
 1

Beyond Rigid KA Metatools: An Initial Proposal for a KR-
Independent , Adaptive, Customizable, Ontology-based KA Metatool

Yuangui lei, Enrico Motta and John Domingue
Knowledge Media Institute

The Open University
Walton Hall, MK7 6AA

{y.lei, e.motta, J.B.Domingue}@open.ac.uk

ABSTRACT This paper proposes a new
knowledge-acquisition metatool, KRIACO, a
Web-based, Knowledge Representation
Independent, Adaptive, Customizable,
Ontology-based Knowledge Acquisition
Metatool, which aims to overcome sorts of
shortcomings of current knowledge acquisition
metatools. To achieve its goal, KRIACO will
adopt OKBC as an underlying knowledge
representation model to overcome the
restriction caused by a specific knowledge
representation system. It will use an ontology-
driven tool specification approach to specify
the domain and the task models; an interface
ontology and a declarative interface model to
drive the interface design and customization
process; adaptive approach to provide flexible,
adaptive user interfaces. This paper discusses
these approaches in detail and presents the
framework of KRIACO.

KEYWORDS: knowledge acquisition
metatool, interface ontology, declarative
interface model, adaptive user interfaces, user
profile, interface development environment

1. INTRODUCTION

Metalevel tools can support the software
development process by automating the design
of task- and application-specific tools
[Eriksson et al., 1994a]. The main idea is to
generate knowledge acquisition tools from
knowledge of either a domain, a problem
solving method or a software architecture
automatically rather than constructing
knowledge acquisition tools from scratch, a
costly and time consuming process.

Research in this area is getting mature, and
several metatools have been developed and put
into use successfully: Protégé-I [Musen, 1989];
SIS [Kawaguchi et al., 1991]; Spark [Marques
et al., 1992]; DOTS [Eriksson, 1993]; DASH
(PROTÉGÉ II) [Eriksson et al., 1994a];
Protégé2000 [Grosso et al.,1999] and
KNOTES [Domingue & Motta, 2000] etc.

[Eriksson et al., 1994b] has identified three
approaches in knowledge acquisition tools
specification and generation.

• The Method-oriented approach uses the
specification of a problem-solving method
as the basis for the tool generation.

• The architectural approach uses an
architectural model of the target tool as
the basis for the tool specification.

• The Ontology-based approach generates a
knowledge-acquisition tool from ontology
by mapping ontology definitions to user
interface elements

Protégé-I [Musen, 1989] and Spark [Marques
et al., 1992] fall in the first category. DOTS
[Eriksson, 1993] and SIS [Kawaguchi et al.,
1991] have used the second approach. Protégé
2000 [Grosso et al., 1999], KNOTES
[Domingue & Motta, 2000] and Protégé-II
(DASH) [Eriksson et al., 1994a] have adopted
the third method. Although these tools have
achieved great success of providing effective
tool support with a minimal tool development
effort to generate knowledge-acquisition tools,
there exist sorts of restrictions to limit their
usability and reusability:
• Knowledge Representation Restriction --

The underlying knowledge representation
language normally plays an important role
in knowledge acquisition metatools. Its
interoperability and compatibility with
other modelling framework influence the
usability and reusability of such tools
greatly. All tools mentioned above suffer
the knowledge representation limits except
Protégé 2000 which adopts the OKBC
[Chaudhri et al., 1998] knowledge model
as its underlying knowledge model. Other
tools work only with a single specific
knowledge representation system. For
example, KNOTES [Domingue and
Motta, 2000] developed in OCML [Motta,
1999] can’t be used to generate knowledge
acquisition tools for ontology which is not
compatible with OCML.

• Tool Specification Approach Restriction –
The tool specification approach influences
the usability and reusability of metatools
greatly. The drawback of traditional
method-specific approaches is that the
metatool is coupled to a specific problem-
solving method [Eriksson et al., 1994c].
Architectural specification approach is

 2

more generic, but usefully in a problem,
given that they require detailed
information about the target interface.
Protégé-I [Musen, 1989] and Spark
[Marques et al., 1992] use a method-
oriented approach to specify the target
tools. DOTS [Eriksson, 1993] and SIS
[Kawaguchi et al., 1991] uses the
architectural approach.

