

BuddyFinder-CORDER: Leveraging Social Networks for
Matchmaking by Opportunistic Discovery

Technical Report kmi-05-13
 September 2005

Jianhan Zhu, Marc Eisenstadt, Alexandre Gonçalves, Chris Denham

To appear in Proc. of International Semantic Web Conference
(ISWC2005) Workshop on Semantic Network Analysis,
November 7, 2005, Galway, Ireland.

BuddyFinder-CORDER: Leveraging Social Networks
for Matchmaking by Opportunistic Discovery

Jianhan Zhua, Marc Eisenstadta, Alexandre Gonçalvesb, Chris Denhama

aKnowledge Media Institute, The Open University
{j.zhu, m.eisenstadt, c.m.denham}@open.ac.uk

bStela Group, Federal University of Santa Catarina
a.l.goncalves@stela.org.br

Abstract. Online social networking tools are extremely popular, but can miss
potential discoveries latent in the social ‘fabric’. Matchmaking services can do
naive profile matching with old database technology, and modern ontological
markup, though powerful, can be onerous at data-input time. In this paper, we
present a system called BuddyFinder-CORDER which can automatically pro-
duce a ranked list of buddies to match a user’s search requirements specified in
a term-based query, even in the absence of stored user-profiles. We integrate an
online social networking search tool called BuddyFinder with a text mining
method called CORDER to rank a list of online users based on ‘inferred pro-
files’ of these users in the form of scavenged Web pages.

1 Introduction and Motivation

Online social networking tools and services, in the form of friendship networks, in-
stant messaging and chatting tools, dating services and business partner tools are ex-
tremely popular on the Web today – an extensive and evolving survey/taxonomy of
Social Networking Services is provided online in [16]. Such tools and services have
evolved from early-adopter ‘leisure’ tools to mission-critical business collaboration
tools, and have attracted increasing attention from the research community [17] [18]
[6] [7]. Today’s online social networking tools typically involve a large number of
users who coalesce into a community of mixed backgrounds and preferences, exhibit-
ing varying degrees of overlapping interests and social cohesion. An online user typi-
cally has a number of contacts or buddies in his/her interest groups, with the amount
of overlap (shared interests) dropping off dramatically as degrees of separation in-
crease: groups may include work colleagues, family members, friends, conference
acquaintances, friends-of-friends, recommended contacts, deliberately sought-out
contacts, and of course random or even unwanted contacts. Current social networking
tools allow users to manage additions to and deletions from their buddy lists manually,
although most allow import from standard productivity-tool address books and prefer-
ences to block unwanted contacts.

In this era of powerful search engines (which are getting even better as the semantic
web matures), consider the problem of seeking mission-critical or immediate advice

characterized by the question ‘Who is available who can help me deal with an urgent
problem now?’ The Knowledge Management mantra of ‘the right knowledge in the
right place at the right time’ rings somewhat hollow if you need to find key people
quickly but cannot! Mixed hi-tech and lo-tech solutions (e.g. using Google or a social
networking service as a first pass, then emailing or phoning around) may miss out on
key availability information, which is one of the great strengths of instant messaging
(IM) tools. Indeed, in this context it is not the messaging and chat capabilities of IM
that pay the biggest dividends, but rather the presence information that (when correct
at least!) shows who is available [19]. Modern social networking services such as
Tribe [20], and indeed most discussion forums, typically include a ‘presence indicator
icon’ so users can see at a glance who is available. Other tools, such as our own Bud-
dySpace [21], also include the option of overlaying presence indicators on top of
custom maps to deal with those cases where location is either important or simply
‘feels good’ to the user.

