
VAEBuilder - A General Purpose Software Tool for the
Description and Implementation of Virtual Audio

Environments

January 19, 2000

Mark Pearson

Abstract

This document describes the issues relating to the design and implementation of a software tool
for creating and exploring arbitrary virtual audio environments (referred to hereinafter as VAEs).
A prototype package called VVAAEEBBuuiillddeerr has been developed with some of the functionality
described in this document. VVAAEEBBuuiillddeerr is implemented in Visual C++ using MFC and comes with
full hypertext or printed documentation for the sources. It is a work in progress, as many of the
features and ideas described in this document have yet to be fully worked through or
implemented, but even in its present state it acts as an example of how the various hardware and
software technologies might be integrated.

i

Table of Contents

Abstract ...i

1 Introduction ...1

2 Feature Wish List ..2

3 User Interface Wish List ..3

3.1 Scripting Languages ... 3

3.2 A GUI for visualising and manipulating VAEs.. 3

4 Application architecture ...5

4.1 Document/View Architecture... 5
4.1.1 The View... 5
4.1.2 The Document... 6

4.2 Overview of classes provided... 7
4.2.1 OpenGLView.. 7
4.2.2 VAEBuilderView.. 7
4.2.3 VAEBuilderDoc.. 7
4.2.4 HuronTCPWrapper ... 7
4.2.5 VAEHuronSocket ... 8
4.2.6 Sound .. 8
4.2.7 Room... 8
4.2.8 Door .. 8
4.2.9 Voice... 9
4.2.10 SpaceBall .. 9

5 Overview of Huron Terminology...10
5.1.1 Workspace... 10
5.1.2 Wave ... 10
5.1.3 Voices ... 10
5.1.4 Communication Channels ... 11
5.1.5 Acoustic Spaces .. 11
5.1.6 Rooms ... 11
5.1.7 Room Segments and Doors... 11
5.1.8 MIDI Messages ... 11

6 VRML97 ...12

6.1 Definitions used in VRML97 ... 12
6.1.1 node... 12
6.1.2 grouping node ... 12
6.1.3 scene graph.. 12
6.1.4 sensor node.. 12

ii

6.1.5 geometric property node ... 13
6.1.6 geometric sensor node... 13
6.1.7 geometry node... 13
6.1.8 interpolator node ... 13
6.1.9 route .. 13
6.1.10 event.. 13
6.1.11 event cascade .. 13
6.1.12 eventIn... 13
6.1.13 eventOut.. 13
6.1.14 prototype ... 13
6.1.15 scripting language ... 13

6.2 VRML Parser.. 14
6.2.1 Relationship between Room file formats used by Lake and VRML nodes 14

6.3 Prototype sensors.. 14

7 Possible VAE demos ..15

8 Possible Application Areas ...16

8.1 Aural presentation of ordance survey maps.. 16

8.2 Spatial granular synthesis ... 16

9 Appendix..17

9.1 External information resources and programs used in the development of VAEBuilder 17
9.1.1 Doxygen – a tool for automatically documenting C++ code. ... 17
9.1.2 CVS – a system for version control of source files. .. 18
9.1.3 Python – the object-oriented scripting language ... 18
9.1.4 OpenGL for Windows resources... 18
9.1.5 Windows Sockets Programming Resources.. 19
9.1.6 Spaceware SDK and the SpaceBall 3-D input device ... 19

9.2 Coordinate Systems and Matrix Conventions... 19
9.2.1 SpaceBall coordinate system... 20
9.2.2 OpenGL coordinate system... 20
9.2.3 LakeDSP coordinate system ... 21

9.3 Steps for setting up the Dell Dimension XPS R400 ... 21
9.3.1 Include and library paths in Visual C++ ... 21

9.4 Rebuilding the documentation for VVAAEEBBuuiillddeerr ... 22

9.5 Brief instructions on using VAEBuilder... 22

1

1 Introduction
This document describes the issues relating to the design and implementation of a software tool
for creating and exploring arbitrary virtual audio environments (referred to hereinafter as VAEs).
A prototype package called VVAAEEBBuuiillddeerr has been developed with some of the functionality
described in this document. VVAAEEBBuuiillddeerr is implemented in Visual C++ using MFC and comes with
full hypertext or printed documentation for the sources. It is a work in progress, as many of the
features and ideas described in this document have yet to be fully worked through or
implemented, but even in its present state it acts as an example of how the various hardware and
software technologies might be integrated.

On the subject of hardware and software the set-up used for development was as follows:

• 400MHz Pentium II PC running Windows NT.
• Lake Huron CP4 convolution processor for the spatial audio.
• LabTec Spaceball 3003 FLX 3-D input device.
• Visual C++ 6.0 and MFC.

The current version of VVAAEEBBuuiillddeerr allows a simple baton-like object with two sounds, one
attached to either end, to be moved about and oriented in 3-D space using the Space Ball input
device. As the object is moved around its position is visually rendered using 3-D graphics and
sonically rendered using the Huron spatial audio processor. The sounds associated with either
end of the ‘sound baton’ are simply triggered periodically.

2

2 Feature Wish List
Before describing VVAAEEBBuuiillddeerr itself this section looks at the features a general purpose 3-D audio
environment building package would ideally have. This feature set is driven by the overall goal of
being able to describe arbitrarily complex environments which have the potential for user
navigation and interaction. To realise this goal the following features were deemed essential:

• Ability to spatialise sounds within virtual acoustic environments using the Lake Huron
spatial audio server controlled via a TCP/IP link

• Integration of the SpaceBall 3-D input device
• An architecture open and flexible enough to deal with the following aspects of a VAE:

• Spatial positioning of sonic objects
• Behaviours of sonic objects – some sounds might be ambient helping to create an

overall atmosphere whilst other might be triggered by specific user actions and others
might have behaviours of their own or act as navigational beacons.

• Support for user interaction with objects in an environment
• Support for time domain scripting of events
• The ability to express arbitrary rules relating objects in an environment to each other

and to the observer (either mathematical, based on the laws of physics or more
abstract). Hiearchical relationships between objects would be represented with a
scene graph - a tree structure expressing parent-child relationships of the objects in
an environment.

