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Abstract

We present a Bayesian clustering algorithm for multivariate time series.
A clustering is regarded as a probabilistic model in which the unknown
auto-correlation structure of a time series is approximated by a first order
Markov Chain and the overall joint distribution of the variables is sim-
plified by conditional independence assumptions. The algorithm searches
for the most probable set of clusters given the data using a entropy-based
heuristic search method. The algorithm is evaluated on a set of multi-
variate time series of propositions produced by the perceptual system of
a mobile robot.
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Multivariate Clustering by Dynamics

1. Introduction

Suppose one has a set of time series generated by one or more unknown processes, and the
processes have characteristic dynamics. Clustering by dynamics is the problem of grouping
time series into clusters so that the elements of each cluster have similar dynamics. Suppose
a batch contains a time series of stride length for every episode in which a person moves on
foot from one place to another. Clustering by dynamics might find clusters corresponding
to “ambling,” “striding,” “running,” and “pushing a shopping cart,” because the dynamics
of stride length are different in these processes. Similarly, cardiac pathologies can be char-
acterized by the patterns of sistolic and diastolic phases; economic states such as recession
can be characterized by the dynamics of economic indicators; syntactic categories can be
categorized by the dynamics of word transitions; sensory inputs of a mobile robot can be
merged to form prototypical representations of the robot’s experiences.

The task of clustering time series can be regarded as the process of finding the partition,
i.e. the set of clusters, best fitting the data according to some criteria. Typically, this task
involves two steps: (1) model each time series to capture its essential dynamical features; (2)
partition the set of time series by clustering. Our approach uses one of the simplest represen-
tations of a time series: a first order Markov chain (MC). A MC assumes that the probability
distribution of a variable at time ¢ is independent of the variable values observed prior to
time ¢ — 1 [Ross, 1996]. Furthermore, we regard the task of finding the best partition of the
data as a statistical model selection process. Smyth [1999] applied this idea to clustering
time series and Sebastiani et al. [1999] devised a Bayesian model-based algorithm to clus-
ter higher-order MmcCs. The algorithm, called Bayesian Clustering by Dynamics (BCD), has
been successfully applied to cognitive robotics [Sebastiani et al., 2000, Cohen et al., 2000],
simulated war games [Sebastiani et al., 1999], behavior of stock exchange indices, and un-
supervised generation of musical compositions. These applications suggest that even a very
simple MC representation of a dynamic process is powerful enough to capture common as-
pects of different time series. Furthermore, an appealing feature of BCD is an entropy-based
heuristic that makes the search over the space of partitions very efficient. In its current for-
mulation, BCD is limited to the univariate case, that is, the algorithm is able to cluster the
behaviors of only one variable at a time. But what if the problem at hand is multivariate,
that is, it is represented by simultaneous time series of several interacting variables? The
assessment of a battlefield situation is done on the basis of several, possibly interacting,
factors, like force ratio, number of engaged units, total forces mass, and so on. Similarly,
a sensory experience of a mobile robot is given by the simultaneous values of several sen-
sors, and the experience itself can be identified by the correlation among subsets of these
variables.

Suppose one wants to cluster a set of multivariate time series of v discrete variables, each
taking ¢ values. The straightforward solution is to convert the problem into a univariate one
by defining a single variable taking as values all combinations of values of the v variables and
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then applying the univariate case algorithm [Sebastiani et al., 1999]. Unfortunately, this
solution is hardly scalable because the number of states of this variable grows exponentially
with the number of the original v variables. The solution we present in this paper is a novel
clustering technique for multivariate time series, called Multivariate Bayesian Clustering by
Dynamics (MBCD). The clustering algorithm is model-based, as it represents a clustering
as a probabilistic model, it is Bayesian, as both the decision of whether grouping McCs
and the stopping criterion are based on the clustering posterior probability, and it uses an
entropy-based heuristic to reduce the search space over a subset of possible partitions. The
clusters of dynamics produced by the algorithm are sets of MCs, which are assumed to be
conditional independent given cluster membership. Thus, they capture dynamics involving
simultaneously all the variables but the conditional independence assumption makes the
algorithmn scalable to large data sets. The algorithm is tested on multivariate time series
of propositions produced by a mobile robot perceptual system and produces clusters which
are significantly different from random clustering and in agreement with human clustering.