• Lack of Interface Adaptability – Some
knowledge acquisition metatools provide
customization facilities for users to
customize interfaces such as Protégé 2000
[Grosso et al., 1999] and Protégé II
[Eriksson et al., 1994a]. But none has been
reported to provide support of adapting
interfaces to users’ tasks and their
preferences according to their interaction
history with systems. On one hand,
different users may need to acquire
different knowledge aspects during
constructing a knowledge base, especially
when the knowledge base is in large scale.
So it would be more effective if a system
can hide or fold interfaces which are
irrelevant with a user’s task, and then help
the user to concentrate on his or her task.
The user’s task can be obtained
dynamically by analyzing his or her
interaction history with the system. On the
other hand, the interface customization is
a non-trivial task. Users may not want to
customize every interface manually. But
these knowledge acquisition metatools
don’t have facilities to help users to
relieve the burden.

To overcome above shortcomings, this paper
proposes a new kind of knowledge-acquisition
metatool KRIACO, a web-based, knowledge
representation independent, adaptive ontology-
based knowledge acquisition metatool.
Comparing to existing metatools, its strength
lies in four following aspects:
• Web-based – KRIACO will be distributed

on WWW, so it possesses the cross-
platform feature.

• Knowledge Representation Independent
– To overcome the restriction caused by
specific knowledge representation
systems, KRIACO will adopt OKBC
[Chaudhri et al., 1998] as underlying
knowledge representation model. OKBC
(Open Knowledge Base Connectivity) is
an application programming interface for
Knowledge Representation Systems.
Knowledge Base tools can manipulate
most of Knowledge Representation
models through OKBC. By using OKBC
model, KRIACO can be used on different

Knowledge Representation Systems. It
will not be limited to a specific
Knowledge Representation System.

• Adaptive and customizable – According
to tasks of knowledge acquisition
metatools, user-adaptive systems can be
much more effective than non-adaptive
systems. KRIACO will provide adaptive
facilities to help users to tailor interfaces
automatically and concentrate their
focuses on their specific knowledge
acquisition tasks. Customization provides
tools for users to set up their preferable
interfaces. Adaptive and customizable
features will distinguish KRIACO from
current knowledge acquisition metatools.
It will be more effective and easier to use
than current metatools.

• Ontology-based – KRIACO is a
knowledge acquisition metatool based on
application ontology and interface
ontology. An Application ontology
specifies a domain model and a task
model. Interface ontology defines
conceptions, prototype and guidelines of
interface development. The using of both
ontologies will enable KRIACO to be
much more reusable than any other
metatools.

The rest of this paper is organized as follows:
Section 2 describes approaches that will be
used on developing KRIACO. Section 3
introduces the framework of KRIACO. Section
4 describes key issues in developing KRIACO.

2. APPROACHES

To achieve its goals, KRIACO will use
following approaches:

Adopting Open Knowledge Representation
model as its underlying knowledge model.
OKBC [Chaudhri et al., 1998] is a kind of
open knowledge representation model. It
serves as a generic access and manipulation
layer for knowledge representation systems.
Knowledge Base Tools can manipulate
different knowledge representation models
through OKBC. Using OKBC as its underlying
knowledge model, KRIACO will realize its
independence of any specific knowledge
representation system as much as possible.