• The ability to describe and model acoustic spaces
• A graphical user interface allowing the environments to be visualised, since working with

any 3-D objects is difficult without some kind of visualisation (for the designer), even if
the intention is to render the final product purely in 3-D audio.

A number of important issues come out of these requirements including the choice of an
appropriate application framework and GUI toolkit, the data structures used to represent a VAE,
choice of a suitable scripting language and a suitable 3-D graphics API.

Of this set of requirements the following subset are actually implemented in VVAAEEBBuuiillddeerr:

• An (incomplete) C++ API allowing the Lake DSP CP4 convolution processor to be
controlled via a TCP/IP link.

• Integration of the LabTec SpaceBall 3003 FLX 3-D input device.
• A multiple document interface (MDI) architecture built using Visual C++/MFC.
• Basic OpenGL functionality allowing any VAE elements to be visualised.

The features described in the above list are not completely finished but in conjunction with this
document and the VVAAEEBBuuiillddeerr Class Library Reference the system should prove a useful starting
point for further work in this area.

3

3 User Interface Wish List
The main tools available for describing 3-D worlds include 3-D computer animation packages
and the Virtual Reality Markup Language (VRML). Many animation packages provide
sophisticated GUIs for constructing the 3-D worlds and provide techniques such as key-framing
and motion curves for predefining the ways in which the objects evolve over time. But for more
sophisticated control over object behaviours a scripting language is often used. This allows the
time-domain behaviour of objects to be expressed in terms of algorithms rather than simple static
curves. The use of a general purpose programming language to describe the behaviour of objects
provides maximum flexibility as it can be used to describe just about any kind of relationship that
might be useful. Examples of scripting languages include Tcl, Python, and Perl etc.

The user interface should therefore include the following elements:

• A GUI allowing the VAEs to be visualised and directly manipulated in 3-D.
• A scripting language for describing for describing elements of the VAE’s behaviour

which are not easily expressed using a GUI.

3.1 Scripting Languages
Possible candidates are:

• VRML97 – strictly speaking not a scripting language but it is included here since it
provides a specialised, high-level text-based language for expressing interactive 3-D
worlds.

• A custom designed language using the parser-generator tools Lex and Yacc.
• A high level OO scripting language such as Python

Regardless of the choice of language the final product would ideally be capable of the following:

• Placing objects statically at given locations
• Scheduling events for occurrence at pre-defined times
• Describing relationships between the user’s position, the various object positions and the

resulting behavioursof those objects
• Describing trajectories through 3-D space
• Making the VAE respond in an appropriate manner to user interaction/exploration

There are obvious advantages to adopting an existing language such as VRML97 as a description
language, not least because many of the technical hurdles relating to describing complex,
interactive 3-D environments have already been solved. This would probably involve building or
using an existing VRML parser and writing custom C++ code to implement any new features
required which are not already a part of VRML. For a more detailed discussion on the subject of
VRML see section 6.

3.2 A GUI for visualising and manipulating VAEs
An essential component of the tool would be the ability to visualise any VAE’s constructed. This
could be extended to direct manipulation of VAE components using a GUI. VVAAEEBBuuiillddeerr uses
OpenGL for its 3-D graphics since it is the industry standard API and provides built-in
functionality for selecting and manipulating 3-D objects. In order to provide this feature a new
view class called OpenGLView has been implemented. This provides the basic functionality for

4

creating an OpenGL canvas within an MFC view window. It also provides basic virtual functions
for initialising OpenGL (clear colour, projection mode, double buffering etc.) and drawing the
scene. These may be overwridden by a derived class to implement the particular graphics
required. See section 4.2.1 for details about class OpenGLView and section 4 as a whole for details
about VVAAEEBBuuiillddeerr’s architecture.

Apart from the direct manipulation of 3-D objects the other main area for consideration is the
choice of a general GUI toolkit using the familiar buttons, dialog windows, menus etc. The most
obvious candidates for this on Windows NT are MFC or Qt – a cross platform GUI toolkit which
provides much the same features as MFC, but also runs on UNIX systems. In the end MFC was
chosen for VVAAEEBBuuiillddeerr since it is integrated with the Visual C++ development environment and is
the predominantly used toolkit on Windows operating systems.

5

4 Application architecture
This section describes the overall architecture of VVAAEEBBuuiillddeerr as it stands at the time of writing. For
detailed documentation on the C++ API see the VAEBuilder Class Reference document in the
html folder of the package. The application has been designed in such a way that it could
become a generalised tool for constructing and experimenting with arbitrary virtual audio
environments. It should be noted that whilst parts of this document describe features which are
actually implemented in the current version, much of the document is concerned with sketching
out the intended structure of the finished product. Parts of the system which are still at the ideas
stage and have yet to be designed and implemented include:

• A data structure for representing objects, behaviours, scene graphs etc. in a VAE
• Integration of a scripting langauge (VRML, Python etc.)
• A GUI for direct 3-D manipulation and editing of VAEs

However the following functionality has been implemented:

• Basic application architecture using document/view approach (see section 4.1)
• 3-D graphics visualisations
• TCP-based control of the Lake Huron CP4 spatial audio processor
• Integration of the LabTec Spaceball 3003 FLX 3-D input device

4.1 Document/View Architecture
VVAAEEBBuuiillddeerr is implemented in Visual C++ using the Microsoft Foundation Classes (MFC) and is
based around the document/view architecture.

A detailed description of MFC application architecture is outside the scope of this document but,
very briefly, the philosophy behind the design of a document/view application is that all the data
for a particular entity, whether a word processor document, a 3-D scene in an animation package,
or a spreadsheet etc. is stored in a class called the document class. The document is presented to
the user with the aid of a view class and all interaction between the user and the document is
mediated by this class. Finally there are two fundamental application types, SDI (single document
interface) and MDI (multiple document interface). SDI applications only allow one document to
be open per instance of the application. MDI applications on the other hand allow several
documents to be open simultaneously. A good example of an MDI application is MS Word97.

