
Literature Review

Page 1

KMi Technical Report

Knowledge Media Institute
Intelligent scheduling - A Literature Review

Dnyanesh Gajanan Rajpathak
Knowledge Media Institute

The Open University,
Walton Hall, Milton Keynes,

MK7 6AA, UK

KMI-TR-119

August- 2001

Literature Review

Page 2

Table of Contents

1. Introduction 4

2. Differentiating between Planning and Scheduling: A Comparative Study 5

2.1 Planning 5

2.1.1 Classical Planning Paradigm 7

2.1.2 Hierarchical Task Network 7

2.1.3 Decision-theoretic Planning 8

2.2 Scheduling 9

2.3 Time in Scheduling 15

3. Intelligent Scheduling 18

3.1 Various Techniques for Scheduling Problem 19

3.1.1 Heuristic Scheduling Approach 19

3.1.2 Constraint-Based Scheduling 19

3.1.3 Fuzzy-Approaches for Scheduling 20

3.1.4 Neural Network Approach for Scheduling 20

3.1.5 Iterative Improvement Techniques for Scheduling 21

3.1.6 Distributed Scheduling 21

3.1.7 Meta Scheduling 22

3.2 Intelligent Scheduling Systems 22

3.2.1 ISIS 23

3.2.2 OPIS 24

3.2.3 SONIA 25

3.2.4 YAMS 26

3.2.5 FlyPast 27

3.2.6 S2 28

3.2.7 DAS 29

3.2.8 REDS2 29

3.2.9 ESCALAS 30

3.3 Summary so far 31

4. Knowledge (level)- Acquisition, Sharing and Reusability – a new trend 32

4.1 Introduction 32

4.2 Ontology: A Way to enhance Knowledge Sharing and Reusability 33

4.2.1 The Types of Ontologies 34

4.3 The Languages and Environments for Ontology Building 36

4.4 Problem-Solving Methods 38

Literature Review

Page 3

4.5 Knowledge Modelling Frameworks 41

4.5.1 KADS to CommonKADS a Journey of a Decade 42

4.5.2 Generic Tasks 44

4.5.3 Components of Expertise 46

4.5.4 Role-Limiting Methods 47

4.5.5 Protégé 48

4.5.6 Task/Method/Domain/Application Modelling Framework 49

4.6 Summary so far 50

5. Existing Task Ontologies for Scheduling 51

5.1 Job-Assignment Task Ontology 51

5.2 MULTIS Task Ontology 52

5.3 OZONE Ontology for Scheduling 53

6. The Libraries of Problem-Solving Methods for Scheduling 54

6.1 Hori and Yashida’s Domain-Oriented Library for Scheduling 55

6.2 CommonKADS Library of Assignment and Scheduling 56

6.3 Le Pape’s Library of Resource-Constraint Scheduling (ILOG) 57

7. Discussion and Summary 58

References 60

Literature Review

Page 4

1. Introduction

The literature review builds the initial foundation in understanding the domain of our interest,

i.e. knowledge-intensive approach to the intelligent scheduling. In order to comprehend the

nature of scheduling problem it is equally important to know the planning paradigm which

goes hand in hand with the scheduling problem.

Usually, the scheduling problem comes in a variety of flavours and hence it is vital to know

the development of various aspects that are involved in constructing a good schedule. In

generic terms the scheduling deals with the temporal assignment of jobs to the resources

within the given time framework while maintaining the various constraints. The nature of the

components involved in a schedule exhibits quite complicated inter-relation with each other.

At the same time a good schedule can be seen as a key to success in variety of applications

such as, manufacturing, resource allocation, project management etc. And it makes the

scheduling problem very interesting to deal with.

The proposed literature review is outlined as follows. In the next section we will analytically

compare the two main paradigms such as, planning and scheduling. During which we will try

to find out the similarities and differences between them. In section 3, first we will look at

the various techniques that can be applicable for dealing with the scheduling problem and

then we present the most influential intelligent scheduling systems developed over the period

of last two decades or so. In section 4, we present the various aspects in the field of

knowledge-based engineering during which first we will acquaint ourselves with the basic

notions in the field of knowledge engineering and then focus on the area of interest such as

knowledge acquisition as a knowledge modelling. As a part of this section we are interesting

in looking at the most influential knowledge modelling frameworks that are developed over

the period of last two decades or so. In section 5, we will review the current status of the task

ontologies that are developed exclusively for the scheduling task. In section 6, the main focus

of the review will be on the libraries of problem solving methods developed for the

scheduling task. As the ultimate aim of our research is to develop the library of problem

solving methods for scheduling, and so this part of the research will be helpful in

understanding the current status of the field. In section 7, we conclude the literature review

along with the general discussion.

In sum the literature review will be helpful in making us aware of the current status of the

research in the field of scheduling.

Literature Review

Page 5

2. Differentiating between Planning and Scheduling – A Comparative Study

In this section we will analytically compare the two major paradigms of interest such as,

planning and scheduling. The main purpose of this comparative study is first to establish the

clear-cut distinction between planning and scheduling paradigms. After that we will analyse

how these two paradigms are complementary to each other. During this part we are mainly

interested in looking at the theoretical aspects of these two domains.

2.1 Planning

Nearly, over last 30 years or so much of the work have been done on planning which falls

mainly into the category of what is called as classical planning paradigm. If we open any

book on Artificial Intelligence one can find that at least one chapter is talking about planning,

as it is one of the thoroughly studied area in AI. Still, it is difficult to find the succinct

definition of planning, independently of the particular formalism of application. One can

define a pure planning task by looking from the different viewpoints according to its

applicability in the related fields.

“Planning is a task of finding a sequence of actions that will transfer the initial world into one

in which the goal description is true.” [3]

“The AI planning problem is to find the sequence of actions that will take the planning world

from a defined initial condition to a given goal state.” [73]

“The planning can be seen as a sequence of actions generator which are restricted by

constraints describing the limitations on the world under view.” [7]

There is another perspective looking at the planning task, which is somewhat different from

the traditional viewpoints and which is analysing the planning task as a design or synthesis

activity.

“Planning as the process of devising, designing or formulating something to be done, such as

the arrangements of the parts of a thing or an action or proceedings to be carried out.”[91]

Even though one can find that there is an overwhelming work has been done in planning

research area these viewpoints often seems to differ from one other. Looking from the

various definitions mentioned above there are few conclusions that can be drawn in order to

characterise the nature of a planning task.

A) The planning a task is one in which one is mainly concern about generating the sequence

of actions such that the required goal of the problem can be attained.

B) The generated actions are often restricted by the various types of constraints that limit the

space of possible solutions.

C) The planning task can be seen as a synthesis activity in which the possible actions that

compose the plan are known, but the time factor that determines the order or

dependencies between possible actions are unknown.

Literature Review

Page 6

PLANNINGObjectivesDemand

External
World

Partial order of task

Task
Generator

What should I do?

D) Planning task normally emphasis towards achieving the feasibility aspect of the generated

actions. [3, 29]. From the traditional viewpoint the main purpose of the planning task is

to achieve the final goal and the time it takes to attain the goal is absent or somewhat a

secondary issue. For example, one of the sample problems of the planning task is the

famous monkey and banana problem in which the monkey has to get hold of the banana

hanging in the middle of the room. The banana is high enough, as monkey can not reach

there and has various other alternatives to reach the banana. Well, now the major goal of

the problem is that the monkey finally gets hold of the banana and the main concern is to

reduce the number of moves in which the monkey does it. The time it takes for the

monkey to get hold of banana is irrelevant in this respect. The feasibility aspect of the

problem is to reduce the number of moves of the monkey for getting hold of a banana.

Figure 1, depicts the planning task in its purest form in which planning takes the input from

the external world based on some requirements or criteria and generates the sequence of

actions so that the need from the external world is satisfied. In the figure the demands can

either come from the marketing department describing the need of the market or directly from

the customer, demanding the feasible plan that will fulfil the requirements of particular

scenario. The main objective is to transfer these demands into rough plan to meet the

demands. Then during the actual planning task the flow or sequence of actions is specified,

which if carried out the demand in hand can be satisfied. Speaking more formally, it

describes the transition from the initial state of the world to the goal state where demands are

fulfilled.

Figure 1. The overview of a planning task.

There are three major categories in which the planning task can be classified such as Classical

planning paradigm, Hierarchical Task Network (HTN) planning and Decision-theoretical

planning [110]. In the following subsections we will briefly review each of these planning

systems.

Literature Review

Page 7

2.1.2 Classical Planning Paradigm

In the classical planning, the main problem can be characterised in terms of achieving the

given set of goals. The goal states are usually specified as a set of positive and negative

literals in the propositional calculus. The given description of the set of world in the initial

state is referred to as initial conditions, that expresses the initial state and is also expressed as

a set of literals. The probable actions are characterised by using what is called as a STRIPS

operator and algorithms in order to transform the states of the world [38] and this lies at the

core of many planning problems. Most of the classical planning work has focussed on

constructing the plans by searching backwards from the goal state where the goal state to be

achieved is known beforehand. Usually, a STRIPS operator is seen as a parameterised

template for all such set of possible actions. This could contain the set of preconditions that

must be satisfied before a particular action can be executed and a set of changes or effects that

the action will have on the world. Both the preconditions and effects can be positive or

negative literals. However, a number of recent planning systems used the extended version of

STRIPS language known as ADL [94]. Despite the fact that STRIPS and ADL has been used

widely in the AI planning community over the period of time some serious limitations have

been identified for their representations that are given in the following bullet points.

• Atomic Time. There is no explicit model of time in the representation. One can neither

specify the duration of an action nor the constraints on either goals or actions.

• Resources. There is no provision for specifying the resource consumption or

requirements for the execution of particular action.

• Uncertainty. There is no ability to model the uncertainty in the world under specific

considerations. In other words it does not hold any accountability to handle the ‘what-if’

scenario while executing the classical planning paradigm.

• Goals. The only types of the alternative that can be specified are the goals of attainment

[61, 33]. As it only specifies the final goal state or the number of goal states that needs to

be attained by the plan.

2.1.2 Hierarchical Task Network (HTN)

In the Hierarchical Task Network (HTN) planning, the main objective is usually specified as a

high-level task to be performed, rather than the conjunction of literals to be attained. The

main difference between the classical planning paradigm and HTN is that, the HTN planning

reduces the most abstract task down to the primitive tasks, whereas the classical planning

mainly aims at assembling the several actions for the goal attainment. It can be found that

virtually all the planning systems that are developed for the practical applicability has been

developed by using the HTN planning [127]. In HTN, the planning procedure proceeds by

Literature Review

Page 8

recursively expanding the high-level tasks into the networks of lower level tasks that

eventually accomplishes the high-level tasks. The expansion procedure is described by

transformation rules called methods. The methods can be seen as the mapping procedure

from a task into a partially ordered network of tasks, along with the set of constraints imposed

on the actions. A planning is completed when the resulting network contains only primitive

tasks and the set of constraints is consistent with respect to the requirements or demands. As

opposed to the classical planning approach the time and metric quantities representation do

not cause much difficulty in HTN planning. One of the greatest strength of HTN planning is

that the search process can be tightly controlled by the careful design of the methods. As in

the classical planning the preconditions and effects of the actions simply specify when the

action can be used and what could be used to achieve the actions.

2.1.3 Decision-theoretical Planning

The origins of the Decision-theoretical planning can be found in operations research and

Decision Sciences. In both of these streams the planning problem have been modelled

sequentially using Markov Decision Processes (MDPs) [99]. It was since last ten years, there

has been increasing interest within AI community in using this technology for solving the

planning problems that primarily involves the uncertainty. In this approach a state space

transitional approach is probabilistic in nature. Traditionally, these kinds of problems are

efficiently solved by using the powerful techniques such as value-iteration and policy-

iteration techniques [99]. Usually these approaches find optimal policies, which amount to

the conditional plans that specify which action should be taken in every possible state. The

main trouble for using this kind of approach is that the size of the total state space grows

exponentially. In order to overcome such a difficulty much of the AI work has concentrated

on limiting the size of a state space by following approaches:

• By using the more compact representation, typically, many preconditions and actions are

kept independent.

• Using an approximation technique it expands only that portions of a state-space that is

most probable and seemingly useful.

Despite the problem with the state space there are few other limitations are observed for

using this approach such as:

• Complete Observability. This framework assumes that only once an action is performed

with an uncertain outcome, the agent can observe the resulting state.

• Atomic Time. There is no explicit model of time in the representation. Actions are

modelled as if they are discrete, instantaneous and without pre-emption (i.e., once the

action is started it cannot be disturbed until its completion).

Literature Review

Page 9

• Goals. It rather seems to be difficult to express the goal attainment problems in this

framework.

In sum, the planning task mainly deals with identifying about what actions need to be

sequenced in order to attain the final goal state. But when to carry out these actions and how

to carry these sets of generated actions remains unspecified. Also, the planning task can be

seen as to attain the feasible solution rather than optimising the various criteria.

