classes - display all the classesin the current knowledge model in the Item list.

View Top_classes - display the classes with no parentsin the current knowledge
model in the Item list.

View Relations - display all the relations in the current knowledge model in the Item
list.

View Functions - display all the functionsin the current knowledge model in the
Item list.

View Procedures - display al the procedures in the current knowledge model in the
Item list.

View Rules - display al the rulesin the current knowledge model in theitem list.

View Instances - display al the instances in the current knowledge model in the item
list.
View Tasks - display al the tasks in the current knowledge model in the item list.

View problem_solving_methods - display all the PSMsin the current knowledge
model in theitem list.

View All —display all the OCML structures in the current knowledge model in the
item list.

View Only Itemsin Current Ontology —if selected OCML entities from inherited
knowledge models are not displayed.

Include Base Ontology — if selected OCML entities from the base ontology are
displayed.

Change Number of Viewable Items— set alimit on the number of items which can

be viewed in the item list. This option facilitates the browsing of large knowledge
models. The default valueis 150.

Add View Filter —this menu item allows the user to create a set of filtersin order to
filter viewable itemsin the item list. They can be combined using the operators and
andor.

Add a String Filter - show only items containing the specified string.
Add aNot String Filter - show only items not containing the specified string.

The WebOnto User Guide Page 7

Add a Letter Range Filter - show only items with their first letter in the
specified range.

Add a Predicate Filter - show only items for which the given predicate is true.
For example, typing the class name person would cause only instances of person
to be displayed.

Delete Filter — delete a defined previoudly filter.

Select Ontology — readsin the OCML structures in the selected knowledge model
and displays all the classesin the item list. It should be noted that thisis subtly
different from the View items above. ‘View’ selects between different OCML types
within aknowledge model. Thisitem allows the user to switch knowledge models. It
is recommended that thisitem is used when changing knowledge models.

Unlock Ontology —when a knowledge model is edited the WebOnto server locks it
so that no-one else can edit it at the same time. Unfortunately, if WebOnto crashes
whilst a knowledge model is being edited, the knowledge model can remain locked.
This item can be used to unlock the knowledge model. Only the root user can do this.

Graph Entire Ontology Tree - draw a graph of the inheritance hierarchy of all the
knowledge modelsin library.

2.5 Operations
Tell - prompt for an OCML expression to invoke with the OCML ‘tell’ operation.
Ask - prompt for an OCML expression to invoke with the OCML ‘ask’ operation.

Set of All - prompt for an OCML expression to invoke with the OCML *setofall’
operation.

Unassert - prompt for an OCML expression to unassert in the current knowledge
model.

Evaluate - prompt for an OCML expression to invoke with the OCML ‘eva uate
operation.
2.6 Annotations

Trail —if selected dragging with the mouse button pressed draws atrail, that is, a
freehand line.

Trail Colour - choose the colour to trail in.

Clear - clear the currently displayed trails and text annotations.

2.7 Broadcast

Broadcast —when selected WebOnto ‘ broadcasts' all the user’ s interface actions to
WebOnto clients in receive mode.

The WebOnto User Guide Page 8

Recelve —when selected al the broadcast interface actions are ‘received’ by the
current WebOnto. Receiving WebOnto clients are in effect ‘ laves' of the
broadcasting WebOnto.

2.8 Tool Bar
Below the menu bar there isatool bar containing the following icons:
& - Draw the selected OCML component in the graphical display area.

& - Create agraphical representation for the currently selected OCML component. If a
classis selected a class hierarchy is drawn. In figure 2 above the class hierarchy for the
kmi-technology Classis displayed.

@& - nspect the currently selected OCML component. The results are displayed in the
fine-grained view window. In figure 3 above the kmi-technology classis currently being
inspected.

-l View the last item that was inspected. The fine-grained view window keeps a history
of al the items inspected. Thisicon enables the user to move back through the history.

'z{ - View the next item in the fine-grained view window history.
- View the OCML source of selected item.
M _ search for astring in the library of knowledge models.

/B Edit the source of the selected item (only available in Edit Mode).
B - Create new instance of the selected class (only available in Edit Mode).

3 CREATING AND DELETING KNOWLEDGE MODELS

WEe'll now describe how WebOnto can be used to create, delete and edit the properties of
aknowledge model. Figure 4 shows the dialog created when the menu item “New
Ontology” (under the file menu) is chosen. The dialog is used to enter the four properties
for the knowledge model, namely:

1. Name - the name of the knowledge model. In figure 4 an ontology called vehicle-
ontology IS being created.

2. Ontology Uses —the names of any knowledge models that this knowledge model
should use (i.e. inherit from). The snapshot in figure 4 specifies that the vehicle-
ontology will use the engineering-ontology ontology.

3. Allowed Editors — the names of any registered users or groups (each WebOnto user
belongs to a group) who can edit the knowledge model. Figure 4 specifies that angela
and any user belonging to the vehicle-design group will be allowed to edit the
ontology.

The WebOnto User Guide Page 9

4. Ontology Type —the type of the knowledge model, this can be one of: domain,
method, task or application/knowledge-base.

[Croato o Now Oniology __ ISISIER|
Marne: ivehicle-nntulngy
Crtalogy Uses: !Engineering-nntnlngy
ﬁhb{ﬂd-Edifn@: langela vehicle-desian
Ontalogy Type: Domair j
oK Cancel |
=8| |JavaApglet Window

Figure 4. A screen snapshot of the *Create New Ontology’ dialog box.

The “Delete Ontology” menu item under the file menu allows users to delete any
knowledge models that they own. The dialogue box displayed for this menu item displays
any knowledge models that the current WebOnto user owns (not the ones that /he is just
allowed to edit), except for the current knowledge model.

When a user selects the “ Edit Ontology Properties” menu item under the file menu a
dialog containing a menu of all the knowledge models owned by the user is displayed. A
snapshot of thisdialog is shown in figure 5. When the user selects the “OK” button the
dialog shown in figure 6 is displayed. Thisdialog is similar to the dialog for creating new
knowledge models. The only difference is that the dialog allows the author of the
knowledge model to be changed.

E dit the Propertiez of an Ontology
oK q Cancel
w8 [JavaApplet window

Figure 5. A screen snapshot of thefirst ‘Edit Ontology Properties’ dialog box. The
menu on theright contains all the knowledge models owned by the current user.

The WebOnto User Guide Page 10

E dit the Properties of kmi-planet-kb-.__ !EI'

Marmne! !km.-planet-kb-drafts-zzn?aa

Authar DECar

I:Intplngyugas, kmi-planet:kb

llowed Editers ii-:lhn enmico

Crtafzgy. Ty}_:le:- I Dormnain j
oK | Cancel |

i) !J_E_Na Appletiadindow

Figure 6. A screen snapshot of the second ‘ Edit Ontology Properties’ dialog box.

4 |ITEM LIST

Theitem list displaysitems of the currently viewed knowledge model. The “Ontology”
menu (see section 2.4) alows the user to control which items within the knowledge
model are displayed. Using the “Ontology” menu the user can specify:

That only items of a specified OCML type (classes, instances, relations, functions,
procedures, rules, PSMs, tasks) are displayed.

Whether OCML entities inherited from ancestor knowledge models are displayed.
Whether OCML entities from the base-ontology are displayed.

An numeric limit on the number of items displayed - this is useful when browsing
very large ontologies,

Filters which are used to cut down the number of items displayed. Again thisis useful
when browsing very large ontologies.

5 GRAPHICAL DISPLAY AREA.

The WebOnto User Guide Page 11

e Lt ﬂh-& thm-.r ﬂ;-uu;r. Antn-m branara

SEE TR

o k) B HL

o i iAo D

EhE ARl N

sacire-cubiie

T ~ ——
S = e
pus hluhiilﬂ

]

suwmid “J -

Sl BT = -

- ___‘—\—
BUET P T g
ket = <D — &

LLLLRE S pe TRl s]
sl et il

sl e
b riml
[T

EETE R T
pEraLme | eren

Bl -

Figure 7. A screen snapshot showing a user annotating part of a class hierarchy in
broadcast mode.

The graphical display area can be used for three different purposes:

Knowledge model visualization —graphical representations of OCML entities can be
drawn in the area (using the & or & icon).

Synchronous communication — when WebOnto is in broadcast mode, interface
actions are copied to al receiving WebOnto clients.

Editing — OCML definitions can be created and edited using the graphical display
area.

Figure 7 shows a user using the sketching facilities in WebOnto to communicate with a
colleague whilst in broadcast mode. When the “ Trail” menu item (under the

“Annotation” menu (see section 2.6)) is selected dragging the mouse with the left button
pressed draws aline in the selected “Trail Colour”. Clicking in the graphical areawith the
control button pressed creates a prompt for a text annotation (note that WebOnto must be
in browsing mode). In figure 7 the user has drawn ared trail around a subclass link and
then created a text annotation.

When the “Trail” button is not selected then dragging with the left mouse button draws a
shaded area enabling multiple nodes to be selected. Thisis shown in figures8 and 9
below. Single node selection is shown by four pimples — one at each corner of the node.
Multiple node selection, as shown in figure 9, is shown by dark shading.

The WebOnto User Guide Page 12

:User: oscar Browsing kmi-planet-kb-draftz-220799: classes

« File Edit Object Ontalogy Operations Annatation Broadzast

e d B

educational-organ
educationalreseal
electronic-publizhi
email-address
ematology
employes

Ermpky-zet
event
event-irrvalving-m

event-invalving-pn
event-invalving-pn
exam-taking-place
executable-tazk

externally-funded-;

fernale-child - event-invelving-production))
function
gender

general-medicine-,
generalized-maover
generalized-transfe
generic-agent

genetic-algorithms

gengraphical-regic
gengraphically-disl .,
giving-a-ecture \—“’_‘J_,)

giving-a-tutorial
goal-specification- =

El
LI_I 4 1 l | 3
“H=m| |Java Applet Window

Figure 8. A screen snapshot showing a user selecting a number of nodes.

by ey e (e e plased-Rhediaii A% cingaes Misl E3

TP T Dot Meikge Dpese o Aweimn Podue
| G R

FAODreE ATk
o
srcmnc s
el e

T
ks

amply sl
oLy i
i el g

et e g i
e I G
el ro-phass
e sbls sk
T Faels
f r

[FEprp el
prrmand-luareds
e sgprd
garmt=-alge st
QTN Dk e
g e |
W eTg-E Eiiae
Fvmg & bdnesl

Fo Sl e -

| TS o =5
o (et Wil - -

Figure 9. A screen snapshot showing 3 selected nodes. These nodes can be moved or
cut in asingle operation if desired.

The WebOnto User Guide Page 13

5.1 Edit Mode

E!_Ih-u: i el Eofl g -] 00 -l e 221K eldrioes

M= [Dhar Opnbgy Opesties Adeoisties Brosioes

SRS WL
| |

el b e B
geakonerpabkfi ml
s bk ees :

i ko
EmplaeE n.-.u—.]
BT -

Esrl ._]) ek
el man g o = Fe i i

il Wl i
ExErl finil g Tie
miicy raking Clooe
e d bl beek
et i i I kel
|esvad e checd
luncaon

gercie

porcyal madcre
gafraral o Kdia
Fenamnd e Fand
gEnai EgE |
porebslgmrhes
o =0 o LR
pooctaliesle dicd
Vi echie
wvirg-adimie
ool e el =

-:1—1 E i S ; :

Figure 10. A screen snapshot showing how the appear ance of WebOnto changes
when it isin edit mode.