VVAAEEBBuuiillddeerr is an MDI application and as such is structured such that several VAEs could be open
at any one time and the user would be able to switch between them and activate the selected
environment for testing. MFC also provides the functionality required to load and save documents
by serialising all the data members of the document object to disk and being able to reconstruct
the objects and their internal states at a later date. However this feature has yet to be implemented
in VVAAEEBBuuiillddeerr since the design of an appropriate data structure needs to be finalised before the
code to save and load the data structure can be written.

4.1.1 The View
The view is reponsible for catching user input via the keyboard, mouse or other input devices
such as the Spaceball, calling the appropriate document member functions to update the state of
the VAE, and providing the visual representation of the VAE. It must therefore:

6

• Be OpenGL capable for rendering the environment using 3-D graphics.
• Provide member functions for handling Windows messages generated by input devices.

VVAAEEBBuuiillddeerr’s main class is called CVAEBuilderView and is derived from the specially designed
generic OpenGLView base class.

4.1.2 The Document
The document acts as a central repository for all the data which defines the state of a VAE at any
moment in time. Ideally this information would include such items as:

• Objects
• Positions (room number and coordinates)
• Velocities/accelerations etc.
• Other state variables particular to each object
• Relationships to other objects and/or listener
• Object hierarchies (scene graph)

• The Listener
• Position (room number and coordinates)
• Velocity/acceleration etc.
• Other state variables

• Data files needed by the environment
• Huron workspace file (*.wsp) (see section 5.1.1)
• Sounds

• Locations of sound files (see section 5.1.2)
• Associated WaveID’s (see section 5.1.2)
• Associated voice numbers (see section 5.1.3)

• Acoustic spaces
• Locations of data files (*.geo, *.sim) describing the acoustic space (see section

5.1.5)
• Associated room numbers (see section 5.1.6)

• Door locations and positions, and pointers to adjoining rooms (see section 5.1.7)

One of the items mentioned in the list above refers to relationships between objects in the
environment and/or the listener. To clarify what this means some examples of typical
relationships are given below:

• Linking objects into parent/child hiearchies
• Expressing the positions, velocities and other more sonic attributes of objects in terms of

physical relationships so that the objects move and behave in a complex but natural
manner.

• Triggering object events based on the user’s proximity to an object.
• Predefining motion paths for objects.

The Virtual Reality Markup Language VRML already contains a number of constructs for
expressing such relationships (see section 6). Precisely how much support VRML could provide
for arbitrarily complex relationships is a matter for further investigation. But at the very least it
would be useful if the internal representation of an environment used by the document could be
saved in VRML format.

7

4.2 Overview of classes provided
This overview is designed to explain in plain English the classes provided by VVAAEEBBuuiillddeerr. For
more detailed information see the VAEBuilder Class Reference in VVAAEEBBuuiillddeerr’s html folder. The
HTML documentation describes the classes and their members functions and variables in detail
and also contains cross references to the Microsoft Developer Network documentation provided
on CD with Visual C++ whenever MFC or Win32 API concepts are touched upon.

4.2.1 OpenGLView
This class is a general purpose OpenGL view class. It encapsulates and hides from the application
the details of setting up an OpenGL based view in Windows NT. It includes functions for setting
the video mode (INDEXED/RGB, 256 colours, 16 million colours, single/double buffer mode)
and virtual functions for initialising the OpenGL state and drawing the scene. OpenGLView is
designed to be overridden by a class providing application-specific graphics capabilities. By itself
it doesn’t provide any functions for drawing a scene but merely sets everything up so that a
derived class can concentrate on just that.

NOTE: At the moment this class is actually hard-wired to request 24 bit colour (full RGB) and
enable the depth buffer so that hidden face removal works.

4.2.2 VAEBuilderView
This is VVAAEEBBuuiillddeerr’s view class (see MSDN library under ‘Using Views’). An MFC application
can actually have several different views on a document, but in VAEBuilder there is currently
only one, an OpenGL-based 3-D visualisation window. This class is derived from class
OpenGLView (see section 4.2.1).

4.2.3 VAEBuilderDoc
This class is VVAAEEBBuuiillddeerr’s document class and should be the place where all state information
about a VAE is stored. In this way the whole set of information can potentially be loaded, edited
and saved conveniently by deriving all object classes from CObject and then overriding the
CObject::Serialize function for each. For further information about documents and how to load
and save them see the MSDN library under ‘Using Documents’.

NOTE: As it stands the VAEBuilderDoc doesn’t actually contain much information. In fact in the
current implementation it only ever contains one object of class SoundBaton. There is no load or
save or edit functionality currently implemented, but nevertheless the framework is in place for
such functionality to be added.

4.2.4 HuronTCPWrapper
This class provides an object-oriented interface which encapsulates all the TCP based commands
which the Huron audio server (see section 6-97 of the Huron manual) is capable of responding to.
Communication between the VVAAEEBBuuiillddeerr client application and the Huron is via Windows sockets
at the lowest level but this class deals only with sending the appropriate TCP command packets
which actually control the Huron. This is achieved with an instance of the lower level class
VAEHuronSocket, described below.

8

4.2.5 VAEHuronSocket
This class provides a socket connection from the VVAAEEBBuuiillddeerr client application to the Huron audio
server. It hides the details of how this connection is implemented using Windows sockets and
provides a number of functions for:

• Setting the IP address of the Huron server
• Opening and closing a connection
• Detecting whether a connection has been established
• Sending and receiving packets of information

This class only deals with low level socket interactions. For a higher level interface which has
more knowledge of the actual information which is likely to be communicated from the client to
the server see the HuronTCPWrapper class described above.

4.2.6 Sound
This class encapsulates the concept of a sound object. Such an object has a number of attributes
as described below:

• Sound file name
• Voice number
• Location channel
• Position (x,y,z)
• Orientation (xangle,yangle,zangle)

4.2.7 Room
This class is intended to represent the Huron concept of a room. The implementation of a room
involves the following information:

• A description of the acoustic space (see section 6-115 of the Huron manual), which is
represented by *.geo and *.sim files on disk.