Slowly and steadily the important issue started raising its head in the community is about the

optimisation of the tasks, as most of the problems started demanding about the optimal

solution rather than only the feasible one. Although, the planing was successful for the long-

term time horizon, on the short-term time horizon it started showing the limitations. This is

when the scheduling technique came into the picture as a separate domain under the dominant

shadow of planning.

2.2 Scheduling

It was still the time when most of the researchers were treating the problems from the

planning and scheduling domains as a solely planning problem and the scheduling task was

mainly considered as a sub-domain of planning. As it was mentioned earlier the real-life

problems needed to achieve the optimal solution over some criteria such as, minimisation of

cost etc. Although, the pure planning techniques were quite successful for dealing with the

long-term time horizon but for the short-term time they have limited applicability.

The scheduling problem has a long history from the area of operations research where they

are mainly refereed to as an assignment problem. Scheduling did not receive much attention

in AI community since 1980, when Fox et al. began their work on the ISIS, which was

constraint-directed scheduling system for the job-shop scheduling problem [39,40]. During

that period growing number of researchers started working on scheduling by using the various

techniques from artificial intelligence. More recently, it has garnered the attention of a

significant number of AI researchers primarily in the application areas such as manufacturing,

resource allocation, military transportation and space etc. Even today there is a

conceptualisation about the scheduling task that it is a special case of planning in which the

actions are already chosen and leaving only the question of allocating these orders for their

assignment. This is an unfortunate trivialisation of the scheduling task. As opposed to the

planning task the scheduling has found its well-defined boundary line for its definition. The

scheduling task can be defined from the various viewpoints such as, operations research,

artificial intelligence etc. So before going on talking more about the scheduling lets consider

some of the few definitions that are widely accepted to describe the nature of scheduling task.

“Scheduling is the problem of assigning limited resources to tasks over time in order to

optimise one or more objectives” [6, 95].

Literature Review

Page 10

“Scheduling deals with the exact allocation of jobs over time, i.e., finding a resources that will

process the job and time of processing” [17].

“Scheduling deals with the temporal assignment of jobs to the limited resources where a set of

constraints has to be regarded” [102].

“Scheduling selects among the alternative plans and assigns resources and times for each job

so that the assignment obey the temporal restrictions of jobs and the capacity limitations of a

set of shared resources” [39].

It is worth mentioning the OR perspective looking at the scheduling problem. The Operations

Research treats the scheduling as a class of assignment problem. The main difference

between these two approaches is that scheduling normally works on the discrete time-line [8]

where the assignment is based on the continuous time-line. The assignment is supposed to be

more specific than the scheduling problem [98]. Due to standardisation of the continuous

time range all the allocation problems are treated as working on the continuous time-line

[104]. In scheduling one can jump from one time-point to another where as in the assignment

problem such jumping from different time-points is not permitted. But looking from the

practical point of view almost every time the time-line is discrete in its nature as the jobs may

get interrupted in between its execution and can start at some other time etc. [67, 69]. From

the Operations Research (OR) background the classical assignment problem can be

formulated mathematically as follows [104].

The classical techniques from OR such as PERT/CPM deals with the assignment problems

quite efficiently, but they do not consider the resources and mainly deals with finding the

exact start time of each job. Also, another important criteria in PERT/CPM is to find the jobs

on the critical path, that is the jobs that are more sensitive in terms of its processing time and

trying to accomplish such jobs as early as possible as compared to rest of the jobs.

So having defined the scheduling problem from different perspectives we will draw the few

conclusions for realising the important concepts that lie at the core of scheduling problem.

Minimise the total cost:
∑ ∑

= =
===

n

1 i 1
,...,2,1;,...,2,1,. Z

n

j
njniXijCij

Xij = 1 if ith job is assigned to jth resource and 0 if not

∑
=

n

j 1

Xij = 1 (one job is done by the ith resource, ni ,...,2,1=)

∑
=

n

j 1
Xij = 1 (only one resource should be assigned the jth job, nj ,...,2,1=

Where, Xij denotes that jth job is to be assigned to the ith resource.

Literature Review

Page 11

A) Scheduling is a process where one needs to reason about the resources and time for

assigning the jobs. This lies at the very core of scheduling problems, and looking from

the AI-community this issue has drawn very little attention [105].

B) As opposed to the planning the scheduling problems are in many cases seen as a problem

of combinatorial optimisation [30], and normally finding the legal (or what is referred to

as an valid) schedule.

C) The scheduling problem frequently involves various types of choices. These choices

could be ordering among the jobs (job-precedence), dependency relation between them,

choosing the available resources that satisfy the need of the job, selecting the proper time-

slot for the execution of jobs in order to evenly accommodate the assigned job etc. [58].

D) Almost every time the scheduling problems are restricted by the various kinds of

constraints that limit the space of assignment of jobs to the resources. The constraints are

usually separated in two main categories such as, hard-constraints and soft-constraints.

The constraints are characterised based on their nature in the scheduling process. The

hard-constraints are the kind of constraints, which can not be violated under any

circumstances, where as the soft-constraints are the type of constraints, which can be

relaxed if necessary during the scheduling process. There is another class of constraints

called preferences that are usually treated as user-specific choices and they can be seen as

a desirable rather than the obligatory one. The application of preferences can affect the

evaluation criterion (cost-function) to the greater extent [91, 108, 128]. The examples of

hard-constraints in scheduling are the capacity of a particular resource, the duration of a

job etc. As the examples of soft-constraints can be meeting the due-date, usage of a

particular resource for the execution of job etc. [129]. The preferences can be explained

by the following example. For example, if job j chooses the use resource r1 with

preference x and prefers to use the resource r2 with preference y. These preference

specific criteria can affect the cost related issues because the alternative resources might

have the different functional characteristics as compared to the original choice of the

resource [118]. For example, different speed and feed of the milling, drilling machines,

different load carrying capacity of the vehicles etc. that could affect the throughput of a

schedule.

As discussed above the following figure depicts the taxonomy of various types of constraints

in the scheduling environment [40]. The hard constraints are referred to as a non-relaxable

constraint whereas the soft constraints come under the category of relaxable ones.

Literature Review

Page 12

Partial order of
task

Domain-
Description SCHEDULING

ALLOCATOR/
ASSIGNER

How should I do it?

Complete

Schedule

Figure 2. The Taxonomy of Constraints in Scheduling.

Coming back to the comparative study between planning and scheduling, we have seen from

figure 1 that planning often gets influenced by the external environmental factors and

produces the partial order of task. These partial order of tasks serves as an input for the

scheduling task. It can be seen from the same figure that the planning task is mainly concern

with the question of “what should I do?” whereas scheduling mainly deals with the question

of “how should I do it?” The following figure depicts the scheduling task in its purest form.

Figure 3. The overview of a scheduling task.

Up to this point we have treated the planning and scheduling tasks into two completely

segregated spheres. However, in the real-life such distinction between planning and

scheduling often gets blurred and to draw a distinct line between these two tasks is often

difficult for several reasons.

1) Normally, the planning task can be seen as a ‘long-horizon scheduling’, or putting it in

different words the scheduling can be often seen as a ‘high-resolution planning’ [43, 8].

2) Planning is viewed as a generator of activities in the initial stage of a project during which

the sequence of the activities are defined while the scheduling comes in the second stage

Constraint-Type

Non-Relaxable Relaxable

Hard-Constraints
Soft-Constraints Preferences

Constant Predicate
DiscreteContinuous

Job

Resource

Constraints

Time-Range

Literature Review

PLAN

It determines
what should be

produced
according
customer

orders

It determines:
- What tasks are

necessary for
satisfying the
plan.

- How to allocate
these tasks to

during which the generated activities are selected to allocate/assign over the resources and

time. Thus, the planing deals towards the feasibility of actions as scheduling towards the

optimisation of various aspects such as minimisation of cost or maximisation of resource

usage etc. [101].

Despite the fact that planning and scheduling tasks have their separate existence as a research

philosophy, they can be inter-linked with each other and thus forming the cohesive working

environment. Such a type of environment is usually referred to as an integrated planning and

scheduling environment [7]. The following diagram depicts the integrated planning and

scheduling environment.

Figure 4. The integrated planning a

There is another dimension to the scheduling prob

planning task and during which it is seen as a

specifically, the scheduling problem comes under

the configuration design process the task takes as

the interactions, and produces the complete spec

configuration design process can be characterised

1) Usually the incomplete problem description

stage only the vague information is available a

2) Limited or delayed feedback from the world.

3) The cost is associated with the every action in

the selection of particular actions could affe

problem. Recalling the preference related cr

resource and its impact on the cost. For insta

be treated as an aggregation of the cost-functio

4) An artifact usually functions independently of

There is one major difference between the config

that almost every time the main building block

resources can be represented as a time-related ent

SCHEDULE

Task Generator

Task Alloca

Production Scheduler

Activity

Values of
parameter
Page 13

the resources.

nd scheduling environment

lem which is similar in nature as that of the

synthesis task activity [46]. Talking more

the category of configuration task [125]. In

input a set of goals that to be achieved and

ification of an artifact as an output. The

as:

is available in the initial stage and at this

bout the task in hand.

 the world. This specifically describes how

ct the cost related issues involved in the

iteria mentioned for the usage of particular

nce, the square of the lateness of jobs could

n.

 the planner, scheduler or designer.

uration task and that of scheduling task is

s of a scheduling task i.e., all the jobs,

ities [40]. To be more specific every job in

tor

Literature Review

Page 14

the scheduling problem is specified by the specific time interval during which the job must be

executed. We’ll discuss about the time factor in section 2.3 during which we will see the

various time intervals that can be normally used for defining the jobs.

So looking from this perspective we can compare the design, planning and scheduling tasks

saying that design task has its structure of components and connections. The components

may be objects or processes, symbolic or physical. The planning task also has a structure but

necessarily the sequencing one but not essentially a set of sequential structure. And if one

needs to distribute the elements (actions, components) then it can be referred to as a

assignment problem over a structure. If the structure is a plan then the assignment problem

can be treated as a scheduling problem with added time element. If the structure is a design

then the problem is a configuration task [16].

Also, it can be realised that the scheduling is a process in which the components are described

as a dynamic set of elements and the requirements and constraints imposed on these

dynamical set of elements is specified from either functional or from the global viewpoint.

The global point of view of expressing the constraints specifies the need for optimising the

solutions to the scheduling tasks. There has to be a mutual consistency between the local and

global constraints in scheduling. To explain it in more detail, once the scheduler has satisfied

all the local constraints then he/she has to be aware about the effect of local constraint

satisfaction on the global constraints. As some of the locally satisfied constraints can violate

the global constraints which might have even more adverse effect on the overall schedule

performance.

There are various types of problems that can be efficiently tackled by the planning and

scheduling task. The following Venn diagram depicts the possible problem types that can be

tackled by the application of planning, scheduling, and design [91].

Figure 5. The possible application areas of planning and scheduling.

AL – planning an automobile assembly line.

FL – facilities location problem.

JSS – Job-shop scheduling.

PP – project planning.

Literature Review

Page 15

PERT – unlimited project-resource scheduling.

PS – project scheduling.

RN – designing a new railway network.

TP – classical transportation problem.

TSP – travelling salesman problem.

TTL – time-tabling problem.

VRP – vehicle routing problem.

VLSI – doing a VLSI layout.

WCP – writing a computer program.

WT – allocation of weapons to targets.

It must be kept in mind that this classification is not crisp as the problem from one category

may fall into more than one category. In particular the scheduling problem can be categorised

into three broad categories such as, the pure scheduling problem, the resource allocation

problem and finally the joint scheduling and resource allocation problem. The following

points describe the each problem areas in more detail.

• The pure scheduling problem concentrates on the scheduling task in the manufacturing

environment, e.g. classic job-shop scheduling and other variants of the job-shop

scheduling such as open-shop and flow-shop scheduling. The flow-shop scheduling is

stricter as compared to the job-shop scheduling where maintaining the sequence of jobs is

quite critical. The pure scheduling problem can be further classified into three sub-groups

indicated by αβχ , where α indicates the machine environment, β indicates the job-

characteristics and χ denotes the optimality [96].

• The second category is the pure resource allocation problem [63] in which the demand

for the resource is known beforehand and the problem is mainly to allocate the jobs to

resources in time. Some of the typical examples of the resource allocation scheduling are

aircrew to the flight gate assignment, the room allocation problem and sometimes a

classical travelling salesman problem [110].

• Finally, the last one is the joint scheduling and resource allocation [63] problem in

which the scheduler mainly decides which jobs to perform and when, and which

resources needs to be available for satisfying the request of jobs.

Now in the next section we will discuss the significance of the time element in the scheduling

environment, as it is one of the important components as far as the scheduling domain is

concerned.