 How, then, can we address the problem of finding the right person now? This
problem falls at the overlap of two seemingly contradictory niches:

• Good availability, but no need for search: this is the ‘IM niche’ which is
great for seeing who is available now, but since a user’s IM buddy list is
populated by people they already know, it may seem rather artificial to
have to search through such people for matches

• Web-centric search, but poor availability info: the generic problem of
searching the web for ‘the right person’ is well known, and indeed ad-
dressed by other papers at this workshop, but generally we cannot count
on availability information being provided

We address this contradiction by noting a key exception to the assumption that ‘a
user’s IM buddy list is populated by people they already know’. In particular, enter-
prise-wide IM and any service that provides automatic buddy-list population (‘auto-
matic roster or contact list generation’), has the potential for auto-enrolling users into
large groups, such as student cohort groups and large just-in-time project teams, where
a hierarchically-grouped buddy lists can grow just beyond a ‘familiarity horizon’: in
other words, a user does not know a lot about everyone on the buddy list, yet it con-
tains, within acceptable privacy limits, availability information for those who may
have the knowledge to help solve a user’s problem! A typical case is our own ELeGI
project [22], a 23-partner European consortium with several hundred individuals in-
volved. All are automatically subscribed to the IM roster, yet not everyone generally
knows much about everyone else. Geographical information is also provided on our
user maps, which can be overlaid with presence information, as shown in Fig. 1.

We believe that such usage scenarios will be increasingly typical of future knowl-
edge workers and e-learners. In these cases, it is clear that simply listing online users
in alphabetical order [1] [3] and randomly matching [4] cannot help users find their
those with the right knowledge accurately and efficiently. Of course, some tools use
registration information in profiles of users for search and can provide accurate search
results given that these data are accurate and complete. This is the classic approach of
the online dating services, and can be very effective in a live instant messaging context
too. In Fig. 2, we see how MSN member search [2] enables users to search other users
by their MSN nickname, last name, first name, and gender etc.

Fig. 1. BuddySpace showing presence (colored dots) and location information.

Fig. 2. MSN advanced search.

A more powerful approach in principle is to ask online users to write FOAF (Friend
of a friend) files to describe themselves [23]. We could then perform buddy search
using structured information in these FOAF files. However, these profile data or

FOAF files generally need to be explicitly and voluntarily provided by the users.
Overall, we note four shortcomings of the database-profile and FOAF-profile ap-
proaches as follows.

• First, credibility of the data is at danger, i.e., users may not have provided true
information about themselves or may not provide complete information about
themselves, and thus the approaches is susceptible to abuse.

• Second, asking users manually to provide the data creates unacceptable over-
heads.

• Third, completeness of the data is at risk, i.e., users may not update the data to
reflect their ongoing activities.

• Fourth, the search is limited to the information specified in the profile or FOAF
file, thus the search cannot extend to a wider range of searches.

Another approach is to use a domain ontology for community of practice (COP)
discovery within an organization. ONTOCOPI (Ontology-based Community of Prac-
tice Identifier) [18] attempts to uncover COPs by applying a set of ontology-based
network analysis techniques that examine the connectivity of instances in the knowl-
edge base with respect to the type, density, and weight of these connections. These
COPs can be used for buddy search within an organization. Although effective, this
approach also suffers from the following two shortcomings.

• First, it is generally hard to maintain the ontology to reflect the reality on the
ground, i.e., part of knowledge in the ontology will become out of date quickly
and new knowledge in reality cannot be put into the ontology in time.

• Second, the search is limited to knowledge in the ontology.
In contrast to these approaches, consider that there is significant information about

many Web users in their personal homepages and blogs, and (even when those are
missing, incomplete, or out of date) their friends or colleagues’ homepages, and Web
sites of their work place – all potentially relevant to their personal and/or career life.
The information can provide a fertile ground for a social networking tool to search for
buddies who match a user’s preferences, even in the absence of a user’s specific pro-
file information, and even in the absence of a user’s own web pages! Our belief is that
we can leverage social networks (‘whom you know’) for opportunistic discovery that
can potentially deliver the right knowledge in the right place at the right time, by de-
ploying a mixture of buddy list, presence, and text mining methods. Such a hybrid
approach can overcome the shortcomings of the current approaches.

• First, since Web pages about Web users are from various sources, these sources
are controlled by different authorities and thus the search is less susceptible to
abuse. We can judge the credibility of the data source for including the Web
pages in search process.

• Second, there are fewer overheads in collecting the data. Users do not need to
fill a form or maintain a FOAF file, and only need to make no or very little ef-
fort, e.g., list URLs of pages which can serve as profiles of themselves.

• Third, we can more easily get a more complete profile of a user and are not lim-
ited to information in a registration form or a FOAF file.