• Room number – a unique numerical identifier.
• Descriptions of any doors connecting this room to another room.

If an appropriate scene hiearchy data structure were in place then each Room object would
probably maintain a list of objects in the room amongst other information.

NOTE: This class has not been implemented yet.

4.2.8 Door
This class is intended to represent the concept of a door, which in Huron terms is a connection
between two room segments. The information stored in an instance of this class includes:

• Room number of the first room
• Room number of the second room
• Coordinates of corners of door on both adjoining walls.

NOTE: This class has not been implemented yet.

9

4.2.9 Voice
The Huron audio server can theoretically use up to 72 simultaneous voices. This limit is set by a
dialog option in the WavePlayer module of the Huron VRack application. The Voice class helps to
make allocation and management of the available voices easier by providing functions to do the
following:

• Allocate and deallocate voices
• Trigger and release (silence) voices
• Determine whether a particular voice is free or not
• Create an array of Voice objects to server as a pool for allocation to sound objects.

4.2.10 SpaceBall
This class encapsulates the functionality of the SpaceBall 3-D input device. It provides member
functions for initialising the SpaceBall, linking it to a particular target window for input messages
to be processed, setting the sensitivity for the six degrees of freedom and providing access to the
translation and rotation data generated by the user’s movements of the device.

This class has a static member of type SpaceBall* which is the sole instance of the class and
serves as the gateway for all other objects to communicate with the SpaceBall input device. This
object is thus a singleton class – a class of which there is only ever one instance but which is
widely used by other objects in an application.

NOTE: Some of the SpaceBall functionality has yet to be implemented such as providing
functions to be called whenever buttons are pressed on the SpaceBall. At the moment the
SpaceBall class implements reading rotational and translational information from the ball itself
and storing this information in matrix form ready for use in conjunction with the SpaceWare SDK
math library matrix functions.

10

5 Overview of Huron Terminology
The Lake DSP CP4 convolution processor is controllable via a TCP based interface allowing the
construction of client software packages which may drive the Huron server remotely. All the
major functions of the Huron software such as starting the virtual audio rack program VRack;
loading workspaces into the virtual rack; loading .sim files into the WavePlayer module and
assigning them to voices; and positioning and triggering voices are controllable via this interface.

A list of some of the main terminology relating to the workings of the Lake Huron software is
given below.

• Workspace
• Wave (sound data)
• Voice
• Room
• Acoustic space
• Room segment
• Door
• Communication channel (location, angle, etc.)
• MIDI message

5.1.1 Workspace
The top level application on the software side of the Huron CP4 is called VRack. This represents a
virtual audio rack with rack mountable modules. Examples of modules include Patchbay, IO
Manager, MultiScape (a self-contained 3-D sound modelling application), and WavePlayer. At any
one time the VRack application can have a number of different modules installed. A particular
configuration of modules and module settings can be saved in a workspace (.wsp) file at any time.

5.1.2 Wave
The term wave is used to refer to audio sample data loaded into the Huron audio server. The term
is slightly misleading as the format which the Huron server can read is actually *.sim rather than
the more widely accepted *.wav standard as might be expected. A command line utility called
wavtosim is provided for converting Microsoft WAV files to Huron SIM files. Once a set of
audio sample data has been loaded it is uniquely identified by a waveID. The following is a list of
TCP command names used to deal with waves.

• Loaded into CP4 using HuronLoadWave TCP command
• Removed from CP4 using HuronRemoveWave TCP command
• Linked to a voice using HuronUpdateVoice TCP command
• Information retrieved using HuronGetWaveInfo TCP command

5.1.3 Voices
Whilst a wave represents the actual audio sample data stored on disk, the CP4 uses the concept of
voices to internally trigger sounds in a virtual audio environment. A voice must be associated
with a particular set of wave data before the sound can be triggered. This is achieved through the
HuronUpdateVoice command which takes a voice number and waveID and associates the former
with the latter. The WaveID is specified when the HuronLoadWave command is issued and it
becomes associated with the particular sound file being loaded.

11

5.1.4 Communication Channels
A communication channel is used to send location and orientation messages to individual voices.
This is achieved with the use of the HuronLocation and HuronAngle TCP commands. A voice is
associated with a particular location and angle channel by setting values in the MultiScape VRack
module window.

5.1.5 Acoustic Spaces
An acoustic space is generated using the MakeRoom utility and is subsequently represented by a
single *.geo file and a set of *.sim files co-located in the same directory. The *.geo file represents
the geometry of the room and the four *.sim files represent x, y, z and w components of the
generated impulse response.

When loading an acoustic space into the Huron using the HuronSetAcousticSpace command the
data is associated with an acoustic space ID.

5.1.6 Rooms
A room is the CP4’s way of referring to a set of geometry and impulse response data. Once the
data for an acoustic space has been loaded and associated with an acoustic space ID, this ID is
associated with a room number using the HuronSetRoom command.

5.1.7 Room Segments and Doors
The CP4 is capable of loading a number of different acoustic spaces and then treating them as a
series of interconnected room segments. This achieved in conjunction with doors. A door
connects two room segments and may be positioned anywhere between the two extremes of fully
open and fully closed. When a door is gradually opened, sounds from the adjoining room are
allowed to leak into the current room, modelled as a point source originating from the direction of
the door relative to the observer.

5.1.8 MIDI Messages
The main MIDI messages to deal with are NoteOn, NoteOff, Program Change and Controller
messages.

12

6 VRML97
VRML (Virtual Reality Markup Language) is a text based language for describing virtual
environments. It provides a number of nodes for representing different objects in a scene. A scene
is represented overall by a hierarchical scene graph. In a VRML file this hierarchy is represented
as nested nodes. Before going any further with a discussion about the suitability of VRML97 as a
description language for VAE’s it is probably a sensible idea to define some terminology used.
The next section does exactly this.