2.3 Time in Scheduling

Another important issue that raises the significant importance in scheduling is the

representation of time. There are various time intervals that can be related with the basic

Literature Review

elements of scheduling task. The proper representation of the time is a key in constructing an

efficient schedule.

In scheduling problem the time is usually related with the jobs or resources. It determines

when a particular job can be carried out and with which resources. The jobs have a time slot,

which determines when a particular job can start, finish and what could be the duration of that

job. Simply assigning jobs to the resources is not sufficient but determining the time window

in which it must be assigned by satisfying various constraints is also important. For instance,

the precedence (job-precedence) relation between the time ranges of any two jobs, availability

of a resource for the execution of jobs based on their time range overlap, the due date of jobs

etc. are also equally important factors.

Another type of time range, which plays equally significant role in scheduling, is the time

range of a schedule itself. The schedule time-range represents the time period for which the

schedule is constructed. The schedule time-horizon imposes the constraints on the time-range

of an individual job in terms of its start time and end time. There is some work that can be

found in the literature for representing the intervals between any two elements [2, 89]. These

standard time intervals can be adopted for representing the time relations between any two

jobs such as J1 and J2. In the following figure the x and y represents the two time intervals.

 Time-range of J1 meets time-range of J2.

Time-range of J1 is before time-range of J2.

x y

y
x
Page 16

 Time-range of J1 overlaps time-range of J2.

Time-range of J1 starts same as time-range of J2.

Time-range of J1 ends same as time-range of J2.

Time-Range of J1 is during the time-range of J2.

x

y

y

x

yx

y

x

Literature Review

Alo

sch

pla

T

ac

ac

It

co

am

E

ac

co

sa

In

1)

2)

3)

O

O

th

pe

pr

a)

b)
x

Page 17

Time-range of J1 is equal to time-range of J2

Figure 6. The possible time-intervals between any two jobs.

ng with the representation of the time intervals we conclude the role of time in the

eduling task. Finally, table 1 summarises the main conceptual differences between the

nning and scheduling tasks.
Table 1. Differentiating between planning and scheduling.

PLANNING SCHEDULING

he planning task mainly deals with WHAT

tions need to be carried out in order to

hieve the final goal-state of the world.

The scheduling task mainly deals with

finding out WHEN/HOW to carry out the

actions to optimise the criteria.

 mainly concerns with reasoning the

nsequences of acting in order to choose

ong the set of possible courses of actions.

.g. A plan must consider a possible set of

tions available and look for their

nsequences and choose one action that

tisfies most of the requirements.

It is mainly concern with mapping of the

various sets of tasks to the available

resources for the specific time interval

while satisfying the constraints.

E.g. Assign task A to machine A and task B

to machine B. The duration of task A is x

min. and that of task B is y min. etc.

put to the planning task:

 A set of possible courses of actions.

 A predictive model for underlying

dynamics.

 A performance measures for evaluating

courses of action.

utput to the planning task:

ne or more courses of actions that satisfy

e specified set of requirements for

rformance. E.g. a travelling salesman

oblem.

 A set of possible courses of action is a

set of travel options: air-flights, car,

railway etc.

 Dynamics: say the travel dynamics, i.e.,

information regarding travel time, cost

and the way travel time and cost affects

Input to the scheduling task:

1) A set of tasks to be assigned.

2) A set of available resources for the

execution of task.

3) The capacity of the available resources.

4) The time intervals of the specified task.

5) The constraints imposed on the task.

The constraints could be of two types

such as hard-constraints and soft-

constraints. The hard-constraints

should not be violated under any

circumstances whereas soft-constraints

has to be satisfied by the completion of

the schedule.

Output to the scheduling task:

The output to the scheduling task is a

schedule that assigns the given set of tasks

y

Literature Review

Page 18

each other. How external world

conditions affect such actions. For

example, weather conditions etc.

c) A set of requirements specified by the

external world. E.g. in city A on

Monday, and Tuesday, in city B from

Wednesday afternoon till Friday night.

And in this case constraints on solution

would be start no earlier than Sunday

arrive before Saturday night etc.,

maximum expenditure should not

exceed £1000.

on the available resources by maintaining

their time intervals without violating the

constraints.

E.g. In job-shop scheduling set of inputs

would be set of jobs such as drilling,

milling etc. and available resources would

be machines on which these jobs can be

executed. The constraints can take the

nature of no resource is assigned more than

one job at a time, each job is completed

before he starting of the next job

(precedence relation among jobs) etc.

Planning can be stated as Satisfying (find

some solutions satisfying the constraints) or

finding the feasible set of solutions

transferring the initial state of the world into

the goal state.

The scheduling task is normally seen as a

optimisation task over one or more

objective functions such as minimisation of

the cost or maximisation of the resource

utilisation etc.

Now in the next section we’ll see some of the most significant intelligent scheduling systems

developed over the past two decades or so and the various techniques that can be useful for

solving the scheduling problem.

3. Intelligent Scheduling

As it was mentioned earlier, the scheduling did not receive the serious attention till 1980 until

Fox et al. started working on the first intelligent scheduling system named ISIS at Carnegie

Mellon University. Since that period several researchers from AI community have developed

various intelligent scheduling systems in order to deal with the problems from specific

application domains. These scheduling systems have exploited various tools and techniques

from artificial intelligence for successfully and efficiently solving the scheduling problem.

In the following section first we will review the various techniques that can be useful in order

to deal with the scheduling problem. In the second part we will review the nine intelligent

scheduling systems that have been influential over the period of last two decades and try to

find out the differences in their underlying working philosophy. It includes ISIS [39], OPIS

[93, 107], SONIA [25, 62], YAMS [122], FlyPast [79], S2 [32], DAS [15], REDS2 [50] and

ESCALAS [78].

Literature Review

Page 19

3.1 Various Techniques for Scheduling Problem

The scheduling problem has been invested for a long time in Operations research and

Artificial Intelligence. Various approaches have evolved over the period to solve the

scheduling problems effectively. In the following section we will briefly see the various

techniques developed for the scheduling task.

3.1.1 Heuristic Scheduling Approach

The heuristic scheduling approach is mainly based on the heuristic search techniques. The

general heuristic knowledge as well as the problem (domain) specific knowledge is adopted

from the scheduling experts in order to guide the search procedure. In the heuristic

scheduling constraints play a major role in order to guide the search effectively and the

knowledge representation schema used is normally rule based or frame based. The heuristic

scheduling is either job-based or resource-based. In the job-based approach [58] usually the

job is assigned to the resources and in the resource-based approach [68] the resource is

selected for assigning the next potential job. Various strategies and rules are used in order to

select the next potential unscheduled job, or in order to select the available resource and the

time slot as well. For example, schedule the job that has earliest start-time and/or earliest due

date first, job with least processing time etc. These kinds of rules are referred to as priority

rules that are derived from the Operations Research. The algorithms differs essentially in the

problem-specific heuristic knowledge that is applied for determining the appropriate decisions

during the problem solving procedure and are specifically tailored to just one special problem

scenario.

3.1.2 Constraint-Based Scheduling

In any scheduling problem the constraints are the most important part. The constraints

normally limit the space of the valid solutions to the problem. Therefore, the constraint-based

approaches have been rapidly become popular [9, 64]. The constraint-based scheduling has

two important parts; one is the constraint-formalism [39] that is, representational aspect of the

hard and soft constraints in the problem. The hard and soft constraints are useful in order to

guide the search process effectively as it restricts the possible solutions to the problem.

The second part is the general constraint programming technique that actually solves the

problem. The most widely used technique in constraint-based scheduling is the constraint-

satisfaction problem (csp). In the constraint satisfaction problem the schedule is represented

as a set of variables of certain domains and a set of constraints for restricting these domains.

The generic framework for the constraint-directed scheduling is presented by Beck and Fox

[9], in which they have analysed the various approaches for constraint-based scheduling.

Talking particularly for the scheduling, the variables in constraint-based represent the jobs

Literature Review

Page 20

and the values represent the resources or the time ranges assigned to the particular job. The

feasible solution would be to satisfy all the constraint corresponds to the particular node in the

constraint graph. The constraint-directed search explores the problem space based on

relationships, dependencies and limitations among the various problem objects. The simple

procedures used are Generate & Test or a Backtracking strategy without constraint

propagation. The system stops when the first valid solution (solution that satisfy all the

constraints) is found. Many traditional intelligent scheduling systems are based on the

constraint-based approach for solving the scheduling problem such as, ISIS, SONIA, DAS

etc.

3.1.3 Fuzzy-Approaches for Scheduling

The fuzzy approach provides the possibility in order to cope with the incompleteness and

dynamic behaviour of scheduling. By using the different fuzzy sets, linguistic variables and

the fuzzy rules (inferences) it allows to represent the vaguely formulated knowledge. Using

the fuzzy approach the following type of information can be represented efficiently.

• Uncertain values for the scheduling parameters e.g. process time.

• Vague specifications of preferences, e.g. preferences between various kinds of

alternatives.

• Uncertain definition of the due date and durations of the jobs etc

In order to represent the imprecise or uncertain information following steps are carried out.

1) First the scheduling data is transformed into a knowledge representation for the

fuzzification. The uncertain knowledge is represented by the linguistic variables such

as, very low, low, high, very high etc.

2) The actual processing is done based on the fuzzy scheduling knowledge by using the

rules along with the integration of fuzzy arithmetic. These are stored in the knowledge

base of fuzzy controller.

3) Final step is transforming the fuzzy scheduling decisions into the crisp scheduling data

for determining the concrete knowledge.

3.1.4 Neural Network Approach for Scheduling

Traditionally the neural networks are used for forecasting, classification, pattern recognition

and data mining and very small number of applicability have been found in the scheduling

domain. In scheduling the neural networks can be used for the purpose of optimisation

approach. Usually, it can be used for the predictive scheduling as in the reactive scheduling it

is quite sensitive to changing situations. If the situation changes slightly then the new

Literature Review

Page 21

network needs to be designed for addressing the changed situation. In scheduling it uses the

following schema for problem solving by decomposing the main problem.

• Choose a variant for every job.

• Choose a resource for every job.

• Choose a time slot for jobs and resources.

Various kinds of networks can be used in the above-mentioned steps such as, Hopfield-Tank

network can be used in the first step to represent the order of jobs. Each neurone represents

the assignment of jobs to the resources in which only one job can be selected. Then in the last

step the LP-network can be used in order to represent a linear programming approach for

assigning the time slot to the job for minimising the tardiness. The neural network can give a

good solution as compared to the heuristic approach but the sensitivity of the neural networks

to the changing situation restricts its applicability.

3.1.5 Iterative Improvement Techniques for Scheduling

The major difference between the first four approaches and the iterative improvement

technique is that the first four approaches work on the partial solution whereas the iterative

improvement deals with the complete but flawed solution. Once the complete solution or set

of solutions is constructed then iterative improvement technique selects one solution and

improves it in order to find the optimal or sub-optimal solution by using iterative

improvement technique [30]. The technique is based on the hill climbing approach that

avoids getting trap in the local optima. Some of the examples of iterative improvement

techniques are Genetic Algorithm (GA), Simulated Annealing, Taboo search, Threshold

Acceptance, Iterative Deepening and Grand Deluge algorithms [102]. Most of these

techniques except GA are using the quite straightforward operators to find the neighbourhood

solutions for the modification e.g., exchange few assignments or try alternative resources.

The procedure iterates until the specific stopping criteria is met. In the GAs the following

three steps are carried out. First, the subset of each variable is elected for the recombination,

then at the second step with the crossover operator new individuals are created and finally at

the third step, the mutation operator selects the new individual with slight changes.

3.1.6 Distributed Scheduling

The main philosophy on which the distributed systems are based is the co-operative behaviour

of the problem solving. In the distributed scheduling the systems are usually based on the co-

operative intelligent agents. Each of the agents in the system is responsible for tackling the

specific problem (task) in the complete scheduling system.

Literature Review

Page 22

The main goal in the design of the distributed scheduling systems is that the division of

responsibility of the complete system among the agents and at the same time deciding the

responsibilities and facilities of an individual agent, the way each agent will communicate

with each other etc. Several alternatives are possible to distribute the task among agents.

One way of dealing with it is by representing the agents as a sub-system in the complete

system’s architecture (c.f. 3.2.7). Alternatively, the agents can be represented as a single

object in the scheduling system that is, a job agent is responsible for performing all the tasks

that are related to the specific job etc.

As mentioned before every agent needs to perform the certain set of tasks for which it is

responsible. Usually, the control agents are necessary to control the overall performance of a

system and they have the responsibility for achieving the global goals of the complete system.

In order to establish the communication among different agents two types of architectures are

commonly used, consist of, the blackboard system and the contract nets.

• The backboard system: it has all the data collected at the central place for the

communication. Each agent reads the data from the blackboard and checks if the agent is

capable of executing the task, if so then the agent records the result on the blackboard.