• Fourth, there are a more variety of searches that can be issued and the search is
not limited to information in a registration form or a FOAF file.

In order to use Web pages pertinent to social networking users for searching them,
we can directly use current search engines such as content-based search engines [5]
and Google which uses both content information and PageRanks [8] of Web pages.
PageRanks of Web pages are based on link structures of the Web. For example, given
a list of users and their names, each of them has a profile consisting of a list of Web
pages. In content-based buddy search, an online user can specify a query as his/her
preferences or matching requirements. The query consists of a list of terms and Boo-
lean relations between these terms. The query is used to search for other users as bud-
dies whose profiles contain Web pages matching the query. These buddies are seen as
matching the preferences or requirements of the user. For example, a query “Java
AND C++” will return users whose profiles contain Web pages matching both “Java”
and “C++” keywords. These users are assumed to have interests in “Java” and “C++”.

However, a typical query such as “Java AND C++” will return a larger number of
matching buddies, who are of different levels of relevance to the query. By giving a
relevance score to each of these buddies, we can present a user with a list of buddies
ranked by their relevance scores. In the ranked list of buddies, buddies more relevant
to the query are on the top and buddies who are probably false positives are at the
bottom and can be ignored. We observe that a buddy is more relevant to a term in a
query when the buddy’s name has more co-occurrences with the term and/or occur
close to the term in co-occurred Web pages. In content-based search, we can rank
buddies by only taking into account co-occurrences between each buddy and terms in
the query.

In our previous work, we have proposed a text mining method called CORDER [9],
which unearths relations between named entities1 from Web pages of a community.
CORDER is based on communities of practice [10], where a group of people are col-
laborating together on shared tasks, rather than their institutional division. The docu-
ments that a group of people produces mirror what people do and who they work with.
CORDER automatically discovers relations between people in the community from
these documents. Given a named entity, both co-occurrences and distances between
the named entity and other named entities in these documents are taken into account in
ranking these named entities. Our experimental results showed that CORDER pro-
duced better rankings of named entities than the co-occurrence based ranking method.

In this paper, we apply the CORDER method to buddy search. There are mainly
two extensions of the CORDER method in the buddy search scenario. First, in previ-
ous CORDER method, we consider relations between named entities. While in buddy
search, we consider relations between a named entity and terms in a query. While our
previous experiments show that CORDER can identify significant relations between
named entities. In buddy search, we need to find out whether CORDER can also iden-
tify significant relations between named entities and terms. Second, we need to extend
CORDER method to take into account Boolean relations between terms in a query.

Given a query, the ranking of a user is given by taking into account the co-
occurrences between the user and terms in the query, the distances between the user
and terms in the query, and Boolean relations between the terms. In an online group

1 Named entities are proper names of various types, e.g., “John Smith” is a “Person” and “Open

University” is an “Organization”.

consisting of a number of buddies, Web pages in one buddy’s profile often talk about
not only him/herself but also his/her friends, i.e., other buddies, in the same group.
One buddy may belong to various groups on the Web. In buddy ranking, given a
buddy, Web pages from both his/her profile and profiles of other buddies in the same
groups as his/hers are taken into account in ranking him/her. We integrate CORDER
with an online social networking tool called BuddyFinder. BuddyFinder is part of
BuddySpace (http://buddyspace.sourceforge.net/) [11], an online instant messaging
tool. A number of users are subscribed to BuddyFinder and each of them has an op-
tional profile containing a list of Web pages from his/her homepage, blog, or other
sources describing his/her personal or career life, and even in the absence of that pro-
file we can make a best guess based on the user’s identity and domain (part of their
login specification) to find such pages. A BuddyFinder user can use term-based query
to search subscribed users and get a list of buddies ranked by CORDER. In Fig. 3, a
BuddyFinder user input a query “semantic web” OR ontology and get a list of users
ranked by CORDER. He/she can choose to interact with these users by chatting,
emails, and viewing their profiles etc.

Fig. 3. BuddyFinder output for a search on “semantic web” OR ontology.

The rest of the paper is organized as follows. In Section 2, we give an overview of
the CORDER method. In section 3, we present the BuddyFinder-CORDER system. In
Section 4, we conclude and propose future work.