Figure 10 shows how the appearance of WebOnto changes when it is put into edit mode.
Two new icons appear in the tool bar:

L- Edit the currently selected object, and

‘2 - Create an instance of the currently selected class.

Additionally, awell from which new OCML definitions can be created is displayed. The
graphical display area can be used to create OCML definitions by direct manipulation.
WebOnto understands the semantics of OCML and prevents the user from creating
semantically incorrect definitions in four ways:

1. Node linking/highlighting - Nodes can only be linked if this action is semantically
correct. As the user moves the mouse around linkable nodes are highlighted. Node
highlighting can be turned using the “Node Highlighting” menu item under the * Edit”
menul.

2. Automatic creation of templates and forms - The manipulation of new nodes (e.g.
linking them to existing nodes) results in the automatically insertion of source code.
For example, if anew classclassi islinked to an existing class class2 the source

The WebOnto User Guide Page 14

code (defclass classl (class2)) iswritten. The editing of instancesis aided by the
automatic creation of forms. These are described in more detail in section 5.2.

Prompting for component parts - in figure 15 the user has linked the class academic to
the classurt. When a user does this a selector (works-at in figure 15) is automatically
created. The selector contains all the slots within the academic class, so the user has to
merely select a slot rather than recall and type aslot’s name.

Semantic colour coding - al the links drawn by the user between graphical icons are
automatically colour coded depending on the type of link (e.g. class to subclass links
are dark green, and class to instance links are blue).

5.2 Scenario

We shall describe the features available in WebOnto' s edit mode using a short scenario.
In the scenario below we describe how a user adds some classes and instances to the
tutorial-ontology ontology. The user selects the ontology and initiates an editing
session in using the following steps. The user:

1
2.

Selects “Clear Diagram Before Drawing” under the “ Edit” menu.

Selects the “ Graph Entire Ontology Tree” menu item under the “Ontology” menu (see
figure 11). Each knowledge model within the displayed treeis colour coded
according to the knowledge model type:

1. Beige-—thebasic-ontology,

Light gold —a domain ontology,

Light red — an application or knowledge base,
Light blue — a problem solving method,

o &~ 0N

Y ellow — atask ontology.

3. Selectsthe node tutorial-ontology (Seefigure 11).

4. Selectsthe “ Select Ontology” menu item under the “Ontology” menu.

5. Sdectsthe “Edit Mode’ menu item under the “ Edit” menu.

The WebOnto User Guide Page 15

i i i ey el S0 bl e S HEHE: @

o e e ‘w i dem —
s o

o Al ko Bl

B LA [E PR RTTE e i 5T
TP R ——ril— o e — T o
A ekl T -

amEEETE A e = B =t
R T, - = il s el
e S i -
aryrrivg @ arn . —— -
Al v i '
i Ll =, -

ik bl

DRl] - M’J

ESE AL R e e #—_

= -

3 —|'_-_ — —_

'\llll.'hr'!l:l e P L [— o T =
i — N r

Figure 11. A screen snapshot of WebOnto displaying the structure of the knowledge
modelswithin thelibrary. This can be obtained by selecting the “ Graph Entire
Ontology Tree” menu item under the“ Ontology” menu. The coloursindicate the
knowledge model type.

The user defines anew class senior_lecturer Which is a subclass of the class academic
by using the following steps. Specifically, the user:

1. Selectsthe academic classin theitem list” and clicks on the & icon.

2. Dragsthe class node from the well onto the graphical display area. Notice (see figure
12) that the node label for the new class class1 isdisplayed in abold italic font
because no definition for the node exists on the WebOnto server.

3. Clickson the academic class hodein the graphical display areawith the mouse, whilst
holding the control key down, and drags aline to the class1 node.

4. Selectstheclass1 node and clicks on the [icon. This creates the edit window
shown in figure 13.

5. Changes the name of the class in the edit window (see figure 13) to “senior_lecturer”
and hitsthe “Done” button.

The user then specifies that the has-web-address Slot of the academic class should be of
type url by carrying out the following steps. The user:

1. Definesanew classurl in the following manner. The user drags the class node from
the well onto the graphical display area, clicks on the 7] icon, edits the code in the
edit window changing the class name from “Class2” to “url” and then clicks on the
“Done” button.

2. Clicks on the class academic with the mouse and drags to the class url. The user
presses and holds down the “Shift” button and then releases the mouse button (see
figure 14).

The WebOnto User Guide Page 16

3. Clicks on the labdl “unset” and chooses “has-web-address’ from the selector |abel
(seefigure 15). The definition of the academic classis automatically changed to:

(def-class acadeni c (educati onal - enpl oyee)
((has-web-address :type url)))

The user creates an instance of professor using the following steps:

1. Selectsthe professor node in the graphical display area and clicks on the S icon.
The form shown in figure 16 appears. Each slot in an instance form is represented by
a row containing two or four columns. The first column contains a button with the
slot name. Pressing the button causes all examples of the use of the slot to be
displayed in the fine-grained view window. Figure 17 shows the output in the fine-
grained view window after the “works-at” button has been pressed. The second
column contains a text window into which a value can be typed. If the slot is typed a
third and fourth column are provided. The third column is a menu containing the
types defined for the slot and the subclasses of the defined types. The fourth column
IS @ menu containing the instances of the selected type.

2. Startstofill in the works-at slot. Examples of how the works-at slot has been used
(shown in figure 17) are obtained by pressing the “works-at” button.

Selects “ higher-educational-organization” from the type menu (see figure 18).

Selects “New Instance” from the instances menu (see figure 19). This causes a new
instance form for the class higher-educational-organization to be created (see
figure 20).

5. Fill intheinstance form for the higher-educational-organization class.
6. Fill intheremainder of the professor instance sots and hits the “OK” button.

Finally, the user ends the session by selecting the “Edit Mode” menu item under the
“Edit” menu. WebOnto indicates that the persons-and-organizations ontology is now
unlocked. The appearance of WebOnto at the end of the session is shown in figure 21.

The WebOnto User Guide Page 17

i
[T
=
=

ST L]
= T
e o
oA 1§ LA
L L
WV W
WA ki
=T HiNTETE
T T AT
il ol
arpning & arnn
Al wmis
b b LT T
ok publeey
TS S
Smal (R
ST TIFEGS
e]
chawran

n

i
M f . 4

el e ek

|

1

TG
&
o o0 0
/ E
|

Figure 12. A screen snapshot showing a new class node classi1 being dragged from
thewell.

Ediling: Class Classz1

[def-clasz Classl (academic)) =]

|—|__ e
W

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
q_I:.‘S:.‘5: 13

D‘mﬁal Cancel

 z1sal [Tava BepetWindow

Figure 13. A screen snapshot showing the edit window created by selecting the
Class1 node shown in figure 9 and clicking on the & icon.

The WebOnto User Guide Page 18

Figure 14. A screen snapshot just after the user has created atypelink from the
academic classto theurl class.

Figure 15. A screen snapshot just after the user has clicked on the “unset” label in
thetypelink in figure 14 and befor e selecting “ has-web-address’.

The WebOnto User Guide Page 19

Inslance of professor Eﬁ

Name: .Ilnstance‘l

ek ora st rame to e sxamples of s se

has-duration | | duration =l[wone =
. At]_ Hime-point 7| Mane =l
end-time l_ tirne-point leone ﬂ
fullname | |sting 2[1ore =
has gender [| oerder = Nore Bl
‘has-address]_ postal-addiess | =
has-web-address | | weopese leone =
]]as..gmaﬂ_aﬂmgg l._‘lemail.-address :"None ;I
T B r
involved-in-projects || | projest | =l

haspublication || | bookselererce leone =
works-at || | orgsrization =l[none =l
hastesearcheareal| | esachaes =l none =l
has-occupation i Ioccupatlon jINone j

2l |

fin] & Cancel |

Tl [lavahppietWindow |

Figure 16. A screen snapshot of the professor instance form automatically created
by WebOnto.

E:j Information on the slot works-at H=lE

Examples of the use of the slot works-at

Examples with instances other classes
DANTEL had the walue THE-OPEN-UNIVERSITY

«l |
18| |Java Applet Window

There are no examples of the instances of the same class i_
-
*

Figure 17. A screen snapshot of the fine-grained view window showing examples of
the use of the ot works-at. This message was obtained by pressing on the “works-
at” button in theinstance form show in figure 16 above.

werksay | argmrEation ﬂ Hime =l

[corporain

(el e Tunnling- By
irli.:mrr:-sr:d'hi.ng UNHETELy
inin:ar.h-ml-lrg'uni'cr:lhm ||
igmugraplically distribiteml- hoalth-caane- s
{gevining-hody

{health-cam-argankation

higher-edneational nrganization

Figure 18. A screen snapshot of type menu for the works-at slot of the professor
instance form.

The WebOnto User Guide Page 20

Figure 19. A screen snapshot of theinstance menu for the type higher-educational -
organization for thework-at slot of the professor instance form.

Figure 20. A screen snapshot of the higher-education-organization instance form for
the dlot works-at generated automatically by WebOnto.

The WebOnto User Guide Page 21

b Lo cimcosi Hinoss g iiersal divsl gl ol

Fie @ Dbt Dk s e Ridohday [lRiwyms
e eyl

Vo gy ot et
fweepated =
e e

Qi il baesil

(B S R
wekirfum peomes
ks
ATk L WP
el hl

R

R J

e L

et o L
lratan

i

PR

TRF

Arnmn g

e A e
ey e e

L T e
e B ey
L e ad

L] L] _.'_'.l.. |
i [isen ok e

=

Figure 21. A screen snapshot showing WebOnto when the editing session has been
terminated.

5.3 Summary of Mouse Gesturesin the Graphical Area

Within WebOnto a number of operations can be carried out using mouse gestures in the
Graphical Display window. The effect of a mouse gesture is dependent on WebOnto's
current mode (browse or edit) and the gesture' s start and end points. We summarise the
possible operationsin the following tables.

In Browse Mode

Gesture e End Result

Mouse Down Node Select the node

Control Mouse Down Prompt for atext annotation
Mouse Drag Node Move a node

Mouse Drag Not over aNode Specify a select region

In Browse Mode with the “ Trail” menu item under the “ Annotation Menu” selected.
Gesture Start End Result

Mouse Drag Draw afreehand line

The WebOnto User Guide Page 22

In Edit Mode

Gesture SE End Result

Control Shift Mouse Node Create atext window to

Down change the node name

Control Mouse Drag Class Nodel Class Create a superclass link
Node2 from nodel to node2

Control Mouse Drag Instance Nodel Class Create an instance-of link
Node2 from nodel to node2

Control Mouse Drag Class Nodel Instance Create a default-value link
Node2 from nodel to node2

Control (delayed Shift) Class Nodel Class Create atype-of link from

Mouse Drag Node2 nodel to node2

6 KNOWN BUGS
Currently there are three known bugs which can not be fixed trivialy.

1. Deselection of items- Whenever an item is selected in either the item list, graphical
area, or the fine-grained view window selected items in the other windows are desel ected.
Unfortunately, it is not possible to detect a selection using a single mouse click in the
item list. You can select an item in the item list using a single mouse click but the event is
not sent to WebOnto. Consequently, when an item is selected in the item list the currently
selected items in the other two windows are not desel ected.