Ontology-driven specification approach to
mapping the interface from ontology. This
approach has been used in Protégé-II [Eriksson
et al., 1994a], Protégé-2000 [Grosso et al.,
1999] and KNOTES [Domingue & Motta,
2000] successfully. The basic idea for tool
generation from ontologies is that a metatool
can map the data types of slots in a class

 3

definition to user-interface components of the
knowledge-acquisition tool [Eriksson et al.,
1994c]. The main advantage of this approach
is that the metatool developed for one domain
can easily be used on another domain. And
domain experts and users can generate
knowledge acquisition tools with no demand
of knowledge engineers involving. Although
the basic idea of this approach is relatively
simple, there are many fundamentals and
technical problems that must be addressed
before generating knowledge-acquisition tools.
• Analysing ontology, identifying class

definition and class relationship
• Mapping interface structure from ontology

class definition which determines the
navigation method of knowledge
browsing, editing and maintaining. The
metatool must analyse the ontology and
then create a high-level design of the
target tool.

• Generating details of each graphic form
from slots of each class. In DASH
[Eriksson et al., 1994a], the first mapping
problem is solved by dialogue structure
designer which creates an abstract
description of the editors in the
knowledge-acquisition tool and their
relationships. The layout designer solves
the second mapping problem.

Interface ontology or interface model to drive
the interface design process [Puerta et al.,
1994]. This approach borrows the idea of using
a declarative interface model to drive the
interface development process from the model-
based interface development approach. In
which, interfaces are automatically generated
from a declarative specification that describes
the tasks users need to perform, the content,
the structure and layout of displays, and the
role that display elements play in user’s tasks
[Szekely et al., 1995].

Literature review on model-based interface
development has been undertaken in [Puerta
and Szekely, 1994] and [Szekely, 1996].
Although the research on this area is getting
mature, none such software environment has
proposed and defined interface ontology
explicitly.

Though interface ontology is a relatively new
concept, the idea has been used in some
model-based interface development
environments implicitly. HUMONOID has
presentation templates to model the
characteristics of display elements [Szekely et
al., 1993]. MASTERMIND has a model
library which contains a wide variety of
presentation [Castells et al., 1997]. MOBI-D

uses additional knowledge bases about design
guidelines and principles to operate on the
interface model or to advise the developer
[Puerta, 1997].

Interface ontology defines the basic and
sharable conceptions of relevant knowledge of
interface design and development. It serves as
an interface knowledge base to provides data
presentation guidelines for interface
generation. For example, Boolean data type
can have presentation of check-box widget or
radio-button widget. The advantages of using
this approach are:
• It conceptualises interface design

knowledge, provide explicit interface
knowledge base for interface generation.

• It helps to standardise interface generation
and customisation process.

• It maximises the reusability of KRIACO.
• The declarative interface model which is

generated by instantiating interface
ontology gives end users maximum
flexibility to customise interface.

Adaptive interface approach to tailoring user
interfaces to users’ needs and preferences. This
approach has been used in intelligent tutoring
systems and adaptive education systems
successfully. Several web-based adaptive
systems have been developed and used, such
as AHA [Bra and Calvi, 1998], AHM [Silva et
al., 1998], TANGOW [Carro et al., 1999] and
ADAPT [Brusilovsky and Cooper, 1999] etc.
At the same time numerous tool systems
emerged during the last few years that aim at
assisting companies in developing and
deploying personalized web sites [Fink and
Koba, 2000]. The idea of this approach is
exploring a user model to adapt interfaces. The
user model is generated and updated
dynamically during the process of a user’s
interaction with software systems. It records a
user’s information including knowledge
background, tasks and preferences etc. There
are two major benefits of using this approach
to develop KRIACO:
(1) This approach will relieve the heavy

burden of customizing a number of
interfaces of knowledge acquisition tools
from the end user. It is a non-trivial task
for users to customize every interface of
knowledge acquisition tools to their needs
and preferences. This approach can record
a user profile about a user’s preferences
and needs during his or her customization
processes, and then system can adapt other
interfaces automatically based on the user
profile.

(2) This approach will help a user to
concentrate on his tasks. Besides user’s

 4

preferences and needs, the user model can
also record user’s task during his
knowledge acquiring process. After
several times interaction, system will
assume the user’s main tasks, and hiding
interfaces which are irrelevant to these
tasks.