2 CORDER: A Community Relation Discovery Method

Typical questions for knowledge managers are what do your employees know about,
which of your customers have they contacts with, and who works well together in

teams? However, the knowledge represented in organizational ontologies and other
resources is often static, reflecting management's design of what should happen in the
organization and not necessarily the real situation on the ground. The real situation is
often characterized better by communities of practice [10], the groupings of people
who collaborate together on shared tasks, rather than institutional divisions.
 In our buddy search scenario, online users as a community have web pages in their
profiles describing themselves and each other. These web pages can often more truth-
fully describe themselves than their registration information or FOAF files, which are
often static and not up to date.

We argue that Web pages as profiles of online users mirror what these users do and
who they share interests with. CORDER discovers relations from the Web pages of a
community of online users. Previous CORDER method is based on co-occurrences of
named entities (NEs) and the distances between them. A named entity recognizer,
ESpotter [14], is used to recognize people, projects, organizations and research areas
from Web pages. BuddyFinder extends the CORDER method to relations between
buddy names as NEs and terms in a Boolean query.

In the CORDER method, given a target as an NE, we rank a number of co-occurring
NEs as objects. In buddy search scenario, the target is a term in a Boolean query and
the term co-occurs with a number of buddy names as objects. We assume that objects
that are closely related to the target tend to appear more often with the target and
closer to the target in Web pages. Given the target, we calculate a relation strength for
each co-occurring object based on its co-occurrences and distances from the target.
The co-occurring objects are ranked by their relation strengths. Thus objects which
have strong relations with the target can be identified. The relation strength between a
target and an object takes into account three aspects as follows.
 Co-occurrence. A target and an object are considered to co-occur if they appear in
the same Web page. Generally, if the object is closely related to the target, they tend
to co-occur more often.
 Distance. A target and an object which are closely related tend to occur close to
each other.
 Frequency. A target or object is considered to be more important if it has more
occurrences in a Web page.
 Given a target, the higher the relation strength of an object, the closer they are re-
lated to each other. We set a relation strength threshold, so that only significant rela-
tions having relation strengths above the threshold are selected. Relations having rela-
tion strengths below the threshold are considered to result from noise in our data and
are ignored. In our study we set the threshold as the value at which a target and an
object co-occur with only one occurrence each in only one Web page, and their dis-
tance in the Web page is a certain value D. Given the target, objects with their relation
strengths above this threshold are considered to be related.
 Evaluation of the CORDER method on a departmental Website indicates that the
method can find NEs closely related to a target and provide accurate rankings.
CORDER’s running time increases linearly with the size and number of web pages it
examines. CORDER can incrementally evaluate existing relations and discover new
relations by taking into account new Web pages. Thus CORDER can scale well to a
large dataset.

3 BuddyFinder-CORDER

In Section 3.1, we present the architecture of the BuddyFinder-CORDER system.
In Section 3.2, we present the extended version of the CORDER method for buddy
ranking. In Section 3.3, we present our initial user evaluation.

3.1 System Architecture

BuddyFinder-CORDER relies on an instant messaging platform Jabber [12] for ex-
changing information. In Fig. 4, Jabber [12] uses an XML based protocol called
XMPP [12] for all transactions between Jabber users and the Jabber server in B.
When a Jabber user in A issues a term-based query to search for buddies, the query is
sent from the user’s Jabber client using chat messages following the XMPP protocol.
The BuddyFinder query is routed by the server to the BuddyFinder Chatbot in C,
which interacts with various modules to get a ranked list of buddies. The BuddyFinder
Chatbot is a standard Jabber client, an architecture which allows a lot of flexibility in
terms of where it is hosted and allows BuddyFinder users to interact with it using any
Jabber based instant messaging client software. BuddyFinder Chatbot will reply with
the results of the query following the XMPP protocol.

XMPP

A. Jabber Client 1 Jabber Client 2

B. Jabber Server

C. BuddyFinder Chatbot

D. User profile database

E. User group database

H. CORDERG. GoogleF. Web page downloader

XMPP

ODBC

MySQL
SOAP

G
oog le
A

P
IHTTP

X
M

P
P

Fig. 4. BuddyFinder-CORDER Architecture.