• The contract net: in the contract net all the agents are using the structural protocol to

communicate with each other.

3.1.7 Meta Scheduling

Even though over the period vast number of algorithms or problem solvers have been

developed still it is difficult to find the appropriate algorithms or problem solver for the given

situation. One of the main reasons for this obstruction is that most of these approaches are

developed to suite the particular problem type, e.g. job-shop scheduling, crew scheduling etc.

As the nature of the problem area changes such type of problem solvers are no longer useful

because of their brittle nature. It was the main motivation behind the development of meta-

scheduling approach. Usually, in Meta scheduling the chucks of knowledge is identified that

can be applicable to cover the wider problem area. It makes possible to explicitly represent

the extracted rules from the different problem solvers. Extracted strategies can be described

as a generic problem solver or skeleton. The dynamic combination of abstracted

strategies/rules/skeletons is called as dynamic scheduling knowledge. These dynamic

components can be used to form the libraries of generic components in order to deal with the

various scheduling problems.

3.2 Intelligent Scheduling Systems

Here, we will review some of the most influential intelligent scheduling systems developed

over the period of last two decades. The main focus of the review will be on the working

Literature Review

Page 23

ISIS

Lot Selection

Capacity Analysis

Reservation
Selection

Resource Analysis

Level 1

Level 2

Level 3

Level 4

Lot is selected

Start-end times selected

Detailed scheduling
done

Resource reservation
for executing the orders

philosophy, problem-solving nature and general architecture of the intelligent scheduling

systems.

3.2.1 ISIS

An ISIS [39] scheduling system is developed by Mark Fox and is the first reported expert

scheduling system. An ISIS is developed particularly for the job-shop scheduling application

by using the frames, also known as units and it is based on the constraint-based approach as a

problem-solving strategy. In the job-shop scheduling various objects can be founds and the

constraints imposed on them or among them is known as a units. Each of the constraints is

represented as a separate distinct unit and has an associated utility. The utility factor is taken

into consideration as a measure for analysing to what extent the particular constraint

contributes in building the final schedule. The ISIS decomposes the scheduling task into

four-tier hierarchy as shown in the figure 7.

At the first stage the order/lot is selected for the release on the shop floor. Once the lot is

selected and is ready to be released on the shop floor then the capacity analyser determines

the start time for each job within the selected lot. After this the actual scheduling is

performed at the resource analysis stage. In which the resource on which the job is going to

be assigned is checked based on various criteria such as, the availability, the capacity etc.

And finally at the reservation stage the actual resource is reserved for the execution of the job.

The reservation is made in such a way that it reduces the work in process inventory.

Figure 7. The four-tier hierarchy of ISIS

So based on these criteria the ISIS takes the job-based perspective i.e., the scheduling is

considered as the procedure in which the job is assigned to the resource. The resources may

remain unassigned by the end of the schedule if all the orders have been assigned. This helps

to produce the schedule with acceptable levels of job tardiness (due-date violation by the job).

Literature Review

Page 24

The ISIS takes the hierarchical constraint-directed search concept in which the evaluation

function is dynamically constructed at each state in the search space. Every type of constraint

contributes both an importance and the utility factor in the construction of a final schedule.

The constraints are resolved by extracting them from the resources or jobs defined in that

particular state. The performance of a schedule is determined by the two factors such as the

tardiness of number of jobs, number of constraints that are satisfied by the schedule

completion.

3.2.2 OPIS

An OPIS [93, 107] is a contribution of the ISIS initiative. An OPIS (OPportunistic Intelligent

Scheduler) is implemented as blackboard architecture [26, 88] and uses multiple perspective

as an assignment strategy. It does the assignment from both job-based and resource-based

perspectives. The work to be scheduled and the state of the shop-floor are analysed to detect

the areas of high resource contention (bottlenecks). The bottlenecks can be seen as resources

that are always under high demand and it is not permitted to have these resources unavailable

at any stage during scheduling otherwise it could make the other resources with increased

load. The bottlenecks are then scheduled from the resource-based perspective in order to

avoid the bottlenecks during the assignment process and this anchors the search space

particularly based on the bottleneck areas. Once the critical resources, which are susceptible

to the bottlenecks are determined then the search is guided based on the job-based perspective

around the anchored points.

The OPIS employs an incremental and opportunistic strategy for solving the scheduling

problem, the very nature of the blackboard architecture. The knowledge that can be applied

to the scheduling task is distributed across the independent knowledge sources (KSs), the

application of these knowledge sources is determined dynamically and opportunistically as

the problem solving evolves. By decomposing the knowledge into independent module i.e.,

knowledge sources, the blackboard architecture allows the system to be executed and as the

new knowledge becomes available, this new knowledge is added to the system in the form of

knowledge sources. The top-level manager (TLM) is responsible for holding the co-

ordination of scheduling task. The OPIS is designed mainly for the reactive scheduling rather

than the predictive scheduling systems. In the reactive scheduling problem the schedule

needs to be updated under the various real-life situation in the environment in which a

schedule is executed. For example, in the steel-manufacturing first the predictive schedule is

generated based on the known data in hand. This primary schedule is sent on the plat floor

and then if required the initial schedule is undated (modified) due to unexpected occurrence

of the events such as, the unavailability of the resources or changes in the due date of other

orders etc. A predictive scheduling is more deterministic in nature as it depends on the static

Literature Review

Page 25

data about the problem in advance. Following diagram depicts the scheduling architecture of

OPIS.

Figure 8. An architecture of OPIS [128].

3.2.3 SONIA

The SONIA [25] scheduling system is a continuation of the SOJA [62], work by Le Pape and

Sauva. The main difference between SONIA and other scheduling systems is that SONIA

integrates both predictive and reactive scheduling approach. SONIA works on the blackboard

architecture similar to the OPIS. The predictive component of SONIA results from Le Pape’s

previous experience with SOJA system, and it comprises a selection component and an order

component. The selection component selects the jobs to be scheduled and bind the selected

jobs with the available resources. This approach is similar to the Norman Sadeh’s work [100]

on variable and value ordering heuristics for job-shop scheduling as a constraint satisfaction

problem. The ordering component consists of an iterative constraint satisfaction process [63],

for imposing the temporal constraints on selected jobs. The heuristic rules are used for

making the various ordering decisions, which are then propagated through the schedule

management system. If the ordering component encounters a failure it then enters into a

reactive process and this is the place where SONIA scheduling system differs from OPIS.

SONIA efficiently exploits the reactive component during the actual schedule creation. The

scheduling decisions are first made with the predictive component, and then the backtracking

takes place via the reactive component. Therefore, predictive and reactive components are

viewed as being the same problem during schedule construction instead of the isolated one.

The blackboard system of SONIA is mainly consist of following three components:

• The knowledge sources: The knowledge that is needed to give the reasoning to the

problem is partitioned into knowledge sources, which are kept separate and independent.

External
Event

TLM

Control
State Schedule Maintenance Subsystem

Schedule1 Schedule n

Model
Update

Problem
Selection

Analysis
1

Subtask assignment

Subtask assignment

Literature Review

Page 26

• The blackboard data structure: The compiled problem-solving state data is kept in the

global database, the blackboard. The knowledge source produce changes to the

blackboard that leads incrementally to a solution of the problem. The communication and

interaction among the different knowledge sources takes place only through the

blackboard system.

• The control cycle: There is no explicit control component specified and the knowledge

sources are self-actively and opportunistically changes the blackboard. But it is often the

case that control component is required to decide which instance of the knowledge source

needs execution at each point in the problem-solving process.

The SONIA is based on the macro-opportunistic scheduling technique, i.e. each module

makes a collection of decisions each time it applies. For example, an application of the

module might consist of scheduling the complete manufacturing order or a complete set of

resources [107]. In such case, the control problem consists of both ordering the contributions

of the various modules and controlling the behaviour of each module every time it is applied.

Finally, SONIA uses constraint-propagation as its problem-solving strategy.

3.2.4 YAMS

YAMS (Yet Another Manufacturing Systems) [122], is probably the first intelligent

scheduling system that exploited the distributed artificial intelligence. YAMS’s architecture

is based on the Contract Net. In the Contract Net modules, the transfer of control is in a

distributed system using the metaphor of negotiating among the agents. The agents within the

Contract Nets are categorised as being managers, bidders or contractors. Each of these

agents plays a certain role in the contract net. A manger identifies the work to be done and

delegates that work to the agents via the process of negotiation. A bidder is an agent that

offers to perform a task, and a contractor is a successful bidder who wins the contract. The

agents in this system communicate by message passing. If there is any potential task to be

performed, a manager agent makes the task announcement, and broadcast the task to all the

agents in the network. The agents that have a potential to perform the announced task contact

the manager with the bid message, and the highest bidder is awarded the contract and

becomes a contractor. Similar to first approach the contractor agent then decompose the task

in hand into further smaller subtasks and acts as a manager making its own announcement.

Consequently, an agent can be a contractor and a manager at the same time. This style of

problem solving has been referred as a fractal style of solving particular problem [122].

YAMS model the overall factory as a hierarchical workcells, where individual workcell in the

factory is considered as an agent within that contract net. Each node in the level of hierarchy

indicates the particular level of granularity, whereas the leaf agents correspond to discrete

resources. Also, each node in the hierarchy has the information about its capabilities, and

Literature Review

Page 27

represents it in a declarative style. Apart from this another important issue is that of a global

schedule which is performed by the external system and then distributed across the net.

Because of the dynamic nature of the scheduling system such a global schedule gets obsolete

quickly. In such scenario the agents are allowed to perform a degree of local schedule. For

creating a local schedule a turnpike [75] scheduling strategy is adopted, i.e. local

perturbations to a local schedule is allowed, but the goal is always to return to the global

schedule whenever possible. Also, the important issue worth mentioning here in the context

of Contract Net is that the communication within the contract net takes place only for

superior-to-subordinate and peer-to-peer communication is not allowed. But the peer-to-peer

communication is required in order to propagate the constraints within the agents. The major

problem with such architecture is that, when a local scheduling decision is made, there are

chances that it may have the global consequences, and if the effects of the local decisions are

not propagated to the global scheduling the global schedule can become obsolete quickly.

Hence, this kind of Contract Net is only applicable when the problem in hand is already

decomposed into the sub-problems, which is referred to as a completely accurate, nearly

autonomous strategy [71].

3.2.5 FlyPast

The FlyPast [79] scheduling system was mainly designed for allocating the aircrew and

aircraft to flights within the dynamic environment. FlyPast generates naval flying programs

for a task force, i.e. air cover for a fleet of warships. And it is completely based on the

reactive scheduling approach by using the constraint-based reasoning and the assumption-

based truth maintenance system (ATMS) of de Kleer. The nature of generating a flying

programme is simplified in the sense that system assigns the resources to flights after the

timings of particular fights are completely specified. The temporary constraints are removed

totally from the scheduling approach and the remaining decisions such as the allocation of

resources that is, aircraft crew, to the jobs i.e., flights, are considered as a constraints.

Characteristically, there are various constraints imposed on the number of flights. For

instance, the flights can take off or land within the given time interval, constraints on the

flying hours between maintenance operations, and the constraints on the number of flying

hours a crewmember is supposed to perform with the given time interval etc. This problem

typically can be seen as a constraint satisfaction and is represented by the constraint graph,

where each node represents the flights, and the domain of a node as a possible resources that

can be assigned to the node, whereas the arcs are the constraints acting between nodes. The

forward checking [53] approach is taken in order to perform the search. As the forward-

checking approach is applied, ATMS nodes are created for any domain reductions that take

place, where the datum of an ATMS node is the domain reduction resulting from forward-

Literature Review

Page 28

checking, and the justification of that particular ATMS node is the assignment that mainly

caused the reduction. If the forward checking results in total destruction of the domain then a

‘no good’ solution can be derived and dependency-directed backtracking takes place. If no

satisfactory results occurs then the ‘no good’ database is analysed to deliver an explanation to

the user. Also, at the same time the user of the system is allowed to interact with the system

for adding and retracting the constraints and forcing the allocations on the system.

3.2.6 S2

S2 [32], scheduling system is similar in nature to that of FlyPast and is designed for the VLSI

wafer fabrication. The problem domain of S2 is considered to be similar to that of job-shop-

scheduling. S2 recognises that the problem domain is highly dynamic and uncertain in its

characteristics, and so the designed scheduling system must address to its domain directly.

Also, there is another explicit assumption on which the scheduling system is built is that there

is no single performance measure on which the final schedule can the measured, especially so

when that the schedule must exists within an uncertain problem domain which is as

mentioned above. Thus, due to these factors the S2 sees the schedule as one of the problem

of satisfaction within an open world. Consequently, the S2 is a reactive scheduling system

and the final schedule delivered is satisfactory. S2 is composed as three main modules such

as, a constraint maintenance system, a schedule generator, and a request interpreter. All the

scheduling problems are represented within the constraint maintenance system (CMS), where

the CMS perform the constraint propagation when the constraints are imposed or retracted.