2. Double clicking — Double clicking on an item in the item list or the fine-grained view
window causes the item to be inspected. Double clicking is not always detected. This
varies between hardware and operating system platforms.

3. Nowarnings before deleting a class - When deleting a class which has instances,
there is no warning on the feature that every instance of the classis aso deleted.

Chapter 2
Knowledge M odellingin OCML

Enrico M otta

The modelling language described in this chapter, OCML, was originally developed in
the context of the VITAL project (Shadbolt et al., 1993), to provide operational
modelling capabilities for the VITAL workbench (Domingue et a., 1993). Over the
years the language has undergone a number of changes and improvements and in what
follows | will present an overview of the current version of the language (v6.3) and
compare it to aternative knowledge modelling languages. Moreover, | will dso illustrate
a subset of the application development interface supporting the construction of OCML
models. This interface consists of a number of Lisp macros and functions which can be
used for retrieving and modifying OCML constructs, for evaluating functional and
control terms, and for querying an OCML model.

1 TYPESOF CONSTRUCTSIN OCML

OCML supports the specification of three types of constructs. functional and control
terms, and logical expressions.

1.1 Functional terms

A functional term - in short, a term - specifies an object in the current domain of
investigation. A functional term can be a constant, a variable, a string, a function
application or can be constructed by means of a special term constructor. This can be
one of the following: if, cond, the, setofall, findall, quote and in-environment! - See
appendix 1 for a description of the semantics of these terms. Variables are represented as
Lisp symbols beginning with a question mark - e.g., ? is a variable. Strings are
sequences of characters enclosed in double quotes, e.g. "string™. A function application
is a term such as (fun {fun-term}*), where fun is the name of a function and fun-term a
functional term. Functions are defined by means of the Lisp macro def-function, which
is described in section 2.2.

Functional terms are evaluated by means of the OCML function interpreter.

1.2 Control terms

Modelling problem solving behaviour involves more than making statements and
describing entities in the world. Control terms are needed to specify actions and describe
the order in which these are executed. OCML supports the specification of sequential,
iterative and conditional control structures by means of a number of control term

1 Inwhat follows | will usethis font to refer to expressions in the OCML language.

Knowledge Modelling in OCML Page 24

constructors, such as repeat, loop, do, if, and cond?. A Lisp macro, def-procedure,
makes it possible to label parametrized control terms - i.e. to define procedures. Control
terms are evaluated by means of a control interpreter.

1.3 Logical expressions

OCML dso provides the usual machinery for specifying logical expressions. The
simplest kind of logical expression is arelation expression, which has the form (rel { fun-
term}*), where rel is the name of a relation and fun-term is a functional term. More
complex expressions can be constructed by using the logical operators - and, or, not, =>,
<=> - and quantifiers - forall and exists. Operational semantics is provided for all
operators and quantifiers. Relations are defined by means of the Lisp macro def-
relation, Which isdescribed in section 2.1.

2 BASIC DOMAIN MODELLING IN OCML

In the previous section | have introduced the three types of constructs which are
supported by OCML. In this section | will go down at a more fine-grained level of
description and | will illustrate the various primitives which are provided in OCML to
support the specification of logical expressions, functiona and control terms. In
particular, OCML provides mechanisms for defining relations, functions, classes,
instances, rules and procedures.

21 OCML reations

Relations allow the OCML user to define labelled n-ary relationships between OCML
entities. Relations are defined by means of a Lisp macro, def-relation, which takes as
arguments the name of a relation, its argument schema, optional documentation and a
number of relation options. An argument schemais alist (possibly empty) of variables.
Relation options play two roles, one related to the formal semantics of a relation, the
other to the operational nature of OCML. These roles are discussed in the next two
sections.

2.1.1 Relation specification options

From a formal semantics point of view the purpose of a relation option is to help to
characterize the extension of a relation. Table 2.1 shows the relation options which can
be used to provide formal relation specifications and, for each option, informally
describes its semantics. A formal semantics to these options can be given in terms of the
homonymous Ontolingua constructs.

2 The careful reader will have noticed that | have already mentioned if and cond When discussing
functional terms. In fact, if and cond can be used to construct both functional and control terms.
However this does not cause any problem. For instance, if an if construct is encountered when
expecting a functional term then an error will be generated if control terms are used in the body of the
it. The opposite however is not true: functional terms can always be used in place of control terms.

Knowledge Modelling in OCML Page 25

Relation Option Rolein Specification

ciff-def Specifies both sufficient and necessary conditions
for the relation to hold for a given set of arguments.

:sufficient Specifies a sufficient condition for the relation to
hold for a given set of arguments.

zconstraint Specifies an expression which follows from the
definition of the relation and must be true for each
instance of the relation.

zdef Thisisfor compatibility with Ontolingua: it
specifies a constraint which is also meant to provide
apartial definition of arelation.

:axiom-def A statement which mentions the relation to which it
isassociated. It provides a mechanism to associate
theory axioms with specific relations.

Table 2.1. Relation specification optionsin OCML.

2.1.2 Operationally-relevant relation options

Relation options also play an operationa role. Specifically, some relation options
support constraint checking over relation instances while others provide proof
mechanisms which can be used to find out whether or not a relation holds for some
arguments. Table 2.2 lists the relation options which are meaningful from an operational
point of view and informally describes their relevance to constraint checking and theorem
proving.

As shown in the table, constraint checking is supported by the following keywords:
:constraint, :def and : iff-def. While these have different model-theoretic semantics -
seetable 2.1 - from a constraint checking point of view they are equivalent. They all
specify an expression which hasto be satisfied by each known instance of the relevant
relation.

The relation options : iff-def, :sufficient, :prove-by and : lisp-fun provide

Relation Supports Provides
Option constraint checking proof mechanism
:sufficient No Yes
:prove-by No Yes
clisp-fun No Yes
ciff-def Yes Yes
zconstraint Yes No
zdef Yes No

Table 2.2. Operationally-relevant relation optionsin OCML.

Knowledge Modelling in OCML Page 26

mechanisms for verifying whether or not arelation holds for some arguments. The first
two - :iff-def and :sufficient - also play aspecification role - seetable 2.1. The others
- :prove-by and : 1isp-fun - only play an operational role.

Both :iff-def and :sufficient indicate logical expressions which can be used to prove
whether some tuple is an instance of arelation. From atheorem proving point of view
there is an important difference between them. Let’s suppose we are trying to prove that
atuple, say T, satisfiesarelation, say R. If a :sufficient condition istried and failed,
the OCML proof system will then search for alternative ways of proving that T satisfies
R. If an :iff-def condition istried and failed, then no aternative proof mechanism will
be attempted.

The relation options :prove-by and : lisp-fun are meant to support rapid prototyping and
early validation by providing efficient mechanisms for checking whether atuple satisfies
arelation. The difference between :prove-by and : 1isp-fun hasto do with the
expressions which are used as values to the two options: :prove-by pointsto alogical
expression, : lisp-fun to anon-logical one (specifically aLisp expression).

The box below provides an example of how the various types of relation options can be
used concurrently to specify arelation and to support constraint checking and efficient
proofs. Thisexampleistaken from atask ontology for parametric design problems
(Motta, 1999) — see http://chaucer.open.ac.uk:3000/webonto?ontol ogy=parametric-design

The relation has-value, shown below, associates a design parameter to itsvaluein a
design model. The definition specifiesthat »v isthe value of a parameter, 2p, in adesign
model, 2dm, if and only if the pair (?p . ?v) isan element of 2dm. In addition, it also
specifies the constraint that the value of a parameter has to be a member of its value
range, if this has been specified. Finally, the definition includes a : prove-by option
whose value is an expression which can be used for verifying whether therelation is
satisfied for atriple, (?p ?v 2dm). This expression provides an efficient proof method
(by weakening the : i ff-def statement which formally defines relation has-value) but
does not contribute to the specification.

(def-relation HAS-VALUE (?p ?v ?2dm)
"Parameters have values w.r.t a particular design model™
iff-def (and (parameter ?p)
(design-model ?dm)
(element-of (?p . ?v) ?2dm))
constraint (or (and (exists ?vr
(has-value-range ?p ?vr))
(element-of ?v ?vr))
(not (exists ?vr
(has-value-range ?p ?vr))))
prove-by (element-of (?p . ?v) ?dm))

2.1.3 A meta-option for non-operational specifications

As shown above, OCML provides a number of relation options, which play both a
specification and an operational role. However, in some cases we might want to use a

Knowledge Modelling in OCML Page 27

keyword only for specification and not operationally, for instance when we know that the
value of the keyword in question is a non-operational expression. To cater for these
situations, OCML provides a special meta-keyword, :no-op, which can be used to
indicate that the enclosed relation option only plays a specification role. An example of
its use is shown by the definition of relation range, which is shown below. In the
example the keyword :no-op is used to indicate that the :iff-def specification of the
relation is not operational - in particular it is not normally feasible to test the range of a
function on all its possible inputs!3

(def-relation RANGE (?f-r ?relation)

"The range of a function or a binary relation is a relation which is
true for any possible output of the function or second argument of
the binary relation”

:no-op (:iff-def (or

(and (function ?f-r)
(forall (?args ?result)
(=> (= (apply ?f-r ?args) ?result)
(holds ?relation ?result))))
(and (binary-relation ?f-r)
(forall (?x ?y)
(=> (holds ?f-r ?x ?y))
(holds ?relation ?y))))))

In the above definition it is worth highlighting the use of the special meta-relation holds.
An expression such as (holds <r> <argp>...<argy>) is satisfied if and only if the
expression (<r> <argp>....<argp>) is satisfied. Thus holds has variable arity: it can take
one or more arguments. In particular the number of additional arguments in a holds
statement reflects the arity of the relation passed as first argument. The relation holds
has a ‘special status' because it is the only relation with variable arity supported by
OCML .4

2.1.4 OCML relations: summing up

The set of relation options discussed here aims to provide a flexible and versatile range of
modelling constructs supporting various styles of modelling. While the emphasis is on
operational modelling, OCML aso supports formal specification. Moreover, it provides
facilities for integrating a specification with efficient proof mechanisms.

3 Ontolingua-aware readers may have induced from the definition of the relation range that, in contrast
with Ontolingua, OCML does not considers functions as relations. This has to do with the operational
nature of the language: functions are dealt with by the OCML interpreter, relations by the proof system.