Although the idea of using a user model to
adapt interfaces in KRIACO is the same with
existing adaptive systems, the practical
problems are quite different. First, the user
model is different. Adaptive systems in ITS
and AES mainly record a user’s knowledge
level about concepts or subjects during user’s
learning process. In KRIACO, the user model
will contain a user’s preferences recorded
during the user’s customization processes, and
a user’s tasks acquired by monitoring his or
her knowledge acquisition processes. Second,
adaptive technology is quite different. Most of
existing web-based adaptive systems narrowly
focus on the web-page content adaptation and
the navigation adaptation. But KRIACO’s
approach targets on software application
adaptation. Research on software application
adaptation and user modelling has been
undertaken for many years. UIDE [Sukaviriya
and Foley, 1993] supports adaptive interface
and adaptive help. MOBI-D [Puerta, 1997]
applies an adaptive algorithm to automated
user interface design within its framework.
User modelling has been reviewed in [Kobsa,
2000]. Thus, KRIACO adaptive interface
approach will combine the traditional software
application adaptation approach, traditional
user modelling approach and current web-
based adaptive systems approach to achieve its
target.

Component-Based Software Development
Approach -- The idea is to create reusable
software components which can be plugged in
the applications dynamically and flexibly by
using Java and JavaBeans OO programming
technology.

3. FRAMEWORK OF KRIACO

According to [Puerta et al, 1994], the
necessary tasks of knowledge acquisition tools
need to possess are:
• Visaulization and browsing of existing

knowledge. Users must have some means
of browsing knowledge, both ontologies
and instances.

• Editing and review of knowledge. The
maintenance function of knowledge base
is crucial to knowledge acquisition tool.
Users can input, edit, delete knowledge
(class instantiation) very easily.

• Search and retrieval of specific parts of
the knowledge base. Knowledge
acquisition systems must allow users to
search and retrieve information stored in
the knowledge base.

Like other metatools, the aim of KRIACO is to
generate knowledge acquisition tools
possessing above functions. Its approach
outlines the framework of KRIACO (Figure
3.1).

Application Ontology represents domain
ontology and problem solving ontology. It
serves as input of Automatic Interface Mapper
through OKBC to specify domain and task
model for KRIACO.

Interface Ontology defines user interface
concepts and design guidelines including
widget prototypes, form prototypes, navigation
structure concepts and data-widgets mapping
rules. It performs as an interface mapping
knowledge base for Automatic Interface
Mapper. The high level of hierarchy of the
interface ontology can be shown in Figure 3.2.
The top hierarchy of the interface ontology
contains navigation class, form class, widget
class and widget guidelines:

Automatic Interface Mapper

Interface Editor

Runtime System

Declarative
Interface
Model

KA tool User
Profile

Adaptive Engine

Application
Ontology

Interface
Ontology

OKBC

Figure 3.1 Framework of KRIACO

 5

• Navigation class models knowledge
navigation structure in knowledge
acquisition tools. Application ontology is
made up of lots of classes with different
hierarchy structure, users need to navigate
from one class to another. So navigation
structure is backbone of knowledge
acquisition tools.

• Form class models form specifications
including form task, appearance and its
widgets. Form tasks contain
input/edit/search knowledge. Form
appearance defines the visual appearance.

• Widget class defines widget elements in
form.

• Widget guideline models widget mapping
guidelines from data type. It provides
information for the system mapping
widgets from slots.

A Declarative user interface model is an
expressive user interface specification. It is
actually an instantiation of the interface
ontology. This model works as input of the
Runtime System and the Interface Editor.
Users can modify this model by manipulating
the interface customization tool, the Interface
Editor.

A User profile records a user’s personal
information such as name, password etc., user
preferences, tasks and interaction history. It is
updated every time the same user interacts
with the system. It provides information for
Adaptive Engine to perform adaptive analyses
and actions.

The Automatic Interface Mapper aims to
generate user interface model from application
ontology and interface ontology automatically.
It has two components: knowledge navigation
mapper which generates knowledge navigation
structure from application ontology, and layout
mapper which is responsible for mapping
widgets and calculating layout from
application ontology slots and interface
ontology.