The final schedule generated within the CMS tries to satisfy the constraints within the CMS.

As the schedule generator is reactive in nature it reacts immediately to the addition and

retraction of the constraints by modifying the existing solution, instead of performing the

complete rescheduling from scratch. All the process of determining a solution, a constraint

satisfaction problem (CSP), changing the structure of the problem accordingly, and solving

the modified problem is referred to as an incremental constraint satisfaction. S2 employs a

depth-first search strategy and the dependency-directed backtracking. Also, it keeps the

record of all the dead-end states encountered during the search along with the sources of their

inconsistencies. A hard-wired ATMS is applied, and the ‘no good’ database is distributed

across the soft-constraints.

As compared to FlyPast the S2 also delivers the satisfactory schedule and then allows the user

to modify the schedule either by adding or retracting the constraints via the request

interpreter. Again there is one pre-assumption on which the S2 works and is that the user of

the system has the knowledge about how a satisfactory schedule looks like and thus the user

of the system can guide the whole scheduling procedure towards a good schedule. So looking

from this perspective the user can be seen as a major source of knowledge that is not implicit

Literature Review

Page 29

in the S2 system and also the source of world dynamics. This kind of scheduling approach is

referred as a funk box scheduling by Elleby et al. [32].

3.2.7 DAS

The DAS [15], which stands for Distributed Asynchronous Scheduler is developed at the

University of Stracthclyde. The DAS distributes the scheduling problem on three-tier

hierarchy of the problem-solving agents. At the lowest level of hierarchy, is the operational

level at which the O-agents are responsible for scheduling the operations on individual

resources for example, machines etc. Then the middle level is the, tactical level, in which the

T-agents are attached with the aggregate resources and load balance operations among

subordinate O-agents. Finally, the top level is the strategic level, in which the S-agents

introduces the work into schedule and they have unlimited control over the conflict

resolution. The S-agents are allowed to relax the problem if necessary according the

environmental conditions. All these agents can act asynchronously and the constraint

propagation takes place through message passing. Various mechanisms are existing in order

to focus the control and to resolve the conflicts among the agents as they occur. The figure 9

depicts the three-tier hierarchy of DAS.

DAS scheduling system can be seen as one of functionally accurate communication

architecture (FA/C) [71] system from the distributed AI perspective. The reason why it is

accurate communication architecture is because the local decisions made by the O-agents are

always locally accurate. However, these local decisions can have global effects so these local

decisions are distributed among agents via communication passing by using the constraint

propagation strategy. Like other scheduling systems such as, FlyPast and S2, DAS also works

as a reactive scheduling system.

Figure 9. The three-tier architecture of DAS.

DAS

Strategic Level

Tactical Level

Operational Level

S-Agents

T-Agents

O-Agents

Introduces
work in
schedule

Aggregate
resources and
load balance

Scheduling
operations on

individual
machines

Literature Review

Page 30

3.2.8 REDS2

The REDS2 scheduling system can be seen as a logical successor of DAS, which also works

on distributed scheduling approach. The system is developed by Hadavi et al. [50] and it

provides a sound reason why the scheduling system should be distributed if it needs to be. If

we assume that the scheduling problem is of optimisation, still it is not clear what exactly

needs to be optimised in this scheduling process. By distributing the scheduling problem

across the group of agents, we might allow these agents to optimise on various different

criteria. Most of the architectural behaviour of REDS2 is similar in spirit to that of DAS. But

the above-mentioned argument about the distribution of the scheduling problem among

various agents is fully exploited here as opposed to DAS. In REDS2 both predictive as well

as reactive scheduling are incorporated along with the release control strategy named FORCE

[51].

3.2.9 ESCALAS

ESCALAS [78] is a crew scheduling system developed for the Portuguese railway network.

If the railway timetable for the railways is given to ESCALAS it distributes the crews to the

railways in such a way that constraints associated with it does not get violated and the output

schedule is adequate in some sense. The scheduling process works in various phases, the first

phase of scheduling behaves as a pre-scheduling in which the unreasonable and undesirable

schedules that subject to violate constraints are ruled out. This phase can be seen as a

filtering of the domain in constraint satisfaction problem [9]. In the actual scheduling process

the system searches for good solutions by using A* algorithm with heuristics to limit the

number of successors generated and which is essentially a beam search.

The most interesting point about this system is that it can run in three different modes; the

manual mode, the automatic mode and the semi-automatic mode.

In the manual mode the user of the systems makes all the necessary decisions about the

schedule and then the system checks the legality of these decisions. In other words, the

system makes sure that the decisions made by the user are not violating any of the predefined

rules or constraints in the schedule. In the automatic mode the system itself explores all the

search space using a scheduling strategy by using the above mentioned search strategy. And

in the semi-automatic mode, it’s a two-way communication between the system and the user,

as the system generates the successor nodes and the user selects one of successor nodes

generated by the system. Similar to the S2, here the user can be seen as a knowledge source

of the heuristic knowledge. The developer of this systems claims that their system is really a

decision support system in the domain of human resource management and the goal of the

scheduling systems is not to replace the expert human schedulers but rather to help them in

Literature Review

Page 31

making their decisions effectively. Also, they claim that their system enjoys the following

three major advantages in having a scheduling system like this.

• This is a uniform scheduling process, as opposed to those produced solely by the human

schedulers that may replicate different scheduling philosophies.

• The complete schedule can be generated within a fraction of time as opposed to the

traditional trial and error process of producing the feasible schedule.

• The schedule generated by this way is an error free schedule.

They also claims some advantages from the end-user’s point of view such as:

• Alternative schedules can be quickly generated, by using the different scheduling

strategies or based on different scheduling criteria.

• The evaluation of a scheduling cost (i.e. the cost of the schedule solution), with a full set

of statistics.

• The user of the system can also study the consequences of changes in labour rules etc.

such as “what-if” scenarios.

3.3 Summary so far

If we examine the development of various scheduling systems that are evolved over the

period of last two decades since the development of the first intelligent scheduling system,

ISIS, it can be observed that it as an evolutionary trend of the development of these systems.

ISIS that was the first truly intelligent scheduling system developed by using the techniques

from artificial intelligence and knowledge-based engineering for tackling the job-shop

scheduling problems. It has opened a wide stream of research in the domain of scheduling.

Then OPIS explored the both order-based and resource-based scheduling strategy by using

the blackboard architecture. But SONIA, which was the immediate successor of SOJA, truly

integrated schedule creation with schedule maintenance by treating the two as a common

problem. On the other hand FlyPast and S2 systems directly addressed the schedule

maintenance for the already constructed schedule. Both of these systems are based on the

assumption that the scheduling problem exists within an open world thus scheduling system

must address the important issues from the open world. They are based on constraint-

satisfaction and truth maintenance technologies as their problem-solving strategy

respectively. YAMS was the first one to use the distributed scheduling system. It was based

on the philosophy that scheduling system must model the organisation as being distributed

and as YAMS is based on a distributed environment it does not have a predictive capability.

Similar to YAMS, the DAS and REDS2 are both distributed scheduling systems and are

similar to FlyPast and S2 in terms of reactive scheduling and multi-perspective as that of

Literature Review

Page 32

OPIS. Finally, ESCALAS scheduling system can be thought of as being technologically

traditional, though it is significant in an unusual justification.

All the above mentioned systems are working efficiently in their own application areas. But

these systems are hard-wired in nature as these are developed by keeping some specific

targeted scheduling applications in mind. Obviously it was inefficient for using them in order

to solve the problems from different applications because of the brittle nature. Slowly the

need for generic system components started arising in the systems development for efficiently

reusing in wider applications. The solution of the reusability question came in terms of

developing the ontologies and libraries of problem solving methods that can be efficiently

reused to tackle the problems from wider applications.

In the next section we will see some of the basic concepts in the field of knowledge

engineering.

4. Knowledge (level)- Acquisition, Sharing and Reusability – a new trend

In this section we will understand the basic notions involved in the field of knowledge

engineering especially looking at the knowledge acquisition and modelling perspective. First,

we will see the various concepts that were introduced for the efficient representation of the

knowledge and to increase the potential reusability. In section 4.5, we will turn our focus

towards domain of interest i.e. knowledge acquisition, modelling etc. in which we will look at

the various knowledge modelling frameworks that are influential over the period of last

decades or so. While doing so we will opportunistically point out the strengths and

weaknesses of each of these modelling frameworks.

4.1 Introduction

There are three major terminologies can be found in the area of knowledge engineering such

as: knowledge, knowledge acquisition as knowledge modelling, knowledge sharing and reuse.

In 1982, Allen Newell has introduced the notion of what is called as a knowledge level in his

article ‘The Knowledge Level’ [87], the same article has identified the capabilities of a

cognitive systems and revelled how the contents of the system are independent of its

implementation. To put it in other words what the author has proposed is “Knowledge is to be

characterised entirely functionally, in terms of what it does and not structurally, in terms of

physical objects with particular properties and relations”. In the same article the author has

proposed the ‘principle of rationality’ stating that, if the agent has the knowledge about

choosing particular action among the several available actions, which can lead towards the

solution or goal state then the agent will choose that particular action.

This article has removed all the pre-existing ambiguities by answering the fundamental

questions in the field of knowledge engineering. First, it clearly states what is the basic

Literature Review

Page 33

functional behaviour of a knowledge that is required by the particular task, at which level this

knowledge can be represented and the way such a knowledge can be used by providing the

reasoning in order to solve the problem.

Of the common ways to represent the knowledge is by modelling the associated chunks of

knowledge with the task. An ontology acts as a common vocabulary for all such pieces of

knowledge associated with the task. In the next section we will see in more detail the various

facets in the ontological development.

4.2 Ontology: A Way to Enhance Knowledge Sharing and Reusability

Here we will see in more detail the notion of the commonly used word in the knowledge-

acquisition community i.e. Ontology and try to find out the answer to some of the important

questions such as, what is the meaning of term ontology? What are the various categories of

ontologies one can find and what kind of libraries available for ontologies? What

environments and languages can be used to build these ontologies? Etc.

One of the common trends in representing the knowledge that will have a common meaning

for constructing the Knowledge-Level Models or knowledge models is by using the shared

Ontologies. There are different viewpoints one can find in the literature that tries to explain

the meaning of the term ontology. Gruber (1993) defines the notion of ontology as an

‘explicit representation of conceptualisation’. This definition suggests that an ontology is

basically a conceptual vocabulary for understanding the entities and relations that exists in an

universe of discourse. Another viewpoint suggests that ‘an ontology has two purposes, that

is, first it act as a represented vocabulary and as a conceptualisation that are the terms in the

vocabulary is intend to capture’ [24]. This explanation also has the similar underlying

philosophy as that of one proposed by Tom Gruber, but mainly focusing on the areas of

application and intention for which the ontologies are built. Fundamentally, the ontologies

can be useful in two ways (1) ontologies can support the human viewpoint on a particular

domain and organisational communication and (2) they are machine-processable thus can

support as a common understanding between machine and the human being.

Other researchers such as Motta, E. pointed out the more important issue that many of the

earlier definitions failed to exploit is the role of reusability that ontologies serve. According

to Motta, ontology can be defined as follows: “An ontology is a partial specification of a

conceptual vocabulary to be used for formulating knowledge-level theories about the domain

of discourse. The fundamental role of an ontology is to support knowledge sharing and

reuse” [83]. The main context of this definition is not only to provide the common

conceptualisation for the various aspects of knowledge but also to enhance the knowledge

sharing and reusability of the existing knowledge.

Literature Review

Page 34

The structure of an ontology is composed of two main parts such as, the taxonomy and the

axioms [42]. The taxonomy of an ontology is a hierarchical organisation of the concepts and

axioms are the established rules, principles or laws among the concepts. The axioms specify

the competence of an ontology as well.

4.2.1 The Types of Ontologies

Broadly speaking the ontologies can be classified into four basic categories according to their

type such as:

a) Task ontology – it is an ontology that formally specifies the terminology associated with

the type of problem [77]. For example, task ontology of scheduling, planning, design etc.

b) Method Ontology – ontology that formally specify the definitions of the relevant

concepts and relations used for specifying a reasoning process (problem solving) to

accomplish a particular task.

c) Domain ontology – ontology for conceptualising the particular problem domain [24].

d) Application ontology – it contains the essential knowledge in order to model a particular

application under consideration [81].