4 This constraint is only a limitation of the current implementation of the language: in principle there is
no reason why variable-arity relations should not be supported. Moreover, in contrast with relations,
OCML functions can have variable arity. To specify that a function can take an indefinite number of
arguments OCML uses the same convention as Lisp: the symbol arest is used before the last argument
of afunction argument schema.

Knowledge Modelling in OCML Page 28

2.2 OCML functions

A function defines a mapping between alist of input arguments and its output argument.
Formally functions can be characterized as a specia class of relations, as in KIF
(Genesereth and Fikes, 1992). However, in operational terms there is a significant
difference between a function and a relation: functions are applied to ground terms to
generate function values; relation expressions can be asserted or queried. Thus, in
accordance with the operational nature of OCML, functions are distinguished from
relations.

Functions are defined by means of a Lisp macro, def-function. Thistakes as argument
the name of afunction, its argument list, an optional variable indicating the output
argument (asin Ontolinguathisis preceded by an arrow, ->), optional documentation and
zero or more function specification options. These are :def, :constraint, :body and
clisp-fun.

The option :constraint provides away to constrain the domain (i.e. the set of possible
inputs) of afunction. It specifiesalogical expression which must be satisfied by the
input arguments of the function. The :def option indicates alogical expression which
‘defines’ the function. This expression should be predicated over both (some) input
arguments and the output variable. Operationally, the expression denoted by the
:constraint option provides a mechanism for testing the feasibility of applying a
function to a set of arguments. The expression denoted by :def provides a mechanism
for verifying that the output produced by a function application is consistent with the
formal definition of the function.>

Finally, the options :body and : 1isp-fun provide effective mechanisms for computing
the value of afunction. The former specify afunctional term which is evaluated in an
environment in which the variables in the function schema are bound to the actual
arguments. The latter makesit possible to evaluate an OCML function by means of a
procedural attachment, expressed asaLisp function. The arity of this Lisp function
should be the same as that of the associated OCML function.

(def-function filter (?1 ?rel) -> ?sub-1
"Returns all the elements in ?l which satisfy ?rel”
:def (and (unary-relation ?rel)

(list ?1))
(list ?sub-1)
(=> (and (member ?x ?sub-1I)
(holds ?rel ?x))
(member ?x ?1)))
tbody (if (null ?I)

21

(if (holds ?rel (first ?1))
(cons (first ?I)

(filter (rest ?1) ?rel))

(filter (rest ?1) ?rel))))

5 These constraint-checking mechanisms can be switched off, if they are not required.

Knowledge Modelling in OCML Page 29

The above definition shows an example of the use of def-function. The OCML function
filter takes as arguments alist, 21, and aunary relation, ?rel, and returns the elements
of 21 which satisfy 2rel. Asillustrated by the definition, the :def option provides a
declarative way of specifying afunction; the option :body an effective way of computing
its value, for agiven set of input arguments.

2.3 OCML classes

OCML also supports the specification of classes and instances and the inheritance of slots
and values through isa hierarchies.

Classes are defined by means of a Lisp macro, def-class, which takes as arguments the
name of the class, alist (possibly empty) of superclasses, optional documentation, and a
list of ot specifications, asillustrated by the definitions in the next box. These show a
number of classes taken from the domain model for the Sisyphus-I office alocation
problem (Linster, 1994). This problem consists of allocating members of the Y QT
laboratory to the appropriate offices, according to a number of constraints.

(def-class YQT-member ()
((has-project :type project)
(smoker :type boolean :cardinality 1)
(hacker :type boolean :cardinality 1)
(works-with :type YQT-member)
(belongs-to-group :type research-group :-value yqt)))

(def-class researcher (YQT-member))
(def-class secretary (YQT-member))

(def-class manager (YQT-member))

OCML provides support for the usual slot specification machinery which isfound in
frame-based languages. Specifically, it provides the following slot options.

:value. A valuewhich isinherited by all instances of aclass.

:default-value . A value which is inherited by all instances of a class, unless
overridden by other values.

:type. Thevaue of this option should be a class, say C. This option specifies
that al values of the associated slot should be instances of C. It is aso
possible to specify that a slot value must belong to one or more classes, say
c1,...., Cn, by using the notation (or c1 c2..cn).

:max-cardinality . The maximum numbers of slot values allowed for adot.
:min-cardinality . The minimum numbers of slot values required for aslot.

:cardinality . The numbers of slot values required for a slot. This option
subsumes both :min-cardinality and :max-cardinality.

Knowledge Modelling in OCML Page 30

:documentation . The value of this option is a string providing documentation
for adot.

:inheritance. The inheritance mechanism used for dealing with default
values. If :merge IS used, then al default values inherited from different
ancestors are collected. |If :supersede is used, then default values inherited
from more specific ancestors override those inherited from more generic ones
- see appendix 1 for more details on the inheritance mechanism in OCML.

24 OCML instances

Instances are simply members of a class. An instance is defined by means of def-
instance, Which takes as arguments the name of the instance, the parent of the instance
(i.e. the most specific class the instance belongs to), optional documentation and a
number of slot-value pairs. An example of instance definition, taken from the Sisyphus-I
domain model, is shown in the box below.

(def-instance harry_c researcher
((has-project babylon)
(smoker no)
(hacker yes)
(works-with jurgen_1 thomas_d)))

In particular the above definition shows that a slot can have multiple values. In this case
harry_c works both with jurgen_1 and thomas_d.

2.5 Object-oriented and relation-oriented approachesto modelling

When describing classes and instances | made use of standard object-oriented
terminology and talked about slots having values and instances belonging to classes.
This object-centred approach is in a sense orthogonal to the relation-centred one which |
used when discussing relations and logical expressions. The former focuses on the
entities populating a model and then associates properties to them; the latter centres on
the type of relations which characterize a domain and then uses these to make statements
about the world. These two approaches to modelling/representation have complementary
strengths and weaknesses and for this reason they are often combined in knowledge
representation and modelling languages, to provide hybrid formalisms (Fikes and Kehler,
1985; Yen et a., 1988).

In the context of a knowledge modelling language (rather than a knowledge
representation one) the main advantage gained from combining multiple paradigmsis one
of flexibility. Both object-oriented and relation-oriented approaches provide conceptual
frameworks which make it possible to impose aview over some domain. The choice
between one or the other can be made for ideological or pragmatic reasons - e.g. whether
the target delivery environment is arule-based shell or an object-oriented programming
environment. In the specific context of an operational modelling language, such as
OCML, another benefit, which is gained by providing support for both object-oriented
and relation-oriented modelling, is that these approaches are naturally associated with
particular types of inferences. Object-orientation provides the structure for inheritance

Knowledge Modelling in OCML Page 31

and automatic classification; relation-orientation is normally associated with constraint-
based and rule-based reasoning.

While the integration of multiple paradigms provides the aforementioned benefits, when
describing or interacting with a knowledge moddl, it is useful to abstract from the various
modelling paradigms and inference mechanisms integrated in the model and characterize
it at auniform level of description. Specifically, in accordance with aview of knowledge
as a competence-like notion (Newell, 1982), it is useful to decouple the level at which we
describe what an agent knows from the level at which we describe how the agent
organizes and infers knowledge. Such an approach is used - for instance - in the Cyc
system (Lenat and Guha, 1990), which integrates multiple knowledge representation
techniques (the heuristic level), but provides a uniform interface to the Cyc knowledge
base (the epistemological level). A similar approach is also followed by Levesque
(1984), which describes a logic-based query language which can be used to communicate
with aknowledge base at afunctional level, independently from the data and inference
structures present in the knowledge base.

In particular, in the case of OCML, this generic idea of providing a uniform level of
description to a hybrid formalism has been instantiated by providing a Tell-Ask interface
(Levesgue, 1984), which use logical expressions (i.e. arelation-oriented view) when
modifying or querying an OCML model, independently of whether the query in question
concernsaclass, adot, or a‘ordinary’ relation. The key to thisintegrated view isthe
fact that classes and slots are themselves relations; classes are unary relations and slots
are binary ones. In addition to supporting a generic Tell-Ask interface, this property
makes it possible to provide ‘rich’ specifications of classes and slots. In particular,
because these are relations, it is possible to characterize them by means of the relation
options discussed in section 2.1.1. For instance, the definition below specifies the class
of empty setsintermsof an :iff-def relation option.

(def-class EMPTY-SET (set) 7?set
iff-def (not (exists ?x (element-of ?x ?set))))

2.6 Thegeneric Tell-Ask interface

2.6.1 Téell: ageneric assertion-making primitive

OCML provides a generic assertion-making primitive, ter1, which provides a uniform
mechanism for asserting factsS, independently of whether these refer to dot-filling
assertions, new class instances, or simply relation instances. For example we can use
tell to add anew value to the list of projects carried out by harry_c asfollows.

6 Formally afact (or assertion) is a ground relation expression. A relation expression is an expression
such as (<r> <arg1>....<argn>), where <r> is a relation and argj is a functional term. A ground

expression (or term) is an expression (or term) which does not contain variables.

Knowledge Modelling in OCML Page 32

? (tell (has-project harry_c mlt))

(HAS-PROJECT HARRY_C MLT)

Analogously we can add a new instance of class researcher simply by stating:

? (tell (researcher mickey_m))

(RESEARCHER MICKEY_M)

2.6.2 Ask: ageneric query-posing primitive

The relation-centred view makes it possible to examine the contents of an OCML model
simply by asking whether alogical statement is satisfied. The OCML proof system will
then carry out the relevant inference and retrieval operations, depending on whether the
relation being queried isadot, aclass, or an ‘ordinary’ relation. The process is however
transparent to the user. For instance, we can find out about the projects in which harry_c
isinvolved - after the assertion shown above these are now babylon and mit - by using
the Lisp macro ask to pose the query (has-project harry c 2c). The resulting
interaction with the OCML proof system is shown below.

? (ask (has-project harry_c ?c))
Solution: ((HAS-PROJECT HARRY_C BABYLON))
More solutions? (y or n) vy

Solution: ((HAS-PROJECT HARRY_C MLT))

More solutions? (y or n) vy

No more solutions

This uniform, relation-centred view over OCML models also provides away to index
inferences. For instance, when answering the above query, the OCML proof system will
first retrieve and order all inference mechanisms applicable to a query of type has-
project - €.0., these might include assertions of type has-project, relation options
associated with has-project and the relevant backward rules’ - and will then try thesein
seguence, to generate one or more solutions to the query (more details on the OCML
proof system are given in appendix 1).

7 Seesection 2.8.1 for a description of OCML backward rules.

Knowledge Modelling in OCML Page 33

2.7 OCML procedures

Procedures define actions or sequences of actions which cannot be characterized as
functions between input and output arguments. For example, the procedure below
defines the sequence of actions needed to set the value of a slot. These include a
unassert Statement, which removes any existing value from the dlot, and a tell
statement, which adds the new value. Both tell and unassert are procedures. The
former takes a ground logical expression and adds it to the current model. The latter
takes a relation expression and removes from the current model al assertions which
match it. Note that in accordance with the uniform view of a knowledge model, slot
changes are carried out by means of generic assertion and deletion operations (i.e. in
terms of tell and unassert).