The Runtime System is responsible for
generating a Knowledge Acquisition tool from
a declarative interface model. It performs as
the entrance of KRIACO. When KRIACO is
run for the first time, it will turn to Automatic
Interface Mapper automatically. Otherwise the
Runtime System will generate a KA tool from
the declarative interface model.

The KA tool is the target tool KRIACO need
to generate. Besides the knowledge acquisition
tasks it should complete, it also need to
support following activities: (1) provide
facilities to record and update user profile
dynamically. (2) receive information from the
Adaptive Engine and perform adaptive actions.
(3) provide support for users to convert to the
Interface Editor.

The Interface Editor provides support for end
users to customize the KA tool interfaces.
Furthermore, it receives information from the

Figure 3.2 High Level Hierarchy of Interface Ontology

Visual Appearance

Position

Color

Font

Size

Available Widgets List

Widget Guideline

Data Type

Default Widget

Form Class

Form Name

Form ID
Task Type

Class Name

Parameter

Visual Appearance

Widget Class

Task

Widget Class

Widget Name
Widget ID

Slot Name
Class Name

Data Type

Widget Type

Widget guideline

Value

Visual Appearance

Navigation Class
Navigation Style

Class Name

Form ID

Prior Class

Next Class

Structure

Interface

Navigation Class

Widget Class

Widget Guidelines

Form Class

 6

Adaptive Engine and performs most of
customization works for users automatically.

The Adaptive Engine performs to monitor
users’ interactions with the KRIACO, record
information to user profile, analyse user profile
and send adaptive information to the KA tool
or the Interface Editor. The adaptive
information sending to the KA tool includes a
user’s tasks and relevant information. The
adaptive information sending to the Interface
Editor mainly contains a user’s preferences
about interfaces.

KRIACO is an integrated development system.
It integrates the Automatic Interface Mapper,
the Interface Editor, the Adaptive Engine and
the Runtime System together. The whole
system including application ontology,
interface ontology, declarative user interface
model, user profile and all applications are
stored on a server.

There are three scenarios for users to start
KRIACO:
1. The KRIACO is used for the first time.

There doesn’t exist any declarative
interface model and user profile. When
user start KRIACO, the Runtime System
will start the Automatic Interface Mapper,
generate a default declarative interface
model, and then it will generate a KA tool.
At the same time, the adaptive engine will
create a new user profile for the current
user to record user information.

2. The KRIACO is not used for the first
time. But the user is new. The KRIACO
Runtime System will generate a KA tool
automatically from the default interface
model which is created at the first time
when KRIACO is run. At the same time,
the adaptive engine will create a new user
profile to record the user information.

3. An old user starts KRIACO. First, the
Runtime System will search the user’s
declarative interface model. At the same
time, the Adaptive Engine will analyse the
current user’s profile and provide adaptive
information to the Runtime System. Then
the Runtime System will generate a KA
tool.

4. CONCLUSIONS

KRIACO is a new knowledge acquisition
metatool proposed to address shortcomings in
current knowledge acquisition metatools. It
will explore following approaches to achieve
its goal:
• Adopting OKBC as its underlying

knowledge model will enable KRIACO to
be independent of any specific knowledge
representation system.

• Ontology-driven tool specification
approach gives KRIACO maximum
independence from application ontology.
KRIACO can be used on different domain
easily.

• Sharing interface ontology approach gives
end user maximum flexibility to
customize user interfaces.

• Adaptive interface approach will make
KRIACO much easier to use than current
knowledge acquisition tools. First it helps
users to customize interfaces
automatically during knowledge
acquisition tools construction process.
Second, it will help users to concentrate
their focuses on their main tasks by hiding
or folding irrelevant interfaces.

Above all, KRIACO is proposed to be much
easier to use, more generic and provide more
support for end users than current knowledge
acquisition metatools. It will involve study on
area of software specification, interface
development, open knowledge representation
model, adaptive interfaces and user profile.
The key issues in developing KRIACO
involves:
• Developing user interface ontology and

guidelines from literature.
• Developing automatic interface mapper

tool for mapping user interface from
interface ontology and application
ontology

• Developing interface editor tool for
editing user interface by end users.