6.1 Definitions used in VRML97
The following definitions are taken from the official VRML97 specification document located at
http://www.vrml.org/Specifications/VRML97. This document is copyrighted as follows:

Copyright © 1997 The VRML Consortium Incorporated. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole, without restriction of any kind, provided that the above copyright notice, this paragraph and the title,
URL, and authors of the document as referenced below are included on all such copies and derivative works.
However, this document itself may not be partially copied, excerpted or modified in any way, such as by
removing the copyright notice or references to the VRML Consortium, except with written permission from the
VRML Consortium or as needed for the purpose of developing VRML standards in which case the procedures
for copyrights defined in the VRML Consortium standards process must be followed.

TITLE: ISO/IEC 14772-1:1997, Virtual Reality Modeling Language, (VRML97)
URL: http://www.vrml.org/Specifications/VRML97
AUTHORS: Rikk Carey, Gavin Bell, Chris Marrin

6.1.1 node
The fundamental component of a scene graph in ISO/IEC 14772. Nodes are abstractions of
various real-world objects and concepts. Examples include spheres, lights, and material
descriptions. Nodes contain fields and events. Messages may be sent between nodes along routes.

6.1.2 grouping node
One of a set of node types which include a list of nodes, referred to as its children nodes. These
children nodes are collected together to share specific properties dependent on the type of the
grouping node. Each grouping node defines a coordinate space for its children relative to its own
coordinate space. The children may themselves be instances of grouping nodes, thus forming a
transformation hierarchy.

6.1.3 scene graph
An ordered collection of grouping nodes and other nodes. Grouping nodes, (such as LOD,
Switch, and Transform nodes) may have children nodes.

6.1.4 sensor node
A node that enables the user to interact with the world in the scene graph hierarchy. Sensor nodes
respond to user interaction with geometric objects in the world, the movement of the user through
the world, or the passage of time.

13

6.1.5 geometric property node
A node defining the properties of a specific geometry node. A node of type Color, Coordinate,
Normal, or TextureCoordinate.

6.1.6 geometric sensor node
A node that generates events based on user actions, such as a mouse click or navigating close to a
particular object. A node of type CylinderSensor, PlaneSensor, ProximitySensor, SphereSensor,
TouchSensor, VisibilitySensor, or Collision.

6.1.7 geometry node
A node containing mathematical descriptions of three-dimensional (3D) points, lines, surfaces,
text strings and solids. A node of type Box, Cone, Cylinder, ElevationGrid, Extrusion,
IndexedFaceSet, IndexedLineSet, PointSet, Sphere, or Text.

6.1.8 interpolator node
A node that defines a piece-wise linear interpolation. A node of type ColorInterpolator,
CoordinateInterpolator, NormalInterpolator, OrientationInterpolator, PositionInterpolator, or
ScalarInterpolator.

6.1.9 route
The connection between a node generating an event and a node receiving the event.

6.1.10 event
A message sent from one node to another as defined by a route. Events signal external stimuli,
changes to field values, and interactions between nodes. An event consists of a timestamp and a
field value.

6.1.11 event cascade
A sequence of events initiated by a script or sensor event and propagated from node to node along
one or more routes. All events in an event cascade are considered to have occurred
simultaneously.

6.1.12 eventIn
A logical receptor attached to a node which receives events.

6.1.13 eventOut
A logical output terminal attached to a node from which events are sent. The eventOut also stores
the event most recently sent.

6.1.14 prototype
The definition of a new node type in terms of the nodes defined in this part of ISO/IEC 14772.

6.1.15 scripting language
A system of syntactical and semantic constructs used to define and automate procedures and
processes on a computer. Typically, scripting languages are interpreted and executed sequentially
on a statement-by- statement basis whereas programming languages are generally compiled prior
to execution.

14

6.2 VRML Parser
Various VRML parsers are available in source form, some free others licensable. A VRML parser
could be used as the starting point for building a slightly modified VRML to deal with the
specific issues relating to VAE’s. Parsers found to date include:

• ftp://ftp.sics.se/pub/dive/vrml_parser.tar.gz

This parser uses the compiler tools Lex and Yacc. This could be incorporated into VVAAEEBBuuiillddeerr so
that VRML97 files could be parsed. Some kind of internal representation would have to be
developed, relating to VAEBuilder’s other object types.

6.2.1 Relationship between Room file formats used by Lake and VRML nodes
The output files produced by the Lake program MakeRoom (*.geo, *.sim) contain text based
information about the dimensions of the room. This information could be translated from
appropriate node information encoded in VRML97. In this way the acoustic spaces, sound
objects, and behaviour of the whole environment could be coded withing a single VRML file.
Another possibility is the use of PROTO nodes in VRML. These allow experimental features to
be added to VRML in order to enhance its capabilities. It may be possible to use a custom
designed set of PROTO nodes to represent functionality required for VAE’s which is not catered
for in the existing definition of VRML97.

6.3 Prototype sensors
The existing sensors provided by VRML97 include:

• Cylinder sensor
• Plane sensor
• Proximity sensor
• Sphere sensor
• Time sensor
• Touch sensor
• Visibility sensor

It may be fruitful to take these sensors as a starting point to see if there are similar prototype
sensors which could be developed specifically for use in VAE’s. For example, the visibility
sensor could be replaced with an audibility sensor.

ftp://ftp.sics.se/pub/dive/vrml_parser.tar.gz

15

7 Possible VAE demos
• Navigating around a VAE consisting of several objects arranged on a horizontal plane at

random but fixed positions, each acting as a ‘beacon’, emitting a fixed sound at regular
intervals. The observer is able to navigate around the environment using the mouse as an
accelerator/steering device. This example would allow a lot to be learnt about navigation
strategies in 3-D spaces.

• One sound source whose position is determined by a physical simulation of the sound object
being attached to a piece of elastic. The other end of the piece of elastic would be attached to
the mouse in some way allowing the user to interactively ‘swing’ the sound round in real-
time. This example would allow exploration of the realism of spatial and physical cues in
virtual audio environments.

• An audio-realistic environment including other spatial cues such as filtering effects,
reverberation, early reflections, doppler shift.

• Field effect microphone recordings of real environments enhanced with added synthesised
information.

16

8 Possible Application Areas

8.1 Aural presentation of ordance survey maps.
This might be a fruitful area for investigation for several reasons:
1. Maps are spatially distributed diagrams containing symbolic or iconic representations of

various objects.
2. The key provided by a map limits the possible elements which may occur in any one map to a

finite numbers of possibilities. This narrows the scope of the problem of finding appropriate
sonic representations for any given map (without simplifying the problem too much).

3. Any given sonification scheme could be tested on many different maps all adhering to a
single standard of information presentation.

4. There is much scope for trying different sonic representation schemes for each symbol
containedf in the map’s key, or even encoding information over and above what is available
on the map. Multimedia educational systems already exist for sighted users, combining maps
with further geographical, political, economic and demographic information.

8.2 Spatial granular synthesis
Distributing grains of sound around the listener and using changes in grain density/characteristics
to highlight movements.

One of the limitations of sonic as opposed to visual information is that sound is fundamentally
temporal rather than static and inhabits a very different space from that of visual perception. One
possible way of getting around this limitation is to replace static visual information with sonic
information which is dynamic in one sense but static in another. To explain this contradiction
more clearly we will introduce the term granular synthesis. Granular synthesis is a technique
whereby complex dynamically evolving sounds are built up from elementary grains or particles
of sound. Various parameters such as the grain length, grain density and other characteristics may
be varied under the control of some high level algorithm, and with appropriate control strategies
the technique is capable of emulating natural environmental sounds such as those produced by
wind or flowing water. Granular synthesis is able to produce sounds which have very complex
temporal and spectral characteristics, and combined with the ability to locate individual grains at
arbitrary points in space there would probably be more than enough parameters to play with for
the sonification of complex, evolving 3D data sets.

One of the advantages of granular synthesis for the presentation of information more suited to the
visual domain is that a dense granular sound, whilst varying temporally at the microscopic level
can in fact be perceived as an static stream. Salient features could then be superimposed on this
static equilibrium. This relies on the fact that when the density of grains reaches a particular
threshold, they begin to be perceived as a single event rather than as discrete sounds. By spatially
distributing a granular texture using ambisonic encoding it might be possible to present a detailed
spatial ‘picture’ without having to rely upon sounds which are more iconic/symbolic in nature.

17

9 Appendix

9.1 External information resources and programs used in the development of
VAEBuilder

During the development of VVAAEEBBuuiillddeerr the World Wide Web has proved an invaluable resource
for information on the various technologies needed to make an integrated, working application.
The main areas drawn upon during the design of this software were:

• MFC (Microsoft Foundation Classes) – The most prevalent C++ API for developing
Windows applications.

• OpenGL 3-D graphics library.
• Windows sockets – needed to implement the TCP link between the client program and the

Huron audio server.
• The Spaceware software development kit (Spaceware SDK for short) used to access the

Spaceball.

In addition three main third party tools have been used to make the C++ sources more
maintainable and accessible. These are:

• CVS – a version control system which can be used to track changes in a set of source files
and allow backtracking in cases where bugs are inadvertently introduced.

• Doxygen – a documentation tool which is able to produce high quality cross-referenced
online and printed documentation from commented sources with the aid of special formatting
tags included in the comments.

• Python – an object oriented scripting language which is freely available on the internet at no
cost. Python is only used to strip various Microsoft-specific constructs from the source files
so that Doxygen can successfully parse them and build up the documentation.

Finding suitable information on all of the tools listed above represented a large part of the work
carried out and for convenience the most useful URL’s found are listed in the following sections.

9.1.1 Doxygen – a tool for automatically documenting C++ code.
Doxygen is a tool for generating documentation from C++ source files. It is able to generate
cross-referenced documentation in HTML and LaTeX formats directly from the sources by
parsing the files and making a note of the classes, structures, variables, functions and files
involved. With the addition of specially formatted comments placed in the source files it can
include more detailed information at the appropriate locations in the documentation. Doxygen
saves an enormous amount of work when documenting a C++ project. It has the advantage that
the documentation is stored in the source files themselves in the form of specially formatted
comments, so whenever a change is made to the source code the documentation will always
remain in sync with the code, so long as the comments are updated at the same time.

For further information, documentation and the downloadable package itself see the following
URL:
• http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/

18

9.1.2 CVS – a system for version control of source files.
CVS is a tool for version control. What this means is that it can be made to track the entire
history of every file within a project allowing the changes from version to version to be viewed
and also allowing previous versions of a file to be recreated with ease. One of its main uses is in
enabling bug tracking, since if a particular part of the software package suddenly stops working
properly the developer can simply step back through the changes to the relevant files to find out
which particular change introduced the bug. For any medium to large scale software project
version control is a must.

CVS is available for free download at the following URL:
• http://download.cyclic.com/pub/cvs-1.10/cvs-1.10.tar.gz

An online manual for CVS 1.10 is available at the following URL:
• http://www.delorie.com/gnu/docs/cvs/cvs_toc.html

The following URL contains links to both an online version and .pdf and .ps format versions.
• http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc.847210383.html

See the following URLs for other information relating to CVS:
• http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc
• http://www.cyclic.com/cvs/info.html

9.1.3 Python – the object-oriented scripting language
Python is available from the following URL:
• www.python.org

Python is only used to get the C++ sources into a form which Doxygen can interpret. The
problem lies in the fact that Visual C++ has many non-standard constructs and relies heavily upon
macros. These constructs and macros must be stripped from the source files in order for Doxygen
to work properly. This is achieved by opening a command line window in Windows NT,
changing directory to the folder in which the VVAAEEBBuuiillddeerr sources reside and typing:

python strip.py

This leaves the processed source files in the ‘stripped’ folder of the distribution. See section 9.4
for details on generating VAEBuilder’s LaTeX and HTML documentation.