The user profile database in D stores each user’s profile consisting of a list of Web
page URLs. BuddyFinder Chatbot accesses user profile information via ODBC con-
nection. The initial list of URLs for a user is generated automatically using a Web
search component via the Google API. To give an easy start for a user to specify these
URLs, the Web search component makes an “intelligent guess” in finding Web pages
relevant to him/her. The intelligent guess is based on the domain shown in his/her
email address and his/her name, which are stored in the user group database in E. For
example, if one user’s email address is m.eisenstadt@open.ac.uk and name is “Marc

Eisenstadt”, we guess the domain of the user is open.ac.uk. We send the query “Marc
Eisenstadt site:open.ac.uk” to Google and use URLs of the top 10 Web page as the
default profile for the user.

To improve search performance, web pages in users’ profiles are downloaded in F
and cached for search. Each user is subscribed to various user groups, e.g., KMi user
group and Open University user group. Given a user, a list of buddies who belong to
his/her user groups is generated by issuing SQL queries on the profile database in E.
When a user sends a query to search, BuddyFinder performs the search on the profiles
of the list of buddies. Thus different users can get different search results even when
they sent the same query.

When a user searches BuddyFinder, he/she may get a large number of buddies
whose profiles all match the query. Some buddies who are not closely related to the
query may also be returned simply because their names co-occur with terms in the
query on Web pages. We need a ranking algorithm which can rank these buddies in
terms of their relevance to the query. A good ranking algorithm should be able to both
identify buddies highly relevant to the query by putting them at the top of the list and
putting them in the correct order. Ideally, the ranking algorithm should put the buddies
in the same order that the user will put them. In Fig. 4, given a search query, Buddy-
Finder uses the CORDER algorithm, which takes into account co-occurrences, dis-
tances in co-occurred Web pages, and relations in the query, to rank search results.

The buddy search process in Fig. 4 is as follows. A user in A specifies a search
query in a command line, e.g., “find “semantic web” OR ontology”. The query is sent
to BuddyFinder Chatbot in C and be interpreted for a list of terms and Boolean rela-
tions between them. The BuddyFinder Chatbot goes to the user group database in E to
find a list of buddies who belong to the same groups as the current user. BuddyFinder
Chatbot goes to user profile database in D to get profiles of these buddies.

Each buddy’s profile consists of a list of Web pages. Given a buddy, BuddyFinder
Chatbot uses a set of Web pages for ranking him/her against the query. First, Web
pages from the buddy’s profile are included in ranking. Second, since Web pages from
profiles of other buddies who are in the same groups as his/hers, such as the buddy’s
colleagues, contain information relevant to him/her, e.g., co-authoring same papers
and members of same projects, these Web pages are also taken into account for rank-
ing him/her.

 Given the buddy, for each term in the query, BuddyFinder Chatbot processes the
set of Web pages for co-occurrences between the buddy’s name and the term and
offsets of the buddy’s name and the term in co-occurred Web pages. CORDER in H is
implemented as a Web service and BuddyFinder Chatbot calls the CORDER Web
service by sending co-occurrence, offset and Boolean relations information to
CORDER as a SOAP message. CORDER calculates a ranking of the buddy against
the query based on the algorithm presented in the next section and sends back the
ranking to BuddyFinder Chatbot as a SOAP message. BuddyFinder presents the bud-
dies in the order of their rankings to the user.

3.2 Buddy Ranking Algorithm

We extend the CORDER method in mainly two aspects to the buddy search scenario.
First, extend relations between named entities to relations between named entities and
terms. Second, extend CORDER method by taking into account Boolean relations
between terms.

 An online user’s preferences for buddies are specified in a term-based query, which
consists of a list of terms and the Boolean relations between these terms. These terms
can either be single words or phrases. We use the CORDER method to calculate the
ranking of a buddy as a relation strength between the buddy and the search query. The
relation strength is based on co-occurrences of the buddy’s name and each term in
Web pages, the distances between the buddy’s name and each term in Web pages, and
Boolean relations between these terms. A list of buddies is ranked by their relation
strengths, and buddies who are more relevant to the query are at the top of the list.
Given a buddy, Web pages from his/her profile and profiles of other buddies in the
same groups as his/hers are used for ranking him/her. The relation strength between a
buddy and the query takes into account four aspects as follows.
 Co-occurrence of buddy and a term. A buddy and a term are considered to co-
occur if they appear in the same Web page. Generally, if a buddy is closely related to
a term, they tend to co-occur more often. For a buddy, B and a term K, we use Resnik
[13]’s method to compute a relative frequency of co-occurrences of B and K as

ˆ (,)p B K =
(,)Num B K

N
, where Num(B,K) is the number of co-occurring Web pages

for B and K, and N is the total number of Web pages.