The ontologies can also be classified depending upon their generality issue. Various such

types of ontologies are developed like, CYC [70], which mainly aims at modelling the generic

notions so as to shape the foundation for knowledge representation across wider domains. In

some cases these types of ontologies are referred to as a top-level ontologies [24] and one of

the well-known example of such type of ontologies is Sowa’s Ontology [111]. The domain

specific ontologies are mainly developed for representing the concepts that are specific to

particular domain. The examples of such type of ontologies are the PIF ontology [65], which

is developed for modelling the business processes. The main aim of the PIF ontology is to

develop the interchange format that enables in exchanging the process description among a

variety of business modelling to support the systems such as planners, process simulation

systems, flow charting tools and process repository. The Bibliographic Data ontology is

residing on Ontolingua server [34] and is developed for representing the concepts and

relationships that underlie a family of databases and tools in the domain of bibliographies,

PhysSys ontology [13] that captures the knowledge related to the physical system process, the

AIRCRAFT ontology [121] used for representing the air-campaign planning knowledge, the

EngMath [49] ontology etc. The EngMath ontology is currently residing on the Ontolingua

server as well [21]. As a part of TOVE project [130] developed at the University of Toronto

various types of Enterprise ontologies are defined. One of them is particularly important from

the scheduling viewpoint is a Generic Enterprise Resource Ontology [130], which mainly

aims at emphasising on the nature of resource, its competence notion and the functionality

Literature Review

Page 35

aspect. The most important aspect is the competence notion of an ontology that explains the

types of tasks in which the ontology representation can be used.

Apart from this, another type of classification for ontologies is based on their development for

supporting the representing of knowledge. The example of such a type is the Frame ontology

[48] that captures the primitives used in various frame-based languages. The Frame

ontologies make other types of ontologies to be specified by using frame-based conventions

such as Knowledge Interchange Format (KIF) [44]. Following figure 10 [4] depicts the

different types of ontologies.

Figure 10. Various types of ontologies according to Mizoguchi and van Heijst and colleagues.

Although the ontologies are quite helpful as a knowledge acquisition tool, there is another

important issue raises importance during the development of ontologies and that is the

reusability and usability trade-off problem [59]. It is a general conscience that the more

reusable an ontology is less usable it is and vice versa. One has to be really careful in order to

keep the exact balance between usable-reusable trade-off while developing the new

ontologies. It has been observed that the nature of the components involved in building the

application systems usually changes according to the target domain. Such a changing nature

of the system components increases the overall cost and time required for building the

applications systems. Such a brittle nature of the system’s building blocks can be avoided by

constructing them by using the reusable constructs (i.e. ontologies). The first step in avoiding

such a risk is by deciding about are there any currently available ontologies that can be reused

from the existing libraries? If the answer is yes, then the next step is to decide whether

additional concepts needs to be added in it or refine the existing ones otherwise one needs to

Domain Ontology
E.g. scanner,
Anaesthetise

Task Ontology
E.g. Goal, schedule

to assign, to
classify

General/Common
Ontology

E.g. Things, event, time, space,
causality, behaviour, function

Representation Ontology
- Conceptualisation of KR

formalism

Generic Ontology
- Reusable across

domains

Domain Ontologies
- Reusable

Application Ontology
- Non reusable.

- Usable
Mizoguchi, R., Vanwelkenhuysen, J. and Ikeda, M. Task
ontology for reusable problem solving knowledge,
Towards Very Large Knowledge Bases: Knowledge
Building & Knowledge Sharing, IOS Press, pp. 46-59.

Heijst, V., Shreiber, G. and Wielinga, B. 1997, Using
Explicit Ontologies in KBS, International Journal of
Human-Computer Studies, 46 (2/3), pp. 183-292.

Literature Review

Page 36

start building the new concepts that are missing in the current ontologies and adding them into

the existing library [4]. If the developer needs to add the additional concepts or in other case

needs to build the new ontology right from scratch this is the point where the concept of

knowledge modelling enters into the picture.

Talking about the task ontologies in particular the task ontology can be seen as one of the

important basic building blocks i.e., a technology [22], in building the knowledge models.

The task ontology can be referred as an associated ontology (terminology) for the targeted

task organised from the viewpoint of problem solving [117]. On the other hand one can treat

the task ontology in order to formalise the knowledge for problem solving in task specific but

application independent viewpoint. So the term task ontology can be interpreted in two ways:

1) It can be seen as a task-subtask decomposition of the various tasks such as scheduling,

design, diagnosis etc.

2) The task ontology is an ontology for specifying the problem solving process.

The systematic organisation of various concepts and relations of the task ontology may or

may not be similar for the different problem-types1, but usually changes according to the type

of problem. For instance, the task ontology of a scheduling task could represent a set of

modelling components for representing the complete facets of scheduling task e.g., job,

resource, constraints, assigned-job, schedule-complete, schedule-violate etc. Generally

speaking the task ontology represents the problem specification by taking the input

parameters in order to produce the expected outcome to the problem. In section 5 we will

review the existing task ontologies that are built exclusively for the scheduling task. In next

section we will briefly see the various languages and environments that are built for

developing ontologies.

4.3 The Languages and Environments for Ontology Building

There are several languages and environments, which are currently available for building the

ontologies. Most of the languages use one of the following modelling approaches such as, a

logic-based approach, a frame-based modelling approach or both. Some of the most

commonly known languages that are widely in use are currently residing on Ontolingua [34].

It is one of the most widely accepted languages in the knowledge acquisition community,

which is based on Knowledge Interchange Format (KIF) and on the Frame ontology.

Ontolingua supports three different types of expressions for building ontology such as:

1) It supports the development of an ontology by using KIF expressions.

1 By problem-type we mean that a scheduling, a planning, a design etc. as a different types of problems.

Literature Review

Page 37

2) It supports the development of an ontology exclusively based on the Frame Ontology

vocabulary.

3) And supports the development of an ontology by using the both languages at the same

time.

CycL [70] is used as a Cyc’s knowledge representation language. This language is similar to

the first-order predicate calculus with some extensions. It also has an inference engine in

order to execute several kinds of reasoning. CycL uses a form of circumscription that

includes the exclusive name assumption, and can also make use of the closed world

assumptions where it is appropriate. For more information on CycL please refer to [132].

LOOM [76] is a high-level programming environment that supports the language and

environment for constructing the intelligent applications. It is based on first-order logic,

which belongs to the KL-ONE family. The LOOM language supports various kinds of

specifications such as an explicit and expressive declarative model specification language, a

robust deductive support and several programming paradigms along with the knowledge-

based services. LOOM uses a fully expressive, logic-based representation language (which is

a variant of KIF). LOOM’s inference engine is not a complete first-order theorem prover but

it can handle complex rules, negation, equality reasoning, subsumption and restricted forms of

higher order reasoning.

FLogic (Frame Logic) [60] specify most of the structural aspects of object-oriented and frame

based languages in a clean and declarative fashion. For example, the object identity, the

complex objects, the inheritance, the polymorphic types etc. In a sense FLogic shares quite a

lot with object-oriented paradigm as a classical predicate calculus as that of the rational

programming. FLogic has a model-theoretic semantics as well as a sound and complete

resolution-based proof theory. FLogic’s deductive system works with the theory of structural

and behavioural inheritance and predicate calculus. One of the advantages of FLogic is its

extensibility as it can be combined with a broad range of other specialised logic.

Operational Conceptual Modelling Language (OCML) [81], fundamentally focuses on the

logical rather than implementation-level primitives. The main objective of OCML is to

support the knowledge-level modelling. It provides the various mechanisms such as classes,

relations, functions, rules etc. The OCML can be used in other modelling frameworks that

are presently available such as CommonKADS [126], Components of Expertise [112] it

mainly notifies the Task-Method-Domain-Application (TMDA) [81] modelling framework

(c.f. section 4.5.6). Another important point worth mentioning about OCML is that it

supports different styles of modelling such as, informal, formal or operational. Operational

modelling style is supported in OCML in terms of evaluating control and functional terms as

well as theorem proving facilities. Informal modelling can be visualised by creating a pseudo

code for the formal modelling expressions. In sum, the OCML is meant to provide the useful

Literature Review

Page 38

tool for knowledge modelling whose main aim is to support the operational modelling

facilities. Such an aim is satisfied by including functional and controls terms, as well as a

proof system by integrating the inheriting backward chaining, function evaluation and

procedural attachments.

There are several software tools available for building the ontologies such as, Ontosaures

[115]. It aims at producing the distributed large-scale ontologies for various applications.

The Ontology Server [34] is a tool for constructing the collaborative ontology. ODE [35] is

an ODE is the ontology construction tool, which facilitates the user interaction at knowledge

level. It uses a set of intermediate representations to the languages that are used to specify the

ontologies. Tadzebao and Webonto [31], the WebOnto is a web based application tool for

collaborative browsing and editing the knowledge models and the underlying model is

implemented in OCML as a knowledge modelling language.

4.4 Problem-Solving Methods

The Problem-Solving Methods (PSMs) can be seen as a one of the most valuable assets for

knowledge acquisition. PSMs can be defined as a “domain independent reasoning steps,

which specify the behaviour that can be used across wider domains” [36]. The more formal

and complete definition of PSM can be defined as follows.

A problem solving method is a domain-independent knowledge-level specification of problem

solving behaviour, which can be used to solve a class of problems, say C. A problem solving

method can be characterised as a particular specialisation of the generic problem solving

model associated with C, say Gen-PSM, and its method ontology associated with Gen-PSM

[83].

Broadly speaking the work on PSMs varies in different areas such as, how to formalise the

various types of PSMs, how to store and index PSMs efficiently and more importantly how to

identify the generic components of the task-specific PSMs, such as PSMs for scheduling,

design, classification etc.

The PSMs describes the control knowledge domain independently along with the reasoning

steps and the knowledge requirement for the task (e.g. scheduling, planning, design etc.) in

order to solve it. The control knowledge of a PSM specifies the order of execution for

various components along with the rationale for their execution and the data flow. The

knowledge requirement states the kind of knowledge required for giving the reasoning steps.

Thus the use of PSMs can be identified in a number of ways:

• It can be seen as a guideline for acquiring the problem solving knowledge from an expert.

• It can be seen as a guideline for decomposing the complex task into manageable subtasks

and the order of their execution.

Literature Review

Page 39

• It can be seen as a template for describing the reasoning process of the knowledge-based

system.

• It can be seen as a way of selecting the flexible reasoning pattern by selecting appropriate

methods during the process of problem solving etc.

The PSMs holds the unique position in knowledge acquisition community as compared to the

constraint satisfaction community. Unlike to that of constraint-satisfaction community the

knowledge acquisition community mainly aims at achieving the solution to the task through

the efficient use of application knowledge [37]. As one of the main objectives of the

researchers in the knowledge acquisition community is to provide the rational in finding out

how the particular problem has been tackled while generating the solution rather than the

actual solution itself. So the generalised patterns of reasoning can be reused efficiently in

order to solve the similar kind of problem in future.

Similar, to the task ontology the PSMs can be broadly categorised into two major classes such

as, task-specific PSMs and task-independent PSMs. The former type of PSMs are generally

known as a strong methods [74] and are developed in order to solve the specific tasks such as,

planning, scheduling, design etc., whereas the later type can be seen as a weak methods. The

term ‘weak’ indicates that these PSMs do not exhibit any assumptions according to the type of

task and can be used to solve any type of task independent to its knowledge requirements.

The examples of strong PSMs are Propose and Revise [72], Propose and Exchange [97] etc.

and that of task-independent PSMs are A*, Hill-Climbing, Depth-First search, Breadth-First

search etc. The above mentioned strong PSMs that are developed for solving the synthesis

tasks [125] such as, scheduling, planning, design etc. belong to the family of Propose-

Critique-Modify-Revise (PCMR) [23] methods. Talking in particularly about the PCMR

classes of methods the Propose role of these methods is similar in nature with each other.

During the propose role the solution to the initial model is proposed. The propose role

terminates if the constraints are violated while proposing the solution to the problem or if the

propose phase is complete. For example, in scheduling the propose role is said to be

complete if all the jobs are assigned to the available resources or if the constraints on the jobs

are violated. And depending upon their constraint removal strategy the revise role, exchange

role etc. of these methods differs from each other. Most of the PSMs from the PCMR family

are based on the following scheme.

1) Propose the initial extension to the model.

2) Identify the constraints on the extended model.

3) If the extended model violates the constraints then try to remove the violated constraints

or at least minimise it with further effort (during this stage the methods differs based on

how they remove the constraint violation).

Literature Review

Page 40

For example, in the Propose and Revise PSM the model is extended by using the procedures

that defines the value for the different parameters of the model. If the constraints are violated

then these constraints are removed by applying the appropriate fixes. In Propose and

Exchange method during the exchange phase some of the earlier set of solutions

(assignments) are exchanged at the same depth of search tree in order to remove the violated

constraints.

In general the PSM can be realised based on its architecture which is described in the

following three levels:

First Level – The competence notion of a PSM can be explicitly explained based on its input-

output performance. The input-output performance of a PSM states that what can be achieved

by the particular PSM.