(def-procedure SET-SLOT-VALUE (?i ?s ?v)
cconstraint (and (instance-of ?i ?c)
(slot-of ?s ?c))
:body (do
(unassert (list-of ?s ?i ?any))
(tell (list-of ?s ?i ?v))))

2.8 Rule-based reasoningin OCML

2.8.1 Backwardrules

OCML also supports the specification of backward and forward rules. A backward rule
consists of a number of backward clauses, each of which is defined according to the
following syntax:

backward-clause ::= (relation-expression {if {logical-expression}+})8

Each backward clause specifies a different goal-subgoal decomposition. When carrying
out a proof by means of a backward rule the OCML interpreter will try to prove the
relevant goal by firing the clausesin the order in which these are listed in the rule
definition. Asin Prolog, depth-first search with chronological backtracking is used to
control the proof process.

8 | use the following notational conventions when describing the syntax of OCML constructs. Braces, {
and }, are used to indicate that the enclosed item is optional. For instance, the notation {x} means that
X may or may not be present but, if it is present, it can only appear once. The notation {x}* means that
x can appear 1 or more times (i.e. it must appear at least once), while the notation {x}* indicates that x
can appear 0 or more times. Square brackets within braces are used in situations in which a number of
aternatives for a non-terminal item are possible, but each alternative can be used only once. For
example, let's consider a non-terminal item, x, for which aternatives a and b are possible. In this
context the notation {[x] y} * indicates that any number of xy sequences are possible, but aor b can only
appear once (in practice this means that we can have between 0 and 2 sequences). Braces can aso be
nested. For instance, the notation {x {y}} means that both x and y are optional but y can only appear if
x does. Finally, | use italics to denote non-terminal items and a vertical bar, |, to indicate mutually
exclusive aternatives.

Knowledge Modelling in OCML Page 34

Both semantically and operationally a backward chaining ruleisthe same asa
:sufficient relation option: they both provide an expression which is sufficient to verify
that atuple holds for arelation. Thus, one might wonder whether rules are needed at all.
In practice the advantage of including backward rulesin the language is that these
provide a modular mechanism for refining existing (possibly generic) relation
specifications, for instance in cases where application-specific knowledge is needed to
complete the specification of arelation. To clarify this point let’s consider an example
taken from the KMi office allocation problem. Thiswas areal-world problem that our
institute faced when moving to a new building, back in 1997.

The relation has-value-range IS defined in the parametric design task ontology to
characterize the set of possible values which can be assigned to a design parameter.
When building an application model the generic has-value-range specification is usually
refined, so that the space of possible values that can be assigned to a particular parameter
isprecisely defined. A modular way to achieve thisisto refine the definition of the
relation by means of the appropriate backward chaining rules. The rules shown below
fulfil this purpose for two of the classes of parameters present in the KMI office
allocation domain: professors and secretaries. In this example the former can only go
into a double room; the latter into a large room next to the entrance.

(def-rule has-value-range-1
((has-value-range-gen ?m ?1)
if
(professor (domain-reference ?m))
(= ?1 (setofall ?r (double-a-type-room ?r usable yes)))))

(def-rule has-value-range-2
((has-value-range-gen ?m ?1)
if
(secretary (domain-reference ?m))
= 2?1 (setofall ?r
(and (room ?r size ?n usable yes)
G ?n)
(close-to ?r kmi-entrance))))))

2.8.2 Forward rules

OCML also allows the user to define forward rules. A forward rule comprises zero or
more antecedents and one or more consequents. Antecedents are restricted to relation
expressions, while any logical expression can be a consequent. When a forward rule is
executed, OCML treats each consequent as a goal to be proven and attempts to prove
them, until one fails. This mechanism makes it possible to integrate data-driven and
goal-driven reasoning and to specify arbitrarily complex right hand sides.

A special operator, exec, is provided to allow OCML usersto introduce control (and
therefore functional) termsin the right hand side of arule. In particular, two useful
procedures are tel I, to assert new facts, and output, to produce output. A simple
example showing how to use these in aforward chaining ruleis given below.

Knowledge Modelling in OCML Page 35

(def-rule foo
(has-project ?x ?y)
then
(exec (tell (project-covered-by ?y ?x)))
(exec (output "has project ~S ~S" ?x ?y)))

While forward rules can be useful in anumber of situations when building application
models (e.g. to define watchers, which are triggered whenever some situation arisesin a
knowledge base), they are not essential to the model building process. The reason for
thisisthat knowledge-level modelling is mainly about constructing definitions, while
forward-chaining rules are about behaviour. Thusthey can be used in place of
procedures to describe behaviour but they cannot replace constructs for relation or
function specification.

3 FUNCTIONAL VIEW OF OCML

A functional view of a knowledge representation system focuses on the services the
system provides to the user (Levesque, 1984; Brachman et al., 1985). Basically, there are
three kinds of services provided by OCML: i) operations for extending/modifying a
model; ii) interpreters for functional and control terms; and iii) a proof system for
answering queries about amodel. Extensive details on the model extension/modification
facilities provided by OCML were given in earlier sections.

4 MAPPING

OCML is meant to support both the specification of library components and the
development of partial or complete application models, according to the Task-Method-
Domain-Application (TMDA) framework described in (Motta, 1999). The role of the
TMDA framework is to support application development by reuse and to this purpose it
distinguishes between domain-generic tasks and problem solving methods on one side
and domain(-specific) models on the other. Applications are created by instantiating
generic problem solving components (tasks and methods) in a particular domain.

Earlier versions of the language provided support for task and method specification by
means of special-purpose modelling constructs. The current version does away with
these task and method-specific constructs and only provides a basic set of domain
modelling facilities; the extension to the language required to specify tasks and methods
is then defined as a particular representation ontology (the task-method sub-ontology of
the OCML base ontology). The advantage of this approach is that it separates the core
set of logical primitives (the OCML kernel) from additional, framework-specific
epistemological commitments. Thus, only specia-purpose primitives for defining
mapping knowledge are required, in addition to ‘standard’ domain modelling capabilities.
This mapping knowledge support application modelling, by alowing the customization
of generic components in a particular domain. In the next sections | will discuss the two
kinds of mapping constructs supported by OCML: relation mapping and instance

mapping.

Knowledge Modelling in OCML Page 36

Mwtfod Curkaiog)

FrEmabar
L

Meaping Meshaniem

Drorman Snfokagy

Emipthevyess

Figure 2.1. Mapping domain to method ontologies.

4.1 Instance mapping

Figure 2.1 illustrates a simple example in which a class of concepts at the task/method
level (parameter) is mapped to a class of concepts at the domain level (employee). This
is a very common situation when developing systems through reuse: a problem solving,
domain-independent model imposes a particular view over a set of domain concepts
(Fensel and Straatman, 1996).

A simple case is one in which adomain view is constructed by direct association of task
level conceptsto domain level concepts. For instance, a parametric design view over the
Sisyphus-1 domain can be imposed simply by creating parameter instances and
associating themto YQT members. Thus, the set of parameters and the set of YQT
members are associated but kept distinct. This solution is appealing for two reasons: it
supports reuse of modular components and does not confuse the two different types of
concepts; parameters and Y QT members maintain different sets of properties and
different semantics, thus avoiding a situation in which a design parameter has a wife and
a’Y QT member has avalue range.

Instance mapping is supported in OCML by means of the Lisp macro def-upward-class-
mapping. This takesthe names of two classes as arguments and associates each instance
of the first class to a purpose-built instance of the second class. By default the relation
maps-to 1S used to associate the task level instance to the domain level one.

In the Sisyphus-1 application model we should then state:

(def-upward-class-mapping ygt-member yqt-parameter)

The above form iterates over each instance of class ygt-member, say 1, creating a new
instance of classyqgt-parameter, Say Meta-1, and associating thisto 1, i.e., asserting
(maps-to Meta-1 1). Hence, if we now ask for the mapping between parameters and
Y QT members we get the following results.

Knowledge Modelling in OCML

Page 37

? (ask (maps-to ?z ?x)t)

Solution: ((MAPS-TO YQT-PARAMETER-EVA_ 1 EVA_1))
Solution: ((MAPS-TO YQT-PARAMETER-MONIKA_ X MONIKA X))
Solution: ((MAPS-TO YQT-PARAMETER-ULRIKE_U ULRIKE_U))
Solution: ((MAPS-TO YQT-PARAMETER-UWE_T UWE_T))
Solution: ((MAPS-TO YQT-PARAMETER-JOACHIM_I JOACHIM_I))
Solution: ((MAPS-TO YQT-PARAMETER-HANS W HANS_ W))
Solution: ((MAPS-TO YQT-PARAMETER-MICHAEL_T MICHAEL_T))
Solution: ((MAPS-TO YQT-PARAMETER-ANGY W ANGY_W))
Solution: ((MAPS-TO YQT-PARAMETER-JURGEN L JURGEN L))
Solution: ((MAPS-TO YQT-PARAMETER-KATHARINA_N KATHARINA N))
Solution: ((MAPS-TO YQT-PARAMETER-THOMAS D THOMAS_ D))
Solution: ((MAPS-TO YQT-PARAMETER-HARRY_C HARRY_ C))
Solution: ((MAPS-TO YQT-PARAMETER-ANDY L ANDY L))
Solution: ((MAPS-TO YQT-PARAMETER-MARC_M MARC_M))

Solution: ((MAPS-TO YQT-PARAMETER-WERNER L WERNER_L))

The advantage of this solution isthat parameters and Y QT members maintain their

separate identities, as shown in the next box.

Knowledge Modelling in OCML Page 38

? (describe-instance "YQT-PARAMETER-WERNER_L)
Instance YQT-PARAMETER-WERNER_L of class YQT-PARAMETER

HAS-VALUE-RANGE: (C5-123 C5-122 C5-121 C5-120 C5-119 C5-117 C5-116 C5-113 C5-
114 C5-115)

? (describe-instance "WERNER_L)
Instance WERNER_L of class RESEARCHER

HAS-PROJECT: RESPECT
SMOKER: NO

HACKER: YES

WORKS-WITH: ANGY_W, MARC_M
GROUP: YQT

Formally, a mapping can be characterized as an association between an object, say o, and
its meta-object, m-o, S0 that the entity denoted by the entity denoted by m-o is the same as
the entity denoted by o (Genesereth and Nilsson, 1988). This notion can be formalized in
OCML by means of the following definition.

(def-relation maps-to (?x ?y)

"This relation allows the user to specify an association between

an object at the task layer and one at the domain layer.

Formally ?y denotes the object denoted by the object denoted by ?x"
no-op (:iff-def (= ?y (denotation ?x))))

4.2 Relation mapping

Instance mapping works only in those cases in which imposing a view over adomain can
be reduced to creating task-level ‘mirror images for a finite number of domain-level
objects. A more general scenario is one in which there is some relation defined at the
task/method level which needs to be reflected to the domain level in a dynamic fashion.
A well known example is that in which domain concepts or statements are viewed as
hypotheses at the problem solving level. This association istypically dynamic, given that
hypotheses are considered as such only for a particular time-dlice of the problem solving
process. These situations can be modelled in OCML by means of relation mappings.