Distance between buddy’s name and a term. A buddy and a term which are
closely related tend to occur close to each other. If a buddy and a term, B and K, both
occur only once in a Web page, the distance between B and K is the difference be-
tween the offsets of B and K. If B occurs once and K occurs multiple times in the Web
page, the distance of B from K is the difference between the offset of B and the offset
of the closest occurrence of K. When both B and K occur multiple times in the Web
page, we average the distance from each occurrence of B to K and define the loga-
rithm distance between B and K in the ith Web page as

(,)id B K =

(1 log (min(,)))2

()

B Kjj

Freq Bi

∑ +

, where ()iFreq B is the number of occurrences

of B in the ith Web page and min(,)jB K is the distance between the jth occurrence of

B,
jB , and K.

 Frequency of buddy’s name. A buddy is considered to be more important if
his/her name has more occurrences in a Web page. Consequently, a more important
buddy on a Web page tends to have strong relations with other terms which also occur
on the Web page.

 Boolean relation between terms. Terms are connected by AND, OR, NOT Boo-
lean connectors. There Boolean connectors are taken into account in relation strength
calculation. For two terms T1 and T2, we consider two kinds of relations between
them as AND and OR. The AND operator is used to specify that both T1 and T2 must
evaluate to TRUE for “T1 AND T2” to evaluate to TRUE. Given a buddy, B, we use a
set of Web pages to rank him/her. In order for both T1 and T2 to evaluate to TRUE, B
needs to co-occur with T1 and T2, respectively. For example, if B co-occurs with both
T1 and T2 on a page, “T1 AND T2” evaluates to TRUE. If B co-occurs with T1 on one
page and co-occurs with T2 on another page, “T1 AND T2” still evaluates to TRUE. If
the relation strengths between T1, T2 and a buddy are (, 1)R B T and (, 2)R B T , re-
spectively, we define the relation strength between “T1 AND T2” and the buddy as

(, 1 2)R B T AND T = (, 1)R B T × (, 2)R B T . The OR operator is used to specify that
either T1 or T2 must evaluate to TRUE for “T1 OR T2” to evaluate to TRUE. In order
for either T1 or T2 to evaluate to TRUE, B needs to co-occur with either T1 or T2. We
define the relation strength between “T1 OR T2” and the buddy as

(, 1 2)R B T OR T = (, 1)R B T + (, 2)R B T . For one term T1, the NOT operator is used
to specify that T1 must evaluate to FALSE for “NOT T1” to evaluate to TRUE. We

define the relation strength between “NOT T1” and the buddy as (, 1)R B NOT T =0 if

(, 1)R B T > 0 and =1 if (, 1)R B T = 0.
 Relation strength between buddy and query. Given a buddy, B, and a query, Q,
we get a list of terms { kT } from Q and their Boolean relations. We calculate the rela-

tion strength between B and Q by taking into account co-occurrences, distance and
frequency between B and each term in { kT }, and Boolean relations between terms in

{ kT }. The relation strength, (,)kR B T , between B and kT is defined in Equation 1.

(()) (())ˆ(,) (,)
(,)i

i i k
k k

i k

f Freq B f Freq T
R B T p B T

d B T

 ×
= ×

∑

(1)

 where
2(()) 1 log (())i if Freq B Freq B= + ,

2(()) 1 log (())i k i kf Freq T Freq T= + ,

()iFreq B and ()i kFreq T are the numbers of occurrences of B and kT in the ith Web

page respectively.
We get the relation strength, (,)R B Q , between B and Q, by combining (,)kR B T

using the Boolean relations between them. For example, for a query Q = T1 AND T2

AND (NOT T3), (,)R B Q = (, 1)R B T × (, 2)R B T (, 1)R B NOT T× .