2. Theory
Suppose we have a set S = {S1,---, S} of m multivariate time series. Each multivariate
time series Sy is a set of v univariate time series Sk, - -, Sk, recording values of variables

Xi,..., Xy. The multivariate clustering algorithm can be outlined as follows. Given the
m X v univariate time series, construct a MC for each series and replace each of the m
multivariate time series by a set of v Mcs. Rank the m sets of MCs in decreasing order of
distance, merge similar sets of MCs into clusters if the merging increases a scoring metric,
and repeat the procedure until a stopping criterion is met. The first step is the estimation
of a MC from a univariate time series and it is considered next.

2.1 Markov Chains

Suppose that, for a variable X, we observe the time series (zg, 21, %2, ..., Z;—1, Z;, ..), Where
each z; is one of the states 1,...,s of X. The process generating the series is a (first order)
MC if the conditional probability that the variable X visits state j at time ¢, given the
sequence (Zg,Z1,%,...,T¢—1), is only a function of the state visited at time ¢ — 1. Hence,
we write p(X; = j|(zo, z1, %2, ..., t1—1)) = p(Xy = j|z1—1), where X; denotes the variable X
at time ¢, and a MCs is represented by a table P = (p;;) of transition probabilities, where
pij = p(X; = j| X4—1 =) is the probability of visiting state j given the current state .
Given a time series generated from a MC, we might estimate the probabilities of state
transitions (i — j) = X; = j|X;—1 = i from the data as p;; = n;;/ni, where n; = > i
and n;; is the frequency of the transitions (i — j) observed in the time series. Instead we
prefer a Bayesian estimate in which prior information about transition probabilities can be
taken into account. The derivation of this estimate is given in Sebastiani et al. [2000], here



Multivariate Clustering by Dynamics

S X, - X,

S1 Su o Sw

S S Smuv
I

S X, Xy

P P Py

Pm Pml va

Figure 1: The first step of the MBCD algorithm replaces time series Sk, with transition
probability matrices Pyy,.

we simply give the result: The probability p;; is estimated as

Qi + N5 ( 1)
2 Qij + 1
where the so called prior hyper-parameter «;; can be thought of as the prior frequency of
transition (¢ — j), thus encoding prior knowledge about the process. In particular, the
ratio «;j /oy is the prior probability of transition (¢ — j) and p;; is the posterior probability
in the sense of being estimated from prior information «;; and the observed frequency n;;
of transition (i — 7).

Dij =

2.2 Clustering

The first step of the algorithm replaces the original time series by MCs represented by
transition probability tables, as shown in Figure 1. This conversion process transforms each
multivariate time series Sy in S into a set Py of transition probability matrices Py, one for
each variable Xj. We can now cluster the m sets of transition probability matrices.

As in BCD, the MBCD algorithm is agglomerative: it starts by assigning each set of tran-
sition matrices Py to a separate cluster and iteratively merges them until a certain stopping
criterion is met. Merging two sets of matrices P, = (Py1,- -+, Pgy) and P, = (P, -+, Py)
consists of creating a new set C), of transition probability matrices (Pp1,- -, Pyy). The new
cluster will be still a set of v transition matrices and each transition probability matrix P,
in C), is estimated from the cumulative transition frequencies of the variable X};. The MBCD
algorithm does not use a measure of similarity between MCs to decide whether two sets of
MCs belong to the same cluster, neither it relies on a separate stopping rule. Both the
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decision of merging sets and the stopping criterion are based on the posterior probability of
the obtained clustering, that is, the probability of the clustering given the data observed:
Two sets of MCs are merged if the resulting partition has higher posterior probability than
the partition in which these two sets are not merged, and the algorithm stops when no
available merging produces a partition with higher posterior probability. MBCD’s task is to
find a maximum posterior probability partition of sets of McCs. Said in yet another way,
MBCD solves a Bayesian model selection problem, where the model M, it seeks is the most
probable partition given the data. Details are given in the next section.