A relation mapping provides a mechanism to associate rules and procedures to arelation,
say R, so that when a query of type R is posed, or assertions of type R are made at the
task/method level, these events can be reflected to the domain level. The purpose of

these reflection actionsis to ensure that the consistency between domain and task/method
levelsis maintained.

An example of an upward relation mapping isillustrated by the definition below, which
is taken from an application model developed for the Sisyphus-I problem. The mapping
isan upward one, in the sense that it is used to lift (van Harmelen and Balder, 1992) the
office allocation statements existing at the domain level to the problem solving level.

Knowledge Modelling in OCML Page 39

Specifically, the goal of this mapping is to associate the relation current-design-model,
which is used by the parametric design problem solver to indicate the design model
associated with the current design state, to the set of in-room assertions present in the
current snapshot of the domain knowledge base. The relation maps-to is used to retrieve
the parameter associated with each particular Y QT member.

(def-relation-mapping current-design-model :up
((current-design-model ?dm)
if
(= ?2dm (setofall (?p . ?v)
(and (in-room ?x ?v)
(maps-to ?p ?x))))))

An upward relation mapping ensures that when a task/method level relation is needed the
relevant information is obtained from the domain level. Of course, problem solving is
also about inferring knowledge and retracting previously held assertions. Hence, OCML
also supports downward relation mappings. These divide into two categories, -add and
:remove. Theformer specifies a procedure which is activated when a new relation
instance is asserted. The latter specifies a procedure which is activated when arelation
instance is removed. Inthe case of relation current-design-model relation mappings are
needed to ensure that when the design model considered by the problem solver is
modified, the relevant changes are reflected onto the domain model - see definition
below.

(def-relation-mapping current-design-model (:down :add)
(lambda (?x)
(do

(unassert (in-room ?any-m ?any-r))

(loop for ?pair in ?x
do
(if (maps-to (First ?pair) ?z)

(tell (in-room ?z (rest ?pair))))))))

Finally, the definition below shows the : remove downward mapping associated with
relation current-design-model: it SMply removes the domain level assertions associated
with the design model which is passed as argument to the relation instance being
retracted.

(def-relation-mapping current-design-model (:down :remove)
(lambda (?x)
(loop for ?pair in ?x
do
(if (maps-to (First ?pair) ?z)
(unassert (in-room ?z (rest ?pair)))))))

Knowledge Modelling in OCML Page 40

5 ONTOLOGIES

OCML also provides support for defining ontologies. When an ontology is defined, say
O, it is possible to specify which ontologies are included in O and as a result O will
include all the definitions from its parent ontologies. When conflicts are detected (e.g.,
the same concept is defined in two different parent ontologies), a warning is issued.
Primitives for loading and selecting ontol ogies are also provided.

By default all ontologies are built on top of the OCML base ontology. This comprises
twelve sub-ontologies which include the basic definitions required to reason about basic
datatypes (e.g. lists, numbers, sets and strings), the OCML system itself and the OCML
frame representation. Specifically, the following sub-ontologies are provided:

Meta. This ontology defines the concepts required to describe the OCML language.
It includes constructs such as ‘OCML expression’, ‘functional term’, ‘rule’,
‘relation’, ‘function’, ‘assertion’, etc. This ontology is particularly important to
construct reasoning components which can verify OCML models.

Functions. Defines the concepts associated with functions - eg., it includes
relations such as domain, range, unary-function, binary-function, €tc.

Relations. Defines the various notions associated with relations. These include the
universe and the extension of a relation, the definition of reflexive and transitive
relations, partial and total orders, etc.

Sets. This ontology defines the notions associated with sets - e.g., ‘empty set’,
‘union’, ‘intersection’, ‘set partition’, ‘ set cardinality’, etc.

Numbers. Defines the various concepts and operations required for reasoning about
numbers and for performing cal cul ations.

Lists. Defines the concepts and operations associated with lists. It includes classes
such as 1ist and atom; functions such as first, rest and append; and relations such
as member.

Strings. Specifies the concepts and operations associated with strings - e.g., string,
string-append, €tC.

Mapping. This ontology defines the concepts associated with the mapping
mechanism described earlier. It includes only three definitions:. relation maps-to and
functions meta-reference and domain-reference. The former takes a domain-level
instance and returns the associated task/method level instance. The latter performs
the inverse function.

Frames. Defines the concepts associated with the frame-based representation used
in OCML. It comprise (meta-) classes such as class and instance; functions such as
direct-instances and all-slot-values; relations such as has-one and has-at-most;
and procedures such as append-slot-value.

Inferences. The purpose of this ontology is to provide a repository for defining
functions and relations supporting the specification of KADS-like inferences. So far

Knowledge Modelling in OCML Page 41

only a few such inferences have been added to this ontology to support different
types of selection and sorting.

Environment. This ontology provides a kind of ‘environmental support’ for the
construction of OCML models. It includes special operators like exec, which makes
it possible to invoke procedures from rules, and procedures such as output, which
prints out a message.

Task-Method. This ontology provides the concepts required to model tasks and
problem solving methods, i.e. to support the construction of task and problem
solving models.

This set of ontologies provides arich modelling platform from which to build other
ontologies and/or problem solving models. It is natural to compare the OCML and
Ontolingua base ontologies (Farquhar et a., 1996). There are two aspects which
distinguish these two sets of ontologies: their nature and their scope.

Thefirst difference is related to the operational nature of OCML. The Ontolingua base
ontology is not concerned with operationality and therefore includes many non-
operational definitions. The OCML base ontology is concerned with providing support
for the construction of operational models. Asaresult it attempts to minimize the
number of non-executable specifications. A typical approach isto weaken anon-
operational definition to make it executable. For instance let’s consider the function
universe. Inthe Ontolingua base ontology the universe of arelation is defined as the set
of all objects for which the relation istrue. Of course thisis not an operational definition.
However, we can provide aweaker version of universe, called known-universe, which
returns the set of all entities which are part of a tuple satisfying the relation in question.
This function can be either defined separately from universe or attached to it to provide
an operational definition.

The second difference concerns the scope of the two base ontologies. Both the
Ontolingua and OCML base ontologies provide arich set of definitions for domain
modelling. In order to comply with the requirements imposed by the TMDA framework,
the OCML base ontology provides support also for specifying tasks and problem solving
methods.

6 COMPARISON WITH OTHER LANGUAGES

In the previous section | compared the base ontologies provided by OCML and
Ontolingua and emphasized that the differences between them have mainly to do with the
conceptua requirements imposed by the TMDA framework on OCML and with its
operational nature. If we compare OCML and Ontolingua purely as modelling
languages, their main difference has to do with the fact that while Ontolingua is
concerned exclusively with ontologies - i.e. term specification - OCML aims to model
behaviour as well. For this reason OCML aso provides support for defining control
terms. Apart from this aspect, the current version of OCML closely mirrors many of the
constructs in Ontolingua. Thus, while OCML extends Ontolingua in various respects, it
is possible (although reductive) to view OCML as an environment for prototyping

Knowledge Modelling in OCML Page 42

Ontolingua models, thus moving away from the batch-oriented, translation-based
operationalization model suggested for Ontolingua (Gruber, 1993).

The design philosophy underlying the KARL language (Fensel, 1995) has many pointsin
common with OCML. In particular both KARL and OCML are operational modelling
languages and are therefore suitable for rapid prototyping of knowledge level models.
Moreover, both KARL and OCML are part of comprehensive knowledge engineering
frameworks providing methodol ogical support for KBS development. However, there
are aso differences. KARL is an executable, formal specification language where the
emphasisis on formalization: its main strength is the provision of aformal semantics for
its modelling constructs. The design philosophy of OCML has more to do with
pragmatic considerations: its main goal isto provide aflexible modelling environment
able to support different approaches to modelling: rapid prototyping and structured
development, executable and non-executabl e constructs, formal and informal
specifications. The two languages also differ in terms of the modelling frameworks they
employ: KARL isbased on the KADS four-layer framework, while OCML (more
precisely the task-method ontology) is based on the TMDA framework. An important
difference is also that while the primitivesin the KARL language closely reflect the
KADS approach, the OCML kernel is approach-neutral. 1ts commitment to the TMDA
framework is defined by means of the appropriate ontology. This approach has the
advantage of flexibility: different modelling frameworks can then be supported through
the specification of the relevant ontologies.

A more recent version of KARL, which is called New-KARL (Angele et a., 1996), does
away with the strong KADS-oriented approach used by KARL and focuses instead on the
specification of task-method structures and ontology mappings. Thus New-KARL
subscribes to a modelling framework which has much more in common with the OCML
task ontology than the one underlying KARL. However, in contrast with OCML, New-
KARL also ‘hardwires these task and method-centred primitives in the language itself,
rather than in a particular ontology.

Other formal specification languages exist for KADS models - see (Fensel and van
Harmelen, 1994) for an overview. While the formal details of these languages of course
vary, similar conclusions to those drawn above can be reached when comparing them to
OCML.: these languages tend to emphasize formal aspects and are based on aKADS
approach. OCML emphasizes operationality and flexibility and does not presuppose
(although it can support) a KADS approach. Indeed, the original raison d’ étre for OCML
was to provide an operational alternative to aformal specification language, KgsSF
(Jonker and Spee, 1992), in the context of the VITAL workbench (Domingue et al.,
1993).

Among the informal notations available for knowledge modelling the most notable is the
CML language (Schreiber et al., 1994), which supports ontological specifications and the
construction of Common KADS models. CML supports the definition of various
constructs, including concepts, attributes, tasks, methods, relations, structures and
expressions. Obvioudly, the main difference between CML and OCML isthat the former
isonly meant to be an informal notation while the latter isafully operational language.
Another important difference isthat CML is committed to supporting the Common

Knowledge Modelling in OCML Page 43

KADS framework, while the kernel of the OCML language is framework-independent.
In addition to the KADS-related commitments CML also embodies other modelling
commitments: it provides primitives for representing structures and part-of relations.
This approach has both advantages and disadvantages. On the plus side it extends the
range of modelling primitives provided by the language and supports notions which occur
frequently in conceptual modelling. On the other hand there are two possible problems
with this approach. The first one hasto do with embedding ontological commitmentsin a
conceptual modelling language. In particular different approaches to modelling structure
and aggregation can be found in the literature - e.g. compare the analysis by Martin and
Odell (1995) with that by Lenat and Guha (1990). Embedding one particular approach in
the kernel of a conceptual modelling language prevents users from extending the
language according to an alternative approach. The second problem is caused by the
provision of different levels of description - i.e. logical, epistemological and conceptual
(Brachman, 1979) - within the same formalism. Much work in knowledge representation
over the past twenty years has focused on identifying the different levels at which
knowledge representation languages can be specified (Brachman, 1979; Guarino 1994).
In particular the paper by Brachman clearly illustrates that much of the confusion
surrounding the field of knowledge representation in the seventies was caused by the fact
that researchers were comparing formalisms which were situated at different levels - e.g.
logical and conceptual. Thus, it seemsto me that including ontological primitives (e.g.
structures) in alanguage characterized at the logical level is a potential source of
confusion. Thisis especialy the case with informal languages, given that eventual
ambiguities are not explained by the underlying formal theory.