• Developing efficient adaptive engine to
adapt user interfaces.

• Developing runtime system for generating
knowledge acquisition tools

REFERENCES

[Bra and Calvi, 1998] Paul De Bra, Licia
Calvi, AHA! An open Adaptive Hypermedia
Architecture, The New Review of Hypermedia
and Multimedia, Vol 4, pp 115-139, 1998.
[Brusilovsky et al., 1996] Brusilovsky, P.,
Schwarz, E., and Weber, G, A Tool for
Developing Adaptive Electronic Textbooks on
WWW. In Proceedings of WebNet'96 - World
Conference of the Web Society, October 16-19,
1996. San Francisco, CA, AACE. - pp. 64-69.
[Brusilovsky & Cooper, 1999] Peter
Brusilovsky, and David W. Cooper, ADAPTS:
Adaptive hypermedia for a Web-based
performance support system, In Proceedings of
the 2nd Workshop on Adaptive Systems and
User Modellng on the WWW, 1999.
[Carro et al., 1999] Rosa María Carro,
Estrella Pulido, and Pilar Rodríguez,
TANGOW: Task-based Adaptive learNer

 7

Guidance On the WWW, In Proceedings of the
2nd Workshop on Adaptive Systems and User
Modeling on the WWW.
[Castells et al., 1997] Pablo Castells, Pedro
Szekely, and Ewald Salcher, Declarative
Models of Presentation, In proceedings of the
1997 International Conference on Intelligent
User Interfaces, January 6-9, 1997, Orlando,
FL USA, PP 137-144.
[Chaudhri et al., 1998] Vinay K. Chaudhri,
Adam Farquhar, Richard Fikes, Peter D. Karp,
and James P. R ice, OKBC: A Programmatic
Foundation for Knowledge Base
Interoperability, In Proceedings of AAAI-98,
July 26-30,1998, pp. 600-607
[Domingue and Motta, 2000] John Domingue
and Enrico Motta, PlanetOnto: From News
Publishing to Integrated Knowledge
Management Support, Intelligent system,
MAY/JUNE, 2000, P 26-32
[Eriksson, 1993] H.Eriksson, Specification
and Generation of Custom-Tailored
Knowledge-Acquisition Tools. July 1993,
http://smi-
web.stanford.edu/pubs/SMI_Abstracts/SMI-93-
0490.html
[Eriksson et al., 1994a] Henrik Eriksson,
Angel R. Puerta, and Mark A. Musen,
Generation of Knowledge-Acquisition Tools
from Domain Ontologies. Int. J. Human-
Computer Studies (1994) 41, 425-453
[Eriksson et al., 1994b] Henrik Eriksson,
Angel R. Puerta, Joh H. Gennari, Thomas
E.Rothenfluh, Samson W. Tu, and Mark A.
Musen, Custom-Tailored Development Tool
for Knowledge-Based Systems, Knowledge
Systems Laboratory, Medical Computer
Science, January 1994.
[Eriksson et al., 1994c] Henrik Eriksson,
Angel R. Puerta, and Mark A. Musen,
Generation of Knowledge-Acquisition Tools
from Domain Ontologies. Int. J. Human-
Computer Studies (1994) 41, 425-453
[Fink and Koba, 2000] Josef Fink and Alfred
Koba, A Review and Analysis of Commercial
User Modeling Servers for Personalization on
the World Wide Web, User Modeling and
User-Adapted Interaction 10: 209-249, 2000.
[Grosso et al., 1999] William E.Grosso,
Henrick Eriksson. Ray W. Fergerson, Johh H.
Gennari, Samson W. Tu, and Mark A. Musen,
Knowledge Modelling at the Millennium, In
Proc. the 12th International Workshop on
Knowledge Acquisition, Modeling and
Management (KAW’99) Banff, Canada,
October 1999, http://smiweb.
stanford.edu/pubs/SMI_Abstracts/SMI-1999-
0801.html.
[Kawaguchi et al., 1991] Atuso Kawaguchi,
Hiroshi Motoda, and Riichiro Mizoguchi.