Second Level – The operational specification of a PSM gives the inference structure that

satisfies the competence of the PSM if the appropriate domain-knowledge is provided. This

level of PSM consists of three main components such as, the inference roles, the knowledge

requirements for providing the inferences and the control-flow among the knowledge-roles.

The inference roles are specified in terms of the input-output relations that can be solved by

two types of methods, decomposition method and primitive method. The decomposition

method decomposes the top-level task into one or more manageable sub-tasks until they have

enough knowledge in order to solve by the primitive methods. On the other hand the

primitive methods solves the task directly without any further decomposition. The control-

flow determines the order in which the inference steps must be executed.

Third Level – This level specifies the requirements and assumptions needed for a PSM in

order to describe the domain knowledge requirements of PSM for achieving its competence.

Figure 11. The basic architecture of a PSM [95].

There are various ways by which the PSM can be reused and stored in the library for their

further applications. Once the PSM has been successfully developed then it is important to

identify and abstract the generic components of all such PSMs. Once the generic components

Role 1

Operational Specification (How it achieves it?)

(inf1; inf2, …….. , infn)

inf 1 Role 1 inf 2

Requirements and Assumptions
(What it needs to achieve it?)

Competence of a PSM
(What a PSM can achieve?)

Literature Review

Page 41

are identified, collected and abstracted at the generic level then they can be stored in the

library. The developer of a new PSM can be benefited from such libraries by using the pre-

existing generic components by incorporating them in the new development. It saves the

effort of a knowledge engineer to build the PSMs from scratch. Most of the libraries that are

built for solving the particular type of task usually exhibit domain independent but task

specific functionality. Currently several such types of libraries are available that are

developed for different types of tasks such as, diagnosis, classification, parametric design etc.

The structure of such type of libraries can be identified based on various levels such as,

generality of a PSM, formality of a PSM, granularity and size of a PSM [95].

• The generality of a PSM determines whether the PSM is developed for any particular task

or it is task independent. A task-specific PSMs mainly deals with solving some specific

tasks such as design, scheduling, diagnosis etc. The few examples include Planning [92],

design [22], parametric design [82], diagnosis [10], Assessment [120]. The

CommonKADS library [16] can be viewed as an extensive collection of most of the

above-mentioned task-specific PSMs. To mention few the assessment, design,

configuration, planning, assignment and scheduling etc.

• The formality notion of a PSM categorises the libraries in three main categories

depending upon the library specification such as, the formal library, the informal library

and the implementation oriented library. The formal specification of PSM libraries gives

scope for the formal verification of it properties [1, 11]. The informal libraries of PSM

offers structured textual representation of a PSM. Such representation can vary from

simply textual representation to highly structured specification of a task, for instance,

diagnosis [11]. The implemented libraries of PSM offer operational specifications that

can be executed directly.

• The granularity of a PSM differentiates between the libraries of complex component such

as, the parametric design library of Motta [80] and fine-grained PSMs concentrates on the

small part of a task as opposed to complex component that focuses on the complete task.

• Finally, the size of libraries simply determines the number of PSMs that are included in

the library. It does not raise important issue directly in terms of the construction of a

PSM. The CommonKADS [16] library can be seen as an extensive collection of PSMs

for solving various types of tasks as mentioned above.

The basic organisation of the knowledge modelling approach can be defined in terms of

knowledge modelling frameworks. Hence, in the next section we will see some of the most

influential knowledge modelling frameworks.

Literature Review

Page 42

4.5 The Knowledge Modelling Frameworks

In this section we will look at some of the most influential knowledge modelling frameworks

that are developed over the period of last two decades or so. Currently, there are wide

number of knowledge modelling frameworks available such as, KADS/CommonKADS [124,

126], Generic Task [20], Components of Expertise [112], Protégé [85], Role-Limiting

Methods [74] and Task-Method-Domain-Application (TMDA) [80, 81].

All these modelling frameworks are developed by keeping some specific aims and objectives

and focusing on the different purposes. The knowledge modelling framework supports the

construction of knowledge-based systems by defining the basic modelling organisation. Each

knowledge modelling framework represents its own philosophy for developing the knowledge

model. Here we will mainly focus on analysing the main purposes and aims that lie behind

the development of these frameworks.

4.5.1 KADS to CommonKADS a Journey of a Decade

KADS/CommonKADS [124, 126] is one of the most influential knowledge modelling

framework in the field of knowledge acquisition community. It can be seen as a

comprehensive methodology for developing the knowledge-based systems. The work on the

methodology was under development for nearly a decade or so. In the beginning the KADS

was mainly focused on the knowledge acquisition [16], which was one of the major concerns

in the knowledge-based technology then. Over the time period it has grown as a complete

methodology that covers project management, organisational analysis, knowledge

engineering and software engineering etc.

In CommonKADS the various roles can be captured into three basic categories of knowledge

such as: task knowledge, domain knowledge and inference knowledge. All the categories of

knowledge are identified at the knowledge level [87] by specifying sufficient and necessary

conditions to define an expert system.

• Task Knowledge: task knowledge serves a dual purpose, first it specifies the iterative task-

subtask decomposition of the top-level task. It expresses what it means to achieve these

tasks and secondly it gives the order of execution of these subtasks (control structure over

the execution) so that the top-level task can be achieved. The first part of the knowledge

gives the task definition as the second part the task body. The task definition mentions

the goal of a task in terms of the input and output roles. The task body of task knowledge

gives the description about how that particular task can be achieved. In order to achieve

the top-level (parent) task it is decomposed into various other categories such as:

primitive task, composite task and goal specification task. The primitive task can be

achieved directly without its further breakdown into other types of task. They have

Literature Review

Page 43

enough knowledge associated with them so as to achieve them directly. The composite

tasks needs further breakdown into low-level tasks so that by achieving these low-level

tasks the solution for the composite task can be constructed. Finally, the goal

specification task defines the goal specification for the associated task.

• A Domain Knowledge: a domain knowledge categorises into three basic knowledge

elements that specifies; the structure of a knowledge (i.e. form), the way knowledge is

organised (i.e. its structure) and the contents of the domain specific knowledge. For

example, in the job-shop scheduling problem the domain knowledge shows the various

properties associated with a particular job or a resource along with the constraints that

restrict the space of their application and the way these properties are associated together

for their execution etc. The form and structure of a knowledge is explicitly defined by the

domain specific knowledge statements i.e. domain ontology.

• The Inference Knowledge: the inference knowledge gives the reasoning behaviour for the

task subtask decomposition. It specifies the primitive steps in a particular application and

the way domain knowledge statements are manipulated by these inferences. More

importantly the inference knowledge specifies the data dependencies among different

inference but it does not account for the order of execution of these primitive steps i.e.

when and how such inferences can be made.

However, it is important to make the rationale that allows for constructing and making the

explicit explanation about the system. In CommonKADS these rationales are specified by the

meta-level knowledge that describes the structure of knowledge instead of giving the

description of the structure itself. The CommonKADS framework supports the three types of

metalevel knowledge such as: ontologies (that define the way to structure the knowledge),

case model schemata (explains the way to conceptualise the task) and finally the problem

solving methods (it explains the pragmatic approach adopted for solving the particular task).

In CommonKADS framework the three knowledge categories are interrelated with each

other. And the knowledge roles are used as a reference among them. In order to enhance the

transparency and maintenance for shaping the domain knowledge the notion of ontology [48]

is adopted. An Ontology expresses the explicit viewpoint on particular domain application by

specifying the common vocabulary.

The case model schemata are adopted in order to enhance the pragmatic rational behind the

nature of problem solving. However, from the historical perspective the knowledge level [87]

does not talk much about such behaviour except stressing on the selection of particular action

for achieving the goal. Clancey [28] stressed that knowledge-based systems need to be built

by the situation specific knowledge and similar argument was previously made by Steels

[112] when talking about the case models. So in CommonKADS the case model specifies the

Literature Review

Page 44

rationalisation about the solution and gives the explanation about why certain solution is

considered as a solution. It also provides with the global structure of the argument that will

support the conclusion.

The problem solving is a kind of black box in which the problem goes in and the solution

comes out. The problem solving methods explains the inferences by constructing the task

bodies. It explains the way to decompose the task definition in a task-subtask hierarchy along

with how the solution to the subtask contributes in building the solution to the top-level tasks.

In summary the CommonKADS modelling framework can be seen as a comprehensive

methodology for the knowledge modelling. It provides clean clarification on reusability

aspect by the specification of ontologies, problem solving methods and the library

organisation by giving its own language support such as, CML [103] and (ML)2 [54]. The

CommonKADS framework provides a distinct separation between application-specific

knowledge and generic model. Though there are few limitations can be seen in the

CommonKADS framework. Even though it gives the specific distinction between task,

domain and inference knowledge categories the reusability focus is not explicit enough. Also,

the ontological commitment associated with the problem solving level is missing which can

be realised by developing the method ontology [45]. The notion of method ontology can be

integrated in the CommonKADS as the schema specific domain viewpoint.

4.5.2 Generic Tasks

The Generic Tasks [20, 21] modelling approach was developed by B. Chandrasekaran and his

group at The Ohio State University for nearly a decade in 1980s. It has started with learning

about how to decompose the complex task into manageable component tasks. The main

intuition of the work was based on that of classification, data retrieval, plan selection and

refinement, state abstraction and abductive assembly since all of these are in one sense or

other are re-usable subtasks. Another important driving factor that has lead the development

of Generic Tasks approach was that of interaction problem. The interaction problem states

that: “Representing knowledge for the purpose of solving some problem is strongly affected

by the nature of the problem and by the inference strategy to be applied to the knowledge”

[18]. So the approach to this problem has been in identifying the “generic tasks” i.e. the basic

combinations of knowledge structure and inference strategies. In one of the paper about

Generic Task [23] the author has defended their viewpoint saying “generic tasks” is in a sense

a misleading term. And what the author really meant is the following three basic concepts of

the Generic Task framework consist of, elementary generic combination of a problem,

representation and inference strategy. These three concepts can be described as follows:

Literature Review

Page 45

• Elementary generic combination of a problem: it represents the input and output of the

generic task along with the function of the generic task and what is the generic task is

feasible for.

• The representational knowledge: basically explains the way knowledge should be

organised and the structure that needs to be adopted for achieving the functionality of the

task. It also represents the type of concepts that are involved in the generic task, the

concepts explains the input and output of a task and the way knowledge is organised in

terms of these concepts.

• The Inference Strategy: it represents the three basic elements such as, the process, the

reasoning behaviour in order to achieve the task (problem-solving approach) and the

control regime. In other words it gives the explanation about the inference strategy that

should be applied to the knowledge such that it accomplishes the functional behaviour of

a task.

In the Generic Task approach the tasks are rationalised as a “problem and goal” combination

i.e. the goal of one problem is specified as the input to the next problem. The methods are

characterised as a ways to accomplish the task and are of two types: computational or

situated. The situated methods involve extracting information from the surroundings of the

physical world. The concept of computational methods is pragmatically similar to the notion

of problem space computational model of Newell [86]. In which the goal state is specified as

a desired state that can be achieved by applying the operator. The operator transforms one

state into the another state. Such a state transformation in a problem-space is controlled by

the search control knowledge, which has the similar underlying philosophy as that of SOAR’s

architecture [66]. When there is more than one operator potential to apply on the current state

then in such cases the search control knowledge determines which operator to be selected.

Finally, the inference strategy is used as a part of method description. The inference

terminology arises from the “reasoning metaphor” [23] in which the agent solves the current

problem by making the inference from the available knowledge to generate a new knowledge.

The model building procedure of Generic Task approach is similar to that of Components of

Expertise [112]. In Generic Task the top level task is broken down into smaller manageable

tasks until the task is solvable directly without its further breakdown.

In summary, the Generic Task approach exhibits various properties as it mentions that there is

not only one-to-one relationship between generic task and problems. In other words the

problem might match the function of more than one generic task hence several strategies can

be applied for solving the problem. The Generic Task approach appeared to have

computational advantages. It explains how the knowledge of right type can help in solving

the problems in an acceptable time even though the general problem structure is NP-

Literature Review

Page 46

complete. As mentioned earlier the Generic Task approach is applied on the range of

problem types such as classification, design, diagnosis etc. Apart from all these advantages

one of the limitation of Generic Task approach is that it does not provide task-independent

domain models and hence it is difficult to achieve the reusability aspect. Also, there is no

clear-cut distinction between the domain knowledge and the application knowledge as it

assumes that the application knowledge is already absorbed in the specific computational

categories. Thus, it cannot be seen as an efficient way to analyse the domain-specific

knowledge requirements.