3.3 Initial User Evaluation

Currently we have 234 BuddyFinder users, each of them can have a profile consisting
of up to 10 Web pages from their homepages, departmental Web pages, and blogs etc.
We have asked three BuddyFinder users from outside our department to independ-

ently evaluate our system. Each of them was asked to compose 10 queries and used
them to search in BuddyFinder. We compare CORDER with co-occurrence based
ranking method, in which we calculate the relation strength between a buddy and a
query term as the number of co-occurrences of the two in Web pages.

For each query, the user got two ranked lists of buddies and he/she was not told
which one was created by CORDER or the co-occurrence method. The user was asked
to judge the relevance of each of the top 5 buddies in the two lists to the search query
by giving a score from -2 to 2, where -2 is highly irrelevant, -1 is irrelevant, 0 is not
sure, 1 is relevant, and 2 is highly relevant. The user can judge the relevance by chat-
ting with the buddy and viewing his/her profile etc.

 For the first user, we got a total score of 89 and 78 (out of 100) on the 10 queries
for the CORDER based rankings and co-occurrence based rankings, respectively. For
the second user, we got a total score of 86 and 71 (out of 100) on the 10 queries for
the CORDER based rankings and co-occurrence based rankings, respectively. For the
third user, we got a total score of 85 and 78 (out of 100) on the 10 queries for the
CORDER based rankings and co-occurrence based rankings, respectively.

The initial results show that CORDER produced good rankings for buddy search and
provided better rankings than the co-occurrence based method. We are currently
working on evaluating BuddyFinder-CORDER on a larger user group and the initial
results are promising.

4 Conclusions and Future Work

We have shown that the BuddyFinder-CORDER system can help users’ online col-
laboration by enabling them to search for buddies matching their interests specified in
term-based queries. Since current instant messaging tools mostly rely on registration
information for buddy search, they are susceptible to fraud, limited information, and
out-of-date information. BuddyFinder-CORDER can enable more trustworthy, more
versatile, and more up-to-date buddy search. Initial experiments show that Buddy-
Finder-CORDER can find buddies highly relevant to search queries and provide better
rankings than a co-occurrence based method. BuddyFinder-CORDER’s running time
increases linearly with the size and number of Web pages it examines. Thus Buddy-
Finder-CORDER can scale well to a large dataset. The initial experiment is still pre-
liminary. We are evaluating BuddyFinder-CORDER on a larger user group consisting
of over 200 users.

CORDER’s rankings are derived from data mined from a collection of documents.
In this way it gives a wider view of the “world” of a domain than data from a single
source, such as registration information provided by users. Our future work is two-
folded. First, BuddyFinder-CORDER uses a text mining method to deal with mainly
unstructured information in Web pages. If we can get structured information about
online users in the form of registration data or FOAF files, we can improve the Bud-
dyFinder-CORDER method by taking into account both unstructured and structured
data. For organizational use, we are considering using CORDER text mining methods
to keep an organizational ontology up to date with knowledge embedded in documents

produced by the organization. The ontology could be used by systems such as
ONTOCOPI [18] for community of practice discovery and buddy search. Second,
BuddyFinder-CORDER enables discovery of indirect relationships among buddies. In
our scenario, it can be used to find out buddies who are not directly related to terms
in a query but are interesting, e.g., a buddy A is highly relevant to a buddy B, B is
highly relevant to a query, A is not directly relevant to the query. There is an indirect
relationship between A and the query. BuddyFinder can suggest A to the searcher. We
are experimenting with using the closest entities suggested by CORDER to improve
the vector descriptions of documents for clustering. Our initial experiments suggest
that this approach produces clusters which score as well as the widely used SOM
method [16] on a total information gain measure of cluster quality. The execution time
of the CORDER enhanced clustering method however increases linearly with the size
and number of documents it examines so that it starts to outperform SOM on collec-
tions of more than 700 vectors.

Acknowledgements

Work on BuddySpace and BuddyFinder is supported by the European Community
under the Information Society Technologies (IST) programme of the 6th Framework
Programme for RTD – project ELeGI, contract IST-002205. This document does not
represent the opinion of the European Community, and the European Community is
not responsible for any use that might be made of data appearing therein.