3. Method

Model selection methods are typically identified by two components: a scoring metrics —
in this case, the posterior probability of a partition — and a search strategy to explore the
space of possible partitions.

3.1 Posterior Probability

The key to the algorithm is the posterior probability of a partition. We regard a partition
of the m sets of MCs into ¢ clusters as a statistical model M., in which each cluster merges
my, sets of MCs. Components of this statistical model are the sets of MCs, a variable C with
states C1, ..., C. denoting cluster membership and a structure of dependency among the McCs
in each cluster C. The variable C is a hidden, discrete variable, as it is not observed in the
set S. The number c of states of C is unknown, but the number m of initial sets imposes
an upper bound, as the number of clusters will be never higher than the number of initial
multivariate time series. For example, if S is given by only two sets of multivariate time
series S1 and Ss, there are only two models describing possible partitions of these data: M;
in which the two sets are merged into one cluster and M, in which the two sets are not
merged. In model M, variable C takes one value while, in model My, C takes two values.

Globally, there are 2 models describing different partitions. We can compute the
posterior probability of these models by Bayes’ Theorem:

_ p(Mc)p(S|Mc)
p(S)

where p(M,) is a partition prior probability and p(S) is the marginal probability of the data,
and we choose the model with maximum posterior probability. Since we are comparing all
models over the same data, p(S) is constant and, for the purpose of maximizing p(M,|S),
it is sufficient to consider p(M.)p(S|M.). Furthermore, if all models are a priori equally
likely, the comparison can be based solely on the marginal likelihood p(S|M.), which is a
measure of how likely the data are if the model M, is true. Reasonable assumptions on
the sample space, the adoption of a particular parameterization for the model M, and the

p(Mc|S)
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specification of a conjugate prior lead to a simple, closed-form expression for the marginal
likelihood p(S|M.) of which the solution presented in Sebastiani et al. [1999] is a special
case for the univariate problem.

Conditional on the model M, and hence on a specification of ¢ clusters of sets of MCs, we
suppose the marginal distribution of the variable C is multinomial, with cell probabilities
pr = p(C = C). Furthermore, we suppose that sets of time series assigned to different
clusters are mutually independent and that, for each cluster Cj, the v MCs generating
the time series assigned to cluster Cj are independent. This last assumption says that,
given cluster membership, the MCs are independent: Once we know the cluster we are
in, the MC describing the dynamics of each variable X} is independent of the dynamics
describing any other variables. Thus, each cluster captures the overall dynamical features
of a set of MCs that can however be treated as independent quantities within clusters. This
assumption produces a simple expression for the probability of the data, given a probabilistic
specification of model M,. If we denote by Py, = (prnij) the transition probability matrix
of the MC for variable X} in cluster Cj, the probability of observing data .S, given the set
of probabilities 6 = (pk, Pknij) is

C v S
p(816) = TT o™ IT 11 peniy
k=1 h=11ij=1
where nyp;; denotes the frequency of transition (i — j) observed in all the time series
generated by the MC with transition probability matrix Py, in cluster C, and my is the
number of sets of time series assigned to cluster Cy. The probability p(S]0) is derived as
follows. The quantity [[7;_, pZZ;’]” is the probability of observing the transition (i — j) with
frequency ngp;; in a time series generated from a MC with transition probability matrix Pyy,.
In other words, Hszl pZZ;’]” is the probability of observing the time series assigned to the
hth component of cluster C;. Since MCs in a cluster C}, are independent, the probability
of the data observed in the whole cluster Cj, is computed as the product JTj_; 17,24 pZZ;’]” .
The joint probability of the data is then computed by simply multiplying these quantity
over all clusters defining the partition M..