Interview-based knowledge acquisition using
dynamic analysis. IEEE Expert, 6(5) pp. 47-
60, 1991
[Kobsa, 2000] Alfred Kobsa, Generic User
Modeling Systems, To be appear in User
Modeling and User-Adapted Interaction, Ten
Year Anniversary Issue, 2000.
[Marques et al, 1992] David Marques,
Geoffroy Dallemange, Georg Klinker, John
McDermott, and David Tung. Easy
programming; Empowering people to build
their own applications, IEEE Expert, 7(3) pp
16-29, 1992.
[Motta, 1999] Motta E., Reusable
Components of Knowledge Modelling: Case
Studies in Parametric Design Problem Solving,
IOS Press, Amsterdam, 1999.
[Motta et al., 2000] Enrico Motta, Simon
Buchingham Shum, and John Domingue,
Ontology-driven document enrichment:
princilpes, tools and applications, Int. J.
Human-Computer Studies (2000) 52, 107-
1109.
[Musen, 1989] Mark A. Musen, Automated
support for building and extending expert
models. Machine Learning, 4:349-377, 1989.
[Puerta et al, 1994] Angel R. Puerta, Robert
Neches, Henrik Eriksson, Pedro Szekely, Ping
Luo, and Mark A. Musen, Toward Ontology-
Based Frameworks for Knowledge-
Acquisition Tools, Proceedings of the 8TH
Banff Knowledge Acquisition For Knowledge-
Based Systems Workshop, shareable and
resuable ontologies, shareable and reusable
problem-solving methods, Banff, Canada,
January 30 – February 4, 1994, pp26-1 – 26-
14.
[Puerta and Szekely, 1994] Angel Puerta and
Pedro Szekely, Model-Based Interface
Development, In Proceedings of the CHI’94
Conference Companion on Human factors in
Computing Systems, 1994, pp. 389-390.
[Puerta, 1997] Angel R. Puerta, A model-
Based Interface Development Environment,
IEEE Software 14(4): 40-47 (1997).
[Peuerta & Eisentein, 1999] Angel Peuerta
and Jacob Eisenstein, Toward a General
Computational Framework for Model-Based
Interface Development Systems, Proceedings
of the 1999 International Conference on
Intelligent user Interfaces, 1999, pp. 171-178.
[Silva et al., 1998] Denise Pilar da Silva,
Rafaël Van Durm, Erik Duval, and Henk
Olivié, Concepts and documents for adaptive
educational hypermedia: a model and a
prototype, In Proceedings of the 2nd
Workshop on Adaptive Hypertext and
Hypermedia HYPERTEXT'98, Pittsburgh,
USA, June 20-24, 1998

 8

[Sukaviriya and Foley, 1993] Piyawadee
“Noi” Sukaviriya, and James D. Foley,
Supporting Adaptive Interfaces in a
Knowledge-Based User Interface
Environment, In Proceedings of the
International Workshop on Intelligent User
Interfaces, 1993, pp. 107-113.
[Szekely et al., 1993] Pedro Szekely, Ping Luo
and Robert Neches, Beyond Interface Builders:
Model-Based Interface Tools, Proceedings on
Human factors in Computing System, April,
1993, pp. 383-390.
[Szekely et al., 1995] P.Szekely, P.Sukaviriya,
P.Castells, J.Muthukumarasamy,and E.Salcher,
Declarative interface models for user interface
construction tools: the MASTERMIND
approach, In Proc. EHCI’95, 1995.
[Szekely, 1996] Pedro Szekely, Retrospective
and Challenges for Model-Based Interface
Development, In Proceedings CADUI’96,
Computer-Aided Design of User Interfaces,
Eurographics, Belgium, June, 1996.