Work on CORDER was partially supported by the Designing Adaptive Information
Extraction from Text for Knowledge Management (Dot.Kom) project, Framework V,
under grant IST-2001-34038 and the Advanced Knowledge Technologies (AKT)
project. AKT is an Interdisciplinary Research Collaboration (IRC), which is spon-
sored by the UK Engineering and Physical Sciences Research Council under grant
number GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Ed-
inburgh, Sheffield, Southampton and the Open University. This research was also
partially supported by the Brazilian National Research Council (CNPq) with a doc-
toral scholarship held by Alexandre Gonçalves.

We are grateful to Jiri Komzak for the implementation of BuddySpace and signifi-
cant input into BuddyFinder, Martin Dzbor for significant input into the concepts,
design, and implementations underlying BuddySpace, and Victoria Uren and Enrico
Motta for helpful discussion.

References

1. http://www.msn.com
2. http://members.msn.com
3. http://messenger.yahoo.com
4. http://www.icq.com
5. http://www.verity.com

6. Isaacs, E., Walendowski, A., Whittaker, S., Schiano, D. J., Kamm, C. A.: The character,
functions, and styles of instant messaging in the workplace. In Proc. of ACM conference
on Computer supported cooperative work (CSCW 2002), 11-20.

7. Setlock, L. D., Fussell, S. R., Neuwirth, C.: Taking it out of context: collaborating within
and across cultures in face-to-face settings and via instant messaging. In Proc. of ACM
conference on Computer supported cooperative work (CSCW 2004), 604-613.

8. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks 30(1-7): 107-117 (1998)

9. Zhu, J., Gonçalves, A. L., Uren, V. S., Motta, E., Pacheco, R.: Mining Web Data for
Competency Management. In Proc. of 2005 IEEE/WIC/ACM International Conference
on Web Intelligence 2005 (WI'2005), Compiegne University of Technology, France, Sep-
tember 19-22.

10. Wenger, E.: Communities of Practice, learning meaning and identity. Cambridge Univer-
sity Press (1998).

11. Eisenstadt, M., Komzak, J. and Dzbor, M.: Instant messaging + maps = powerful collabo-
ration tools for distance learning. In Proc. of TelEduc03, May 19-21, 2003, Havana,
Cuba.

12. Adams, D. J.: Programming Jabber Extending XML Messaging. O'Reilly (2001).
13. Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its

Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelli-
gence Research (1999). 11:95-130.

14. Zhu, J., Uren, V. S., Motta, E.: ESpotter: Adaptive Named Entity Recognition for Web
Browsing. In Proc. of 3rd Professional Knowledge Management Conference, Springer,
LNAI (2005).

15. T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30,
1995.

16. Meskill, J.: A Social Networking Services Meta-List:
http://socialsoftware.weblogsinc.com/entry/9817137581524458/

17. Nardi, B.A., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., and Hainsworth, J.: Inte-
grating communication and information through ContactMap. Communications of the
ACM, 45:4, 89-95 (2002).

18. Alani, H., S. Dasmahapatra, K. O'Hara, N. Shadbolt.: Identifying Communities of Prac-
tice through Ontology Network Analysis. IEEE Intelligent Systems 18(2): 18-25, (2003).

19. Chakraborty, R.: Presence: A Disruptive Technology, Presentation at JabberConf, Den-
ver, (2001).

20. http://www.tribe.net
21. Vogiazou, I.T., Eisenstadt, M., Dzbor, M., and Komzak, J.: From Buddyspace to CitiTag:

Large-scale Symbolic Presence for Community Building and Spontaneous Play. In Proc.
of the ACM Symposium on Applied Computing, Santa Fe, New Mexico, March 13 -17,
(2005).

22. Allison, C., Cerri, S.A., Gaeta, M., Ritrovato, P. and Salerno, S.: Human Learning as a
Global Challenge: European Learning Grid Infrastructure. In Varis, T., Utsumi, T. and
Klemm, W. (eds.), Global Peace Through the Global University System, RCVE, Tam-
pere, 465-488, (2003),
http://www.terena.nl/conferences/tnc2004/core_getfile.php?file_id=576

23. FOAF, http://www.foaf-project.org