Since quantity p(.S|0) is a function of the unknown parameter vector 6, in order to max-
imize the marginal likelihood p(S|M.), we need to average these unknown parameters out
by using prior information. A standard Bayesian solution is to adopt sets of independent
Dirichlet prior distributions with hyper-parameters cyp;j, one Dirichlet for each conditional
distribution (pgsi;);, and one Dirichlet distribution with hyper-parameters 3, for the distri-
bution (py) over the clusters. The hyper-parameters ayyi; and B encode prior knowledge
about the probabilities pyp;; and py in terms of the ratios oypi;/ Zj agnij and Bi/ 3k Br-

With this prior specification, the marginal likelihood p(S|M,) is given by

C(XeBr) 11 D(Be +my)
S LTy

PSIM,) = ¢
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Figure 2: Computation of the similarity measure between two sets of MCs.

H ﬁ H > Qkhij) e T (@i + Tkhig)

k=1 h=1i=1 Zy[o‘kthr”khzy]) = Dlaknig)

where I'(+) is the Gamma function. When v = 1, that is, there is only one variable and S
is a set of univariate time series, p(S|M.) equals the expression of the marginal likelihood
provided by Sebastiani et al. [2000]. Once the a posteriori most likely partition has been
selected, the set of transition probability matrices Py, associated with the cluster Cy can
be estimated as

Qkhij T Nkhij
i lnij + Mkhig]
and the probability of C' = C} can be estimated as

Dkhij =

o Br + my

P =
Yk B t+m

The marginal likelihood is a function of the hyper-parameters oypi; and (. A convenient
choice is to set the initial a = m x [, s,% hyper-parameters ayp;; equal to a/a. In this way,
the specification of the prior hyper-parameters requires only the prior precision «, which
measures the overall confidence in the prior model. An analogous procedure can be applied
to the hyper-parameters [ associated with the prior estimates of py.

3.2 Heuristic Search

The number of possible partitions grows exponentially with the number of multivariate time
series, and a brute force search in the set of partitions would be infeasible. We introduce here
a similarity-based heuristic search. The intuition behind the heuristic is that we have better
chances of increasing the marginal likelihood when we merge similar clusters. Therefore,
if we merge first more similar clusters, we have better chances of reaching the maximum
posterior probability partition sooner.

To implement this method, we need to define a measure of similarity able to guide the
search process. Our approach is sketched in Figure 2. Recall that each set Py is a collection
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of v transition probability matrices Py, one for each variable X;. Transition probability
matrices Pyp and Py, in two sets P, and P, are comparable only when they refer to the same
variable X}, and rows with the same index are probability distributions conditional on the
same event and they are, therefore, comparable. Thus, a measure of similarity between
two sets of MCs can be constructed by evaluating a row-by-row distance between pairs of
comparable transition probability tables Py, and Py, and then by summarizing this row-by-
row distance for all tables. The measure of similarity currently used by MBCD is an average
of the Kullback-Liebler distances between comparable tables so that, by letting pyp;; and
Pini; be the probabilities of transition (1 = j) in Pgp, and Py, the Kullback-Liebler distance
of the two probability distributions in row 7 is Dgipi = 3 Phij 10g(Prnij/pinij)- The average
distance between Py, and Py, is then Dy = Y Dyini/sh, with sp, denoting the number of
states of variable X}, and the overall distance between the two sets S; and S), is >°j, Dyin.

Iteratively, MBCD computes all pairwise distances between sets of transition probability
tables, sorts the generated distances, merges the two closest sets and evaluates the result.
The evaluation asks whether the new model M., in which two sets of MCs are merged, is
more probable than the model M., in which these sets are separated, given data S. If the
probability p(M.|S) is larger than p(M,.4+1]S), MBCD replaces the two sets of MCs with the
cluster resulting from their merging. Then, MBCD updates the set of ordered distances and
repeats the procedure on the reduced set space. If the probability p(M,|S) is not larger than
p(Mc41|S), MBCD tries to merge the second best, the third best, and so on, until no further
merging is possible and, in this case, MBCD returns the most probable partition found so
far. Note that the similarity measure is just used as a heuristic guide for the search process
rather than a grouping criterion.