4.5.3 Components of Expertise

The Components of Expertise (CoE) [112] modelling framework was proposed by Luc Steels

in 1990. This framework is mainly built for analysing what is called as the knowledge-use

level. The knowledge-use level describes the way to decompose the overall task into

manageable sub-tasks, it determines the ordering among these sub-tasks and decides what

kind of access the knowledge is needed etc. In this sense the Generic Task and CoE shares a

lot with each other. The work on CoE is mainly motivated by the various previous

approaches in the field of knowledge acquisition such as, Generic Tasks [20], Clancy’s

Heuristic classification [27] and series of knowledge acquisition tools developed by

McDermott [74]. In CoE three major types of components are proposed such as, the task

component, the method component and the domain component. These are described in more

detail in the following bullet points.

• Task Component: at this level of the modelling framework the detailed task analysis of

the task is conducted. It explicitly mentions that each task can be decomposed into

subtasks with input-output relations among them. It also emphasises on two viewpoints

for analysing the task such as, a conceptual and a pragmatic. From the conceptual

viewpoint a task can be characterised by stating the problem that should be solved, for

instance, scheduling, planning etc. The pragmatic viewpoint focuses on the

environmental constraints in which the task is executed or from the epistemological

limitations of the environmental factors as such.

• Method Component: at this level of the modelling framework it emphasises on the

problem solving methods which can be applied to the task by considering the appropriate

domain knowledge. The CoE bifurcates the functionality of method components into two

basic functions such as; it first decomposes the task into manageable number of subtasks

or otherwise solves the task directly. In both the cases it emphasises on the strong

coupling between methods component level and the domain level.

Literature Review

Page 47

• Domain Component: at this level it emphasises on the particular viewpoint imposed by

the task components on the particular application domain. It looks at the domain models

from the domain theory viewpoint. The domain theories explain the principal theory that

is underlying the problem solving in a particular domain. So the problem solving

opportunistically selects the appropriate part of these theories in order to support the

reasoning behaviour at the method component level.

In summary, the Components of Expertise modelling framework has combined and

synthesised the various ideas from the previous modelling frameworks and refined them

distinctly in a task, method and a domain component of the application development. Such a

distinct categorisation of these components exhibits truly what is called as orthogonal

dimensions for the component reuse and thus can be very helpful for organising the library of

reusable components. Even though Steels’s framework provides clear distinction between

task-method-domain level it does not provide any accountability between domain and

application level. As described in the second and third bullet points the problem solving level

is strongly coupled with the domain level by domain theories. Thus this framework is very

much method oriented. Still, Components of Expertise modelling framework has unique

place in the history of knowledge modelling as it has introduced the neat separation between

task, method and domain levels.

4.5.4 Role-Limiting Methods

Role Limiting Methods (RLM) [74] is one of the well-known approach for the generic

models. The Role Limiting Methods reduce the roles of knowledge in the domain problem

solving. The Role limiting Methods approach facilitates knowledge acquisition, knowledge

representation, and efficient inference by representing the control regimes separately. The

RLM requires a certain domain model organisation and provides a control mechanisms to

apply on the domain knowledge for making certain types of inferences in order to reach the

goal state. The RLM approach is based on three basic claims, which are listed as follows.

1) It emphasises that there exists a family of tasks which can be adequately solved by the

methods and whose control knowledge can be abstracted from the peculiarities of any of

the family members.

2) It says that if any of the methods whose control knowledge is not task specific then in

such cases the method will use the task-specific knowledge in order to achieve the

identification, selection and implementation of actions for achieving the goal states.

3) Finally, it claims that by separately representing the control regimes it increases the

strength of the guidance provided by a method.

Literature Review

Page 48

The RLM approach is mainly based on problem solving as the basis of identifying, selecting

and implementing the sequences of actions that will accomplish some task within a particular

domain. A selected problem solving method provides a means for identifying the selection of

a potential action at each stage. It also provides one or more mechanisms in order to select

among the potential candidate actions and finally ensures that the selected action is

implemented properly. In RLM the method’s control knowledge consist of two parts: 1) An

algorithm specifying when to use what type of knowledge for achieving the above mentioned

criteria of identification, selection and implementation of the action. 2) It emphasises that

whatever knowledge the method possesses for selecting among the candidate actions that

knowledge is not control knowledge. Thus, it provides the separate control knowledge apart

from the problem solving knowledge itself. Hence, potentially there is only one component

in RLM that is the complete problem solving method in itself.

In summary, the Role Limiting Methods approach is important historically because it was one

the approach, which for the first time implemented Clancey’s role differentiation principle

[28]. The principle states that the problem solving agents can be described as a generic

models in such a way that problem solving roles can be imposed on the domain knowledge.

Even though RLM looks quite basic as compared to the other modelling frameworks

developed in the later years one should not forget that RLM was developed when the

knowledge modelling was still in its early age.

4.5.5 Protégé

The Protégé modelling approach was developed at Standford University’s Medical

Informatics Laboratory by Mark Musen. His early work on the OPAL [84] knowledge

acquisition system has demonstrated how the domain-specific tools can potentially accelerate

the encoding of a medical knowledge that was used for the ONCOCINE expert system. The

OPAL system was originally developed for providing the treatment to the cancer patients thus

had very limited applicability because of the limited focused domain. In order to spread the

wider domain applicability the work on Protégé [85] acquisition tool started. Later the

Protégé was used to handle the problems from another domain area i.e., planning and more

specifically from the Episodic Skeletal Plan Refinement [119]. But the users faced the

problems while using the Protégé environment because the problem specification at the task

level hardly matches with the requirements at the problem solving level. In order to

overcome this drawback the Protégé-II environment was developed. The Protégé-II

environment is based on Protégé environment. The Protégé-II environment is a knowledge-

acquisition shell that efficiently provides a task-modelling environment for the knowledge

engineers and knowledge-editing environment for application users. In contrast to the

Protégé, the Protégé-II is independent of the task, methods and domains. In Protégé-II one

Literature Review

Page 49

can specify the definitions of various knowledge roles at the knowledge level from both

domain-dependent and domain-independent knowledge perspective. The problem solving

methods can be generated by using mechanism [45] as a building block and models the

application task in terms of the constructed methods. The complete model is constructed by

the library of methods and mechanisms. Similar to the Generic Tasks approach the model

construction process is based on generating a task model through the method driven task

decomposition processes.

In summary, the Protégé is one of the most accomplished knowledge modelling tools that

provides the knowledge acquisition as well as knowledge editing tools. It supports the

construction of a library of task and methods as well as editing tool for selection and

configuration of methods.

4.5.6 Task/Method/Domain/Application Modelling Framework

The Task/Method/Domain/Application (TMDA) [80, 81] modelling framework takes as an

input the initial methodology of task-method-domain partition proposed by Components of

Expertise [112] and Protégé [85] and from there it refines it on various dimensions. In

TMDA modelling framework there are in all four types of generic components such as, task

knowledge, method knowledge, domain knowledge and application configuration knowledge

or application knowledge.

• Task Knowledge: at this level the generic task is specified by means of the task ontology.

Ideally, the task ontology should be generic in the sense that it should be domain as well

as application independent. Task ontology can be seen as a problem specification of a

task by specifying its goal statement to be achieved based on the input parameters. For

example, if we take the scheduling as a task then its input parameters can be jobs,

resources, constraints, time ranges, cost and preferences etc. and the goal of a task is to

construct a schedule.

• Method knowledge: at this level the method knowledge gives the domain-independent

specification of the reasoning components. In order to enhance the communication

between these knowledge types the concepts from the task knowledge level are mapped

to the problem solving level. The method knowledge is further subdivided into two

levels such as generic problem solving model and the problem solving methods. First,

the generic problem solving model can be developed by abstracting the generic

components from the various problem solving methods. The generic problem solving

model provides the common basis for comparing and contrasting the knowledge

requirements of other problem solving methods. And at the next level other problem

solving methods can be constructed as a refinement of generic problem solving model.

The generic problem solving model takes as an input the task specification from the task

Literature Review

Page 50

ontological level and the problem solving paradigm that can be adopted for solving the

problem and produces the method independent but task specific model of problem solver

and generic method ontology as an output.

• Domain Knowledge: at this level of the methodological development the reusable domain

components are defined which serve as specifying the multi-functional [82], reusable

domain models. Hence, it avoids the knowledge interaction mismatch between the

domain layer and the concepts defined at the method layer. In TMDA framework the

gap between these two layers is bridged by defining the appropriate mapping mechanism

[45].

• Application (configuration) knowledge: finally at this level of methodological

development the application specific knowledge is defined. As the application-specific

knowledge is strongly application related hence it cannot be a part of multi-functional

domain knowledge base and thus cannot be reusable.

In summary, as mentioned earlier in the initial stage the TMDA modelling framework adopts

the similar underlying philosophy as that of the previous modelling frameworks such as

Components of Expertise and Protégé but refines it on several dimensions. The major

strength of TMDA is that it adds the fourth type of component i.e., the application

configuration knowledge by formulating the relevant mapping mechanisms. The mapping

mechanism also helps in bridging the gap between knowledge interaction mismatch. Also,

TMDA tries to bring together the important usability and reusability trade-off. It can be seen

from the first two bullet points that it provides a strong coupling between generic tasks and

problem solving methods by mapping the concepts from task ontological level to problem

solving level. In order to increase the reusability of domain knowledge it adopts a weak

coupling between problem solving knowledge and domain knowledge; as the domain

knowledge is characterises the task-independent nature of the domain.

So along with the description of Task/Method/Domain/Application framework we conclude

the review of the most influential modelling frameworks during last two decades or so.

4.6 Summary so far

It can be realised from the various modelling frameworks that each framework has its unique

place in the history of knowledge modelling. The first few frameworks such as Role Limiting

Methods, Generic Task and Components of Expertise can be seen as the basic foundation for

the work on later frameworks such as CommonKADS and task/method/domain/application

framework. The CommonKADS and Protégé were one of the few to exploit the knowledge

interaction between the domain and problem solving level by defining various types of

ontologies such as method and domain ontology at the problem solving and domain level. In

Literature Review

Page 51

order to bridge the gap between domain and application level for avoiding the knowledge

interaction mismatch the task/method/domain/application framework has refined it by using

the mapping mechanisms. Thus, it has distinctly identified the clear boundaries between task

level, problem-solving level, domain level and application level. At each of the four levels

various types of ontologies are defined such as task ontology, method ontology, domain

ontology and application ontology.

Now in the next section we will review the currently available task ontologies for scheduling.

In the following review we will try to analyse the conceptualisation behind the development

of these task ontologies.

5. Existing Task Ontologies for Scheduling

In this section we will review the presently available task ontologies developed for the

scheduling task. This section of the review will be helpful for the proposed work of the

research in the sense that it will make us aware in understanding the position of other

researchers on developing the scheduling task ontology. We will mainly concentrate on

finding out the concepts involved in their task ontologies, the various input parameters

included in the task ontology etc. In the following review we will analyse the work done by

the three research group for developing the task ontologies which are OZONE [109], Job-

Assignment Ontology [52, 55], MULTIS [77].

5.1. Job-Assignment Task Ontology

The Job-Assignment task ontology [52, 55] is developed under the project named CAKE

since 1987 by the group of Hama, T., Hori, M. and Nakamura, Y. and is presently residing on

the Ontolingua server [34]. This task ontology gives the knowledge level description for

various concepts involved in the scheduling task and their relations with each other. The job

assignment task, which is a class of scheduling problems of, “assigning all given jobs to the

available resources within the time range, while satisfying various constraints” [131]. The

main input parameters that comprise Job-Assignment task ontology are jobs, resources, time-

ranges and constraints. These input parameters are categorised into three fundamental entities

and two basic types of relations. The entities are jobs, resources and time-ranges whereas the

relations among them are assignment and constraints. The fundamental entities are described

in terms of their attributes. For example, the job is described in terms of its time range,

duration and type. In this task ontology the relation ‘assignment’ can be seen as a mapping of

jobs to the resources or time ranges. The final output (i.e. goal) is the total mapping of all the

jobs to the resources or time ranges by satisfying the various constraints. The constraints can

be seen as a restriction on the space of assignment and are mainly defined in terms of the

relation among attributes of jobs, resources and time ranges. For example, the constraints can

Literature Review

Page 52

be specified in such a way that only certain jobs can be assigned to the resources within

certain time slots, which can be interpreted as a job specific constraint. The constraints

impose the conditional requirements on the attribute values of jobs, resources or time ranges.

These conditions with some additional requirements are considered as a special type of

constraints. The constraints are mainly used as an evaluation criterion in the task ontology.

In other words, the final schedule is validated in terms of number of constraints that are

satisfied by the completion of an assignment.

Thus, the job-assignment task ontology exhibits quite straightforward framework for the class

of job assignment class of scheduling problems.

Even though all the main concepts are described at the knowledge level in the job-assignment

task ontology their definitions are informally illustrated at the same length and the properties

of the important relations and classes are not characterised with the required level of detail

and formalism. For example, the definition of a job is characterised in terms of the source

object (where source object denotes an object to be assigned