9.1.4 OpenGL for Windows resources
OpenGL is the industry standard API for programming 3-D graphics. It is available as standard
on Windows NT. The primary source of detailed reference information for programming with
OpenGL under Windows NT is the MSDN library. For introductory information on OpenGL
itself (not Windows-specific) see the following URL:
• http://reality.sgi.com/opengl/

For more specific information on how to use OpenGL on Windows NT see the OpenGL Win32
tutorial at the following URL:
• http://ugweb.cs.ualberta.ca/~blaine/opengl32.html

For examples of how to set up an OpenGL graphics window using MFC see the following URL:

http://download.cyclic.com/pub/cvs-1.10/cvs-1.10.tar.gz
http://www.delorie.com/gnu/docs/cvs/cvs_toc.html
http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc.847210383.html
http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc
http://www.cyclic.com/cvs/info.html
http://www.python.org/
http://reality.sgi.com/opengl/
http://ugweb.cs.ualberta.ca/~blaine/opengl32.html

19

• http://www.codeguru.com/opengl/oglwrapperclass.shtml (OpenGL wrapper class)

The OpenGL programming guide online (known as the ‘Red Book’)
• http://fly.cc.fer.hr/~unreal/theredbook/
and in downloadable postscript format
• http://graphics.eecs.wsu.edu/cpts442/book.html

The OpenGL reference guide online (known as the ‘Blue Book’)
• http://www.dgp.utoronto.ca/people/van/courses/opengl/opengl_index_alpha.html

9.1.5 Windows Sockets Programming Resources
The following is a list of resources which were found to be useful when getting to grips with the
intricacies of programming Windows sockets.

Winsock development information
• http://www.sockets.com/

The Winsock FAQ
• http://www.cyberport.com/~tangent/programming/winsock/

A variety of Winsock examples
• http://users.neca.com/vmis/wsockprg.htm

Windows Sockets Programming
• http://www.goodnet.com/~esnible/winsock.html

Simple Winsock client and server application examples
• http://www.cyberport.com/~tangent/programming/winsock/examples/basics/basic-client.cpp
• http://www.cyberport.com/~tangent/programming/winsock/examples/basics/basic-server.cpp

9.1.6 Spaceware SDK and the SpaceBall 3-D input device
The Space Ball 3-D input device is interfaced to a software package using the Spaceware SDK.
The documentation is available locally at:

• C:\Program Files\Spacetec\SpaceWare\SDK\hlp\Index.html

assuming the SpaceWare SDK was installed in the default location

9.2 Coordinate Systems and Matrix Conventions
There are three separate coordinate systems used in VVAAEEBBuuiillddeerr which are described below. An
additional complication is that the SpaceWare SDK math library stores transformation matrices in
row major order whereas OpenGL expects transformation matrices in column major order.

For example the SpaceBall transformation matrix:

http://www.codeguru.com/opengl/oglwrapperclass.shtml
http://fly.cc.fer.hr/~unreal/theredbook/
http://graphics.eecs.wsu.edu/cpts442/book.html
http://www.dgp.utoronto.ca/people/van/courses/opengl/opengl_index_alpha.html
http://www.sockets.com/
http://www.cyberport.com/~tangent/programming/winsock/
http://users.neca.com/vmis/wsockprg.htm
http://www.goodnet.com/~esnible/winsock.html
http://www.cyberport.com/~tangent/programming/winsock/examples/basics/basic-client.cpp
http://www.cyberport.com/~tangent/programming/winsock/examples/basics/basic-server.cpp

20

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

becomes the OpenGL transformation matrix:

m11 m21 m31 m41

m12 m22 m32 m42

m13 m23 m33 m43

m14 m24 m34 m44

This means in practice that whilst SpaceBall transformations are stored in the following format:

… … ... 0
... 0
... 0
tx ty tz 1

OpenGL expects a matrix of the following form:

… … ... tx

... ty

... tz

 0 0 0 1

where tx, t y, and t z are the translation values for the x, y and z axes. OpenGL uses what are
known as homogenous coordinates (x,y,z,w). The homogeneous coordinate (x,y,z,w) represents
the 3-D coordinate (x/w,y/w,z/w) so long as w≠0. Homogeneous coordinates are explained in
Appendix G of the OpenGL Red Book (see section 9.1.4) but one of their advantages is that they
allow translations to be coded in the same matrix as other transformations such as rotation and
scaling as shown above.

9.2.1 SpaceBall coordinate system
The coordinate system used by the SpaceBall 3-D input device interprets x, y and z in the
following way:

+x right -x left
+y up -y down
+z forwards -z backwards

9.2.2 OpenGL coordinate system
The coordinate system used by OpenGL interprets x, y and z in the following way:

+x right -x left

21

+y up -y down
+z backwards -z forwards

9.2.3 LakeDSP coordinate system
Just to make life more complicated a third coordinate system exists for the Huron spatial audio
server. This interprets x, y and z in the following way:

+x right -x left
+y forwards -y backwards
+z up -z down

9.3 Steps for setting up the Dell Dimension XPS R400
The following instructions are provided in the event that the whole system has to be set up from
scratch due to a hardware failure or system crash.

1. Install Microsoft Visual C++
2. Install MSDN library
3. Install Lake Huron 3.0 software
4. Install Huron license (on floppies)
5. Copy ‘wavtosim’ program off of Huron 2.7 CD into C:\huron30\bin as it is not included on

the Huron 3.0 CD.
6. Go to Start->Settings->Control Panel and open System. Go to the Environment tab and

select the PATH environment variable. Add ‘C:\huron30\bin’ to the list of paths to search for
executables.

7. Install Spaceware SDK and Spaceball drivers on CD which came with the Spaceball.
8. Open the file ‘C:\WINNT\system32\drivers\etc\services’ and add the following entries:

huron 30000/tcp
huron 30000/udp

This tells Windows NT that the Huron audio server will listen for communication requests on
port 30000. This port number is specified in the Huron documentation.

If you want to update the Class Library Reference documentation when the code is modified you
also need to install Doxygen (see section 9.1.1) and Python (see section 9.1.3) and then add the
binary executables for both to your path as well. See section for details about how to rebuild the
documentation after changes have been made to the source code.