4. Evaluation

We evaluated the technique four ways. First, we compared the partitions found by MBCD
with those produced by another clustering technique and by a human judge. Second, we
developed a measure of the quality of partitions and showed that MBCD partitions score
significantly higher than random partitions. Third, we examined MBCD partitions by hand
to see whether they make sense. Fourth, we tested MBCD with different values of the prior
precision parameter. In previous work, Schmill et al. [1999] constructed a set of 102 trials
in which a Pioneer 1 robot interacted with objects in its environment, moving toward or
past objects, pushing them, reversing away from them, and so on. Each trial produced two
qualitatively different kinds of multivariate time series: a series of a vector of continuous
values from roughly 40 sensors, and a series of symbolic states. States are lists of symbolic
propositions; for example, ((:STOP :R) (:IS-RED :A) (:IS-OBJECT :A)) is a state in
which the robot is stopped and perceives a red object. Schmill et al. clustered the 102
trials in the data set by hand, and also ran a clustering algorithm based on dynamic time
warping on the sensor time series, and compared the two sets of clusters S7 and S5 as
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follows: For every pair of trials ¢ and j, record an agreement if 1+ and j reside in a single
cluster in S7 and also reside in a single cluster in Ss, or ¢ and j reside in different clusters in
S1 and also reside in a different cluster in S5. The concordance of S; and S, is just the total
number of agreements divided by the total number of pairs of trials. Schmill et al. report
concordances greater than 0.9 in a variety of conditions. We apply the same procedure to
the same set of 102 trials, computing concordances between MBCD and human clustering,
and MBCD and clustering based on dynamic time warping. The results are very good. For
the partition MBCD produces with prior precision equal to one, the concordance between
MBCD’s partition and the human partition is 0.82, and the concordance between MBCD’s
partition and the dynamic time warping partition is 0.81. To test whether these numbers
are significant, we devised a randomization procedure to answer the question, “what is the
expected value of the concordance statistic under the null hypothesis that the trials in a
partition are distributed in random clusters?” Suppose a partition contains ¢ clusters and
each cluster ¢ contains n; trials. A random partition is generated by randomly selecting
(without replacement) trials to construct ¢ clusters of sizes n...n.. The expected value
of the concordance between a partition p and a random partition is easily obtained by
generating a few hundred random partitions r;, recording the concordance between p and
r;, and taking the mean of the resulting distribution of r;. For the partition produced with
prior precision equal to one, the expected value of the concordance with a random partition
is .73, and the standard deviation of the distribution of r; is .004. There is essentially no
chance that a concordance between two partitions greater than .8 could arise if one of the
partitions was random.

Any measure of the quality of a partition must reflect the principle that the similarity
of items within clusters is high relative to the similarity of items in different clusters. MBCD
clusters episodes, so we need a measure of the similarity of episodes, and ideally it should
not be identical to the Kullback-Leibler metric that guides MBCD’s search for partitions,
because by design MBCD performs well according to that metric. Recall that each state in an
episode is a set of propositions (e.g.,((:MOVING-BACKWARD :R) (:IS-RED :A) (:IS-
OBJECT :A)) ). We say a proposition is frequent in an episode if the proposition appears
in at least p% of the episode. Let P; and P, be sets of propositions that are frequent in
episodes 1 and 2, respectively. Then a simple measure of similarity, s = |I28£§H, is the
proportion of propositions frequent in either episode that are frequent in both episodes.
Let §; be the mean s for all pairs of episodes in cluster 4, and let n; be the number of
episodes in that cluster. We want to know whether, for all clusters ¢, s; is significantly
higher that expected under the null hypothesis that MBCD performs no better than an
algorithm that builds clusters by grouping randomly-selected episodes. The hypothesis is
tested for each cluster by a simple randomization procedure: For cluster 4, for ¢ from 1 to
k, select n; episodes at random and calculate s; .. The distribution of £ values of s; . serves
as a sampling distribution of s; under the null hypothesis that clustering is random. The
upper 99th percentile of this distribution, 3; .99 serves as a critical value; if 5; > 5; 9.99, We




Multivariate Clustering by Dynamics

Cluster | Mean Similarity | Critical value
1 .5339 4430
2 4974 4008
3 5780 4070
4 1124 .4540
5 .5526 3741
6 4696 3770
7 .6603 .3980

Table 1: Significance values with prior precision a = 1.

reject the null hypothesis that cluster ¢+ was formed by a random algorithm, with p < .01.
Values of 5; and 5; .99 for a run of MBCD with prior precision o = 1 are shown in Table 1.
All of the results are highly significant, MBCD is performing much better than a random
algorithm.