The LOOM language (MacGregor, 1991) is strictly speaking a knowledge representation
rather than a knowledge modelling language (i.e., it also includes symbol-level
representation constructs). However, itsformal kernel - i.e., what are called the
terminological and assertional components - provides purely logical and epistemological
primitives and therefore it can be used for knowledge modelling and ontology
specification. The main feature of LOOM is its powerful classification mechanism which
integrates a sophisticated concept definition language with rule-based reasoning. This
approach allows awider range of inferences to be drawn than those available from
‘traditional’ frames+rules systems such as KEE. The existence of a powerful classifier is
an important advantage that LOOM maintains over OCML. On the other hand, viewed
purely as a knowledge modelling language, LOOM exhibits a number of limitations.®
When building knowledge models it may be necessary to make statements about the
model being developed, which do not have a direct inferential purpose. For this reason
OCML alowstheinclusion of non-operational statements and supports the specification
of axioms about the current model. In contrast, LOOM only provides operational

9 The following points should not be construed as criticisms of the LOOM language. Thisis primarily a
knowledge representation language and should be of course judged with respect to knowledge
representation criteria. However, given the high-level of support provided by the language, its ‘ organic
relationship’ with the Ontolingua effort and its sound theoretical basis, it makes senseto consider it asa
plausible candidate for knowledge modelling. Indeed LOOM has been used for ontological work
(Swartout et al., 1996).

Knowledge Modelling in OCML Page 44

constructs. Another possible problem related to LOOM isthat while it supports different
knowledge representation paradigms (frames, rules, message-passing) it integrates the
various constructs according to a classification-centred viewpoint. While this approach
obtains nice resultsin terms of inferential capabilities, it nevertheless can be a constraint
for the knowledge analyst, who is forced to frame the current problem within a
classification-centred framework. In contrast with this approach OCML provides a
number of aternative modelling constructs, e.g. rules, functions, classes and procedures
which, while integrated, are themselves ‘ primitive modelling components and can be
used within different modelling approaches.

The notion of mapping presented in this chapter plays arole similar to that of mediators
in heterogeneous information systems (Wiederhold and Genesereth, 1997), connectorsin
software architectures (Shaw and Garlan, 1996), and adaptersin design patterns (Gamma
et a., 1995). Theideaunderlying all of these approaches is essentially the same: some
kind of ‘external kit’ isrequired in order to allow the interaction of reusable components
and their configuration for different computational scenarios. The externalization of this
adaptation process has the advantage that the original components remain unchanged,
while they become usable in the new situation.

7 SYNOPSIS

Therole of the OCML language is to provide operational knowledge modelling facilities.
To this end it includes interpreters for functional and control terms, as well as a proof
system which integrates inheritance with backward chaining, function evaluation and
procedura attachments. While the emphasis here is on operationality, OCML aims to
support different styles of knowledge modelling. Therefore OCML provides for first-
order logic definitions and allows the user to explicitly distinguish non-operational from
operational definitions. Moreover, it supports an extensive set of Ontolingua constructs
and therefore can be used as an interpreter for Ontolingua definitions.

References

Angele, J.,, Decker, S., Perkuhn, R. and Studer, R. (1996). Modeling Problem Solving
Methodsin New KARL. InB. Gaines and M. Musen (Editors), Proceedings of the
10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff,
Alberta, Canada.

Brachman, R. J. (1979). On the Epistemological Status of Semantic Networks. InN. V.
Findler (Editor), Associative Networks. Representation and Use of Knowledge by
Computers. Academic Press, New Y ork, pp. 3-50.

Brachman, R. J.,, Fikes, R. E. and Levesque, H. J. (1985). KRYPTON: A Functional
Approach to Knowledge Representation. In R. J. Brachman and H. J. Levesgue
(Editors). Readingsin Knowledge Representation. Morgan Kaufmann, Los Altos,
CA.

Domingue, J., Motta, E. and Waitt, S. (1993) The Emerging Vital Workbench. In Ed.
Aussenac, N., Boy, G., Gaines, B., Linster, M., Ganascia, J.-G. and Kodratoff, Y.
Knowledge Acquisition for Knowledge-Based Systems 7th European Workshop,
EKAW'93 Toulouse and Caylus, France, September, pp. 320-339, Springer-Verlag.

Domingue J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. Proceedings of the 11th Banff Knowledge Acquisition
Workshop, Banff, Alberta, Canada, April 18-23, 1998.

Farquhar, A., Fikes, R., and Rice, J. (1996). The Ontolingua Server: A Tool for
Collaborative Ontology Construction. In B. Gaines and M. Musen (Editors),
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, Alberta, Canada

Fensdl, D. (1995). The Knowledge Acquisition and Representation Language KARL.
Kluwer, Dordrecht.

Fensdl, D. and van Harmelen, F. (1994). A Comparison of Languages which
Operationalize and Formalize KADS Models of Expertise. The Knowledge
Engineering Review, 9(2).

Fensel, D. and Straatman, R. (1996). Problem solving methods: Making Assumptions for
Efficiency Reasons. In N. Shadbolt, K. O’'Hara, and Schreiber, G. (Editors).
Advances in Knowledge Acquisition - EKAW ‘96. Lecture Notesin Artificial
Intelligence, 1076. Springer-Verlag, Heidelberg.

Fikes, R. E. and Kehler, T. (1985). The Role of Frame-Based Representation in
Reasoning. Communications of the ACM, 28(9), September 1985.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns. Addison-
Wesley.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format, Version 3.0.
Technical Report Logic-92-1, Computer Science Department, Stanford University.

References Page 46

Genesereth, M. R. and Nilsson, N. J. (1988). Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Los Altos, CA.

Gruber, T. R. (1993). A Trandation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2).

Guarino, N. (1994). The Ontological Level. InR. Casati, B. Smith and G. White
(Editors), Philosophy and the Cognitive Science. Holder-Pichler-Tempsky, Vienna,
Austria.

van Harmelen, F. and Balder, J. R., (1992). (ML)2: A Formal Language for KADS
Models of Expertiese. Knowledge Acquisition, 4(1), pp. 127-161.

Jonker, W. and Spee, J. W. (1992). Yet Another Formalization of KADS Conceptual
Models. In Th. Wetter, K.-D. Althoff, J. Boose, B.R. Gaines, M. Linster and F.
Schmalhofer (Editors) Current Devel opments in Knowledge Acquisition - EKAW ‘92,
pp. 112-32. LNAI 599, Springer-Verlag, Berlin.

Lenat, D.B. and Guha, R.V. (1990). Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Addison-Wesley, Reading, MA.

Levesgue, H. J. (1984). Foundations of afunctional approach to knowledge
representation. Artificial Intelligence 23(2), pp. 155-212.

Linster, M. (1994). Problem Statement for Sisyphus: Models of Problem Solving.
International Journal of Human-Computer Studies 40(2), pp. 187-192.

MacGregor, R. (1991). Using a Description Classifier to Enhance Deductive Inference.
Proceedings of the 7th IEEE Conference on Al Applications. Miami, Florida,
February 1991.

Martin, J. and Odell, J. J. (1995). Object-Oriented Methods: A Foundation. Prentice-
Hall, Englewood Cliffs, New Jersey.

MottaE. Reusable Components for Knowledge Models: Principles and Case Studiesin
Parametric Design. 10S Press, 1999.

Newell A. (1982). The knowledge level. Artificial Intelligence, 18(1), pp. 87-127.

Riva, A. and Ramoni, M. (1996) LispWeb: a Specialised HTTP Server for Distributed Al
Applications. Computer Networks and ISDN Systems, 28,7-11 (1996), 953-961.

Schreiber, A.Th., WielingaB. J., Akkermans, H., van de Velde, W., and Anjewierden, A.
(1994). CML: The CommonKADS Conceptual Modelling Language. InL. Steels,
A. T. Schreiber, and W. van de Velde (Editors), A Future for Knowledge Acquisition,
Proceedings of the 8th European Knowledge Acquisition Workshop. Springer Verlag,
LNAI 867, pp. 283-300.

Shadbolt, N., Motta, E., and Rouge, A. (1993) Constructing Knowledge-Based Systems.
|EEE Software, 10, 6, pp. 34-39, November 1993.

Shaw, M. and Garlan, D. (1996). Software Architectures. Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

References Page 47

Wiederhold, G. and Genesereth, M. (1997). The Conceptual Basis for Mediation
Services, |EEE Expert, September/October Issue, pp. 38-47.

Yen, J., Neches, R. and MacGregor, R. (1988). Classification-based Programming: A
Deep Integration of Frames and Rules. Technical Report 1S/RR-88-213.
USC/Information Science Institute, March 1988.

Appendix 1

Additional Detailson OCML

1 FUNCTIONAL TERM CONSTRUCTORS
A BNF specification of each term constructor is provided as well as an informal description of

its operational semantics.

Setofall

setofall findsall solutions (i.e. environments) to basic-log-expression and then returns the list
obtained by instantiating template in all the returned environments, ensuring that the list
contains no duplicates. If no solutions are found then the empty list (i.e. nit) isreturned.

setofall-term
template =

term =

fun =
constant =
variable =

string =

log-expression

guant-log-expression ::=

basic-log-expression ::=

setofal 1 template basic-log-expression

nil | (term . term)

constant | variable | string | (fun {term}") |
findall-term | the-term |
In-env-term | guote-term |

if-term | cond-term

the name of a function or a term constructor
A symbol whose first character isnot *?’

A symbol whose first character is‘?’

Alisp string, e.9. "string".
quant-log-expression | basic-log-expression

(Forall schema-or-var log-expression)|
(exists schema-or-var |og-expression)

(and {log-expression}+) |
(or {log-expression}*) |
(=> log-expression log-expression) |
(<=> log-expression log-expression)
(not log-expression) |

rel-expression

Appendix 1 — Additional Details on OCML Page 49

schema-or-var schema | variable

(variable . schema) | nil

schema

rel-expression (rel {term}™)

rel

a symbol naming a relation

Findall
findall iSthe same as setofal I except that it does not remove duplicate solutions.

findall-term ;= findall template basic-log-expression

The

the finds one solution (i.e. environment) to basic-log-expression and then returns the list
obtained by instantiating template in the returned environment. 1f no solutions are found then
the constant :nothing isreturned.

the-term 1= the template basic-log-expression

In-environment

The primitive in-environment takes a list, possibly empty, of pairs ((vary . termy)...) and a
body, and returns the result of evaluating thisin an environment in which each var;j is bound to
term.

in-env-term = in-environment pairsbody
pairs = nil | (pair . pairs)
pair = (variable. term)
body = term
Quote

The value of an expression such as (quote term) isterm.

guote-term ::= ~term| (quote term)

If

The first action which is carried out when evaluating an if-term is to check whether log-
expression is satisfied. If thisisthe case, then then-termis evaluated in the environment which
satisfies log-expression. If log-expression cannot be satisfied in the current model, then there
are two possibilities. If else-term is specified, then thisis evaluated, and the value obtained is
returned as the value of the if-term. If else-term is not present and log-expression cannot be
proved, then the constant :nothing is returned.

Appendix 1 — Additional Details on OCML Page 50

if-term = (iflog-expression then-term {else-term})
then-term ;1= term
else-term 1= term

Cond

The interpreter iterates through each clause of a cond-term, until it finds one whose log-
expression is satisfied. If none is found, then :nothing is returned. Otherwise, let’s assume
cond-clauss. is the first clause whose log-expression is satisfied. In this case the value of the
cond-termis obtained by evaluating the term associated with cond-clauss;.

cond-term = (cond {cond-clause}*)
cond-clause = (log-expression term)

2 CONTROL TERM CONSTRUCTORS

A BNF specification of each control term constructor is provided as well as an informal
description of its operational semantics.

In-environment
The primitive in-environment takes a list, possibly empty, of pairs ((vary . termy)...) and a
control-body, and returns the result of evaluating this in an environment in which each varj is
bound to term.

in-env-control-term ::= in-environment pairs control-body

pairs 2= nil | (pair . pairs)

pair ::= (variable . term)

control-body ::= control-term

control-term ;1= term | in-env-control-term | if-control-term |
cond-control-term | do-control-term |
loop-control-term | repeat-control-term |

return-control-term
if-control-term ;= (if log-expression then-control-term {el se-control-term})
then-control-term ::= control-term

else-control-term 1:= control-term

Appendix 1 — Additional Details on OCML Page 51

cond-control-term (cond {cond-control-clause}*)

(log-expression control-term)

cond-control-clause ::

loop-control-term (1o00p for variable in term do

{control-term}*)

do-control-term (do-actions {control-term}*)

repeat-control-term (repeat-actions {end-test} {control-term}+) |

(repeat-actions {control-term}* {end-test})

end-test while test | until test

test

log-expression

return-control-term (return term)

If

The first action which is carried out when evaluating an if-control-term is to check whether
log-expression is satisfied. If this is the case, then then-control-term is evaluated in the
environment which satisfies log-expression. If log-expression cannot be satisfied in the current
model, then there are two possibilities. If else-control-termis specified, then thisis evaluated,
and the value obtained is returned as the value of the if-control-term. If else-control-term is
not present and log-expression cannot be proved, then the constant :nothing is returned.

if-control-term ;= (if log-expression then-control-term {el se-control-term})

Cond

The interpreter iterates through each clause of a cond-control-term, until it finds one whose
log-expression is satisfied. If none is found, then :nothing is returned. Otherwise, let’s
assume cond-clauss. is the first clause whose log-expression is satisfied. In this case the value
of the cond-control-term is obtained by evaluating the control-term associated with cond-
clauss.

cond-control-term ::= (cond {cond-control-clause}*)

Loop

The control construct 1oop provides a simple mechanism for iterating over lists. It first
evaluates a term, which should return alist, say L. Then it iterates over each element of L, say
I, and evaluates control-termin an environment in which variableisbound to I.

loop-control-term ::= (1oop for variable in term do
{control-term}*)

Appendix 1 — Additional Details on OCML Page 52

Do
The control construct do is a smple sequencing primitive. The control terms in its body are
evaluated sequentially, once only.

do-control-term ::= (do-actions {control-term}+)

Repeat

The control term constructor repeat repeats the control term(s) specified in its body until the
end test is satisfied, if the test has the form ‘until test’. Otherwise, if the test has the form
‘whille test’, then repeat-actions Stops as soon as the test fails. If the end test is specified after
the control terms, then the control terms are carried out at least once - i.e. the end test is
verified at the end of each cycle. If the end test is specified before the control terms, then the
test is verified at the beginning of each cycle. If no test is provided, then al control expression
in the body of a repeat-actions are repeated ad infinitum.

repeat-control-term ::= (repeat-actions {end-test} {control-term}+) |
(repeat-actions {control-term}* {end-test})

Return

This is a simple way of exiting from the body of a 10op or repeat construct. When a control
term such as (return term) is encountered, the most specific loop or repeat construct in the
current execution stack is exited and the value obtained from evaluating termis returned.

return-control-term ::= (return term)

3 INHERITANCE AND DEFAULT VALUES

Generally speaking default values are values which apply unless other aternatives can be used.
In the OCML language the notion of default value is operationalized as follows.

Instances inherit values and default values from their superclasses down the inheritance
hierarchy specified by instance-of and subclass-of links. For agiven dot, say s, of asample
instance, say 1, the following scenarios can arise:

1. 1 has not inherited any default value. In this case the value of sin | isgiven by all the
values | has inherited from its superclasses, plus any value locally specified for slot s
of I.

2. | has inherited some default values as well as non-default ones. In this case the default
values are ignored and rule (i) is applied. We say that the default values are
overridden by the non-default ones.

3.1 has inherited only default values and local values have been specified. As in the
previous case, the default values are ignored and only the local values are considered.

4. | hasinherited only default values and no local values have been specified. Inthiscase
there are two possibilities. If the :inheritance facet has not been specified, or it has
been specified and it is :merge, all default values apply. If the :inheritance facet has
been specified and it is :supersede, then the value of sin | is obtained by (i) ranking
the ancestors of | according to the class precedence order of the parent of I, and (ii)

Appendix 1 — Additional Details on OCML Page 53

4

retrieving the default value of the first class in the class precedence order which
specifies a (default) value for s. The details of the algorithm used to compute the class
precedence order are given at pp. 782-786 of the Common Lisp specification (Steele,
1992). This algorithm produces a total order (if this exists) based on two ordering
principles: (i) a class, say C, precedes al its direct superclasses, and (ii) a direct
superclass of ¢ precedes the direct superclasses of ¢ specified to itsright in the list of
direct superclasses of c.

INTERPRETERS AND PROOF SYSTEM

4.1 TheOCML interpreter for functional terms

The OCML interpreter isimplemented by means of a Lisp macro, ocml-eval. This evaluates a
functional term, term, in an environment, env, according to the following rules.

1.
2.
3.

If termisavariable, then the binding of termin env is returned.
If termisastring or a constant, then termis returned.

If term has the format (pfun termy,, termy), with n 3 0, where pfun is a primitive term
constructor, then termis evaluated in env, according to criteria which depend on pfun.

If term has the format (fun termy,, termy), with n 3 0, where fun is the name of a
function, and a Lisp body associated with fun exists, then ocmi-eval returns the value
obtained by applying the Lisp body to the values obtained by evaluating each term in env.

If term has the format (fun termy,, termy), with n 3 0, where fun is the name of a

function, and no Lisp body associated with fun exists, then ocmi-eval returns the value
obtained by applying the body of fun to the values obtained by evaluating each termy in env.

6. Inall other cases ocml-eval signals an error.

7. The OCML interpreter for control terms

8. Control terms are interpreted in a manner analogous to functional terms. The control term

10.

11.

12.

13.

interpreter is implemented by a Lisp macro, ocml-control-eval, Which has the following
behaviour.

If termisafunctional term, then it is evaluated according to the rules given in section 4.1.

If term has the format (proc termy,, termy,), with n 3 0, where proc is a primitive control
operator, then termis evaluated in env, according to criteria which depend on proc.

If term has the format (proc termy,, termy), with n 3 0, where proc is the name of a
procedure, and a Lisp body associated with proc exists, then ocml-control-eval returns the
value obtained by applying the Lisp body to the values obtained by evaluating each term in
env.

If term has the format (proc termy,, termy), with n 3 0, where proc is the name of a
procedure, and no Lisp body associated with proc exists, then ocml-control-eval returns
the value obtained by applying the body of proc to the values obtained by evaluating each
termy in env.

In all other cases ocml-control-eval Signals an error.

Appendix 1 — Additional Details on OCML Page 54

4.2 The OCML proof system

4.2.1 Procedure for proving basic goal expressionsin OCML

Let’s suppose we want to find all solutions to a basic goal expression, say G, with format (rel
{fun-term} ™), where rel is the name of arelation and fun-term a functional term. In general we
might be interested in one, some or all solutions. Therefore the order in which solutions are
generated might be important. The algorithm used by the OCML proof system is as follows.

1.

If rel is not a defined relation, then signal an error. Otherwise initialize SOL1, SOL2,
OL3, SOL4, SOL5 and SOL6 to the empty set and go to step 2.

Retrieve al the assertions present in the current model, whose type (i.e. first element) is rel.
Match each assertion with G. All successful matches, we call this set SOL1, provide
solutionsto G. Go to step 3.

If aLisp attachment exists for rel, then evaluate it in the Lisp environment to find eventual
additional solutionsto G, say SOL2. Go to step 8.

If a :prove-by proof condition, say prove-rel-expression, has been specified for relation
rel, then compute all solutions to prove-rel-expression, say SOL3. Each of theseisalso a
solutionto G. Go to step 8.

If a :iff-def proof condition, say iff-rel-expression, has been specified for relation rel,
then compute all solutions to iff-rel-expression, say SOL4. Each of these is also a solution
to G. Goto step 8.

If a :sufficient proof condition, say suff-rel-expression, has been specified for relation
rel, then compute all solutions to suff-rel-expression, say SOL5. Each of these is also a
solutionto G. Goto step 7.

If a backward chaining rule has been specified, associated with relation rel, then invoke it
to find all other solutionsto G, say SOL6. Go to step 8.

The set of all solutions to query G is obtained by appending the lists SOL1, SOL2, SOL3,
SOL4, SOL5 and SOL6.

The algorithm shown above provides an operational semantics for the various relation-forming
constructs provided by OCML. In particular the following two points should be highlighted.

Assertions inherited through an isa hierarchy are always cached at definition time.
This means that they are retrieved at step 2, when the goal is matched against the
current set of known facts.

The results returned by non-logical mechanisms such as Lisp attachments and :prove-
by are only merged with the results obtained by simple assertion-matching (step 2).
In other words they are meant to provide efficient proof mechanisms which
override those provided by definition-forming options, such as :iff-def and
:sufficient.

4.2.2 Proof rulesfor non-basic goal expressions
The bullet points below describe how non-basic goal expressions are proven in OCML.

Appendix 1 — Additional Details on OCML Page 55

(and AB). This expression is satisfied if both A and B can be proven in the current

model.
(or AB). Thisexpressionissatisfiedif either A or B can be provenin the current
model.

(=> A B). Thisexpression issatisfied if either A cannot be proven, or, if B can be
proven in each environment which isasolutionto A .

(<=> AB). Thisexpressionissatisfied if both (== AB) and (=> B A) can be proven.

(not A). Thisexpression issatisfied if A cannot be proven in the current model.

(exists schema-or-var A). Thisexpressionissatisfiedif A can be proven in the
current model.

(forall schema-or-var (=> A B)). Thisexpressionissatisfied if either A cannot be
proven, or, if B can be proven in each environment which isasolution to A..

Thus, the proof mechanism supported by OCML is not complete with respect to first-order
logic statements. In particular, disunctions can only be proved by proving each clause
separately and negated expressions are only proved by default.