NOTE: Reinstalling everything on a freshly installed Windows NT machine may also involve
installing various Microsoft Service Packs. VVAAEEBBuuiillddeerr was successfully developed using Service
Pack 3 initially but later on using Service Pack 5. For more information on service packs and the
order in which they must be installed with regard to other software consult a system
administrator.

9.3.1 Include and library paths in Visual C++
There are a number of environment variables used by Visual C++ to specify the paths to header
files and libraries. These must be updated to include the specific VVAAEEBBuuiillddeerr to function. To be
more specific the following headers and libraries are required:

• GL/gl.h

22

• GL/glu.h
• slim.h
• spwmath.h
• Winsock.h

The following include paths must be added to the project settings in order for the Huron and
Spaceware headers to be found:

• C:\huron30\include
• C:\Program Files\Spacetec\SpaceWare\SDK\inc
• C:\Program Files\Spacetec\SpaceWare\SDK\lib\slim\inc

Go to Project -> Settings... and select the C/C++ tab. Then select the Preprocessor option in the
Category list. Add the paths given above as a comma seperated list in the Additional include
directories text box.

The following library paths must be added to the project settings in order for the SpaceWare
libraries to be found.

• C:\Program Files\Spacetec\SpaceWare\SDK\lib\uapi\bin\siapp\win32i\release\mthread
• C:\Program Files\Spacetec\SpaceWare\SDK\lib\slim\bin\win32i\debug\mthread

Go to Project -> Settings... and select the Link tab. Then select the Input option in the
Category list. Add the paths given above as a comma seperated list in the Additional library
path text box.

9.4 Rebuilding the documentation for VVAAEEBBuuiillddeerr
Provided you have installed both Doxygen and Python and updated your path environment
variable to include the binary executables for both you can rebuild VVAAEEBBuuiillddeerr’s documentation in
four easy steps:

1. Open a Command Prompt window
2. Change directory to F:\VAEBuilder or wherever you have unpacked the distribution
3. Type ‘python strip.py’
4. Type ‘doxygen’

Step 3 removes any MFC specific constructs and macros from the source files and step 4 invokes
Doxygen which scans the (modified) source files stored in the ‘stripped’ folder and generates the
HTML output. The output is stored in the ‘html’ folder of the distribution. Doxygen also
generates LaTeX format output which can be used to generate a postscript version if you install
LaTeX. Many Linux distributions come with LaTeX pre-installed and this may be the easiest
route to generating printable documentation but versions are available for Windows NT.

9.5 Brief instructions on using VAEBuilder

When VVAAEEBBuuiillddeerr is first launched it is not connected to the Huron audio server. In order to use
VVAAEEBBuuiillddeerr the following steps must be followed:-

23

1. Open a TCP connection to the Huron by selecting the Huron->Open Huron
Connection menu option.

2. Start the Huron VRack application. This should be done remotely from VVAAEEBBuuiillddeerr by
selecting the Huron->Start VRack menu option.

3. Load a Huron Workspace. Once again this should be done remotely from VVAAEEBBuuiillddeerr
by selecting the Huron->Load Huron Workspace menu option. This brings up a file
dialog window.

VVAAEEBBuuiillddeerr will not allow a workspace to be loaded until the VRack application has been started
and will also not allow the VAE to start until a workspace has been loaded. This has the
unfortunate side effect that the Start VRack and Load Huron Workspace menu options have to be
selected every time VVAAEEBBuuiillddeerr is run, even if the VRack application was not shut down between
sessions.

Once these three steps have been carried out there are two ways to start and stop the VAE. You
can either select the VAE->Activate VAE menu option or click on the coloured icon.

Similarly, to stop the VAE either select the VAE->Deactivate VAE menu option or click on the
middle grey icon.

The third toolbar button with the lighter icon is intended to reset the VAE to its initial state but
is not used in the current implementation.

Finally when shutting down VVAAEEBBuuiillddeerr it is advisable to stop the active VAE (described above)
and then select the Huron->Close Huron Connection menu option. If this last step is not carried
out the socket connection to the Huron is often not shut down gracefully, which means that a
connection cannot be re-established until the Huron socket application is shut down and restarted.
This is only a minor inconvenience however.

	Abstract
	Introduction
	Feature Wish List
	User Interface Wish List
	Scripting Languages
	A GUI for visualising and manipulating VAEs

	Application architecture
	Document/View Architecture
	The View
	The Document

	Overview of classes provided
	OpenGLView
	VAEBuilderView
	VAEBuilderDoc
	HuronTCPWrapper
	VAEHuronSocket
	Sound
	Room
	Door
	Voice
	SpaceBall

	Overview of Huron Terminology
	
	Workspace
	Wave
	Voices
	Communication Channels
	Acoustic Spaces
	Rooms
	Room Segments and Doors
	MIDI Messages

	VRML97
	Definitions used in VRML97
	node
	grouping node
	scene graph
	sensor node
	geometric property node
	geometric sensor node
	geometry node
	interpolator node
	route
	event
	event cascade
	eventIn
	eventOut
	prototype
	scripting language

	VRML Parser
	Relationship between Room file formats used by Lake and VRML nodes

	Prototype sensors

	Possible VAE demos
	Possible Application Areas
	Aural presentation of ordance survey maps.
	Spatial granular synthesis

	Appendix
	External information resources and programs used in the development of VAEBuilder
	Doxygen – a tool for automatically documenting C++ code.
	CVS – a system for version control of source files.
	Python – the object-oriented scripting language
	OpenGL for Windows resources
	Windows Sockets Programming Resources
	Spaceware SDK and the SpaceBall 3-D input device

	Coordinate Systems and Matrix Conventions
	SpaceBall coordinate system
	OpenGL coordinate system
	LakeDSP coordinate system

	Steps for setting up the Dell Dimension XPS R400
	Include and library paths in Visual C++

	Rebuilding the documentation for VAEBuilder
	Brief instructions on using VAEBuilder