Qualitatively, the clusters produced by MBCD seem to make sense. Consider the seven
clusters produced with prior precision equal to one. The first involves nine trials in which
the robot moves toward objects A and C, sometimes bumping A, sometimes C. The second
cluster, ten trials, involves the robot moving backwards. In four of these trials, C is the
only object in view; in the other six trials, A becomes visible during the trial (by reversing,
the robot increases the number of objects visible in its view). The third cluster is a bit of
a mess: In all 17 trials, the robot moves forward and object C remains visible throughout.
In ten trials, the robot bumps C; in seven trials, object B becomes visible during the trial;
and in two trials, object A makes an appearance. In cluster 4, the robot moves forward, all
three objects appear, with C in front of B and A appearing late (four trials); or A doesn’t
appear (two trials). In cluster 5, the robot approaches A in each of 24 trials, and bumps
it in 11 trials. Object C enters the picture during 11 trials but disappears before the end
of the trial. Cluster 6 incorporates 18 trials in which the robot is either moving forward
or moving backward with no object in view, as well as three trials in which either A or
C are in view. Cluster 7 also includes forward and backward movement (6 and 9 trials,
respectively) in which object A remains in view, appears, or disappears (3, 3, and 9 trials,
respectively). Finally, we ran MBCD with several values of the prior precision parameter.
Qualitatively, increasing prior precision yields partitions with slightly larger numbers of
clusters; the smallest partition contained seven clusters, the largest, sixteen. However,
episodes that are grouped together under one value of prior precision are overwhelmingly
likely to be grouped together under another: The average concordance of partitions across
different values of prior precision is roughly 0.95.
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5. Related and Future Work

Essential features of the MBCD algorithm are the model used to describe univariate time
series, the intra-cluster structure of dependency, the model-based Bayesian approach to clus-
tering and the heuristic search. These four features together make the algorithm different
from other approaches to clustering multivariate time series.

MBCD uses first order MCs: the simplest model for a time series. More complex models in-
volve the use of k-order MCs [Saul and Jordan, 1999], in which the memory of the time series
is extended to a window of k time steps, or Hidden Markov Models [Rabiner, 1989], in which
hidden variables are introduced to decompose the unknown auto-regressive structure of the
time series into smaller components. MBCD can be easily extended to cluster sets of k-order
MCs by modifying the expression for the marginal likelihood. Clustering multivariate time
series modeled as Hidden Markov Models was considered by Smyth [1997] and future work
will compare this approach with MBCD, to point out when one approach is preferable to the
other. In another approach known as Dynamic Time Warping [Berndt and Clifford, 1996],
a series is stretched and compressed within intervals to make it fit the other as well as
possible. The intuition behind the method is to cluster time series that have similar shapes.
The work has recently been extended by Oates et al. [1999] to cluster time series generated
from sensory inputs of a mobile robot. Our results, although limited to a single applica-
tion, showed agreement between the two clustering methods and we are planning a more
comprehensive comparison.

Closer to our approach is model-based clustering, originally developed by Banfield &
Raftery [1993] to cluster static data and then applied by Smyth [1999] to time series. The
probabilistic model used to represent multivariate clustering and its heuristic search sets
MBCD apart. The rationale of the heuristic search is that merging sets of similar MCs first
should result in better models and increase the posterior probability earlier in the search
process. Although the current implementation of MBCD uses the Kullback-Liebler distance
to build a similarity measure, other distances could be used and we are currently exploring
the effect of replacing the Kullback-Liebler distance with other distance measures.

6. Conclusions

This paper presented the MBCD algorithmn to cluster sets of multivariate time series. The
algorithimn regards a multivariate time series as a set of univariate time series, models each
univariate time series as a MC and clusters sets of MCs using an entropy based heuristic
search and a Bayesian scoring metric. An evaluation on a set of multivariate time series
showed that the algorithm produces clusters which are significantly different from random
clustering and in agreement with human clustering.

10
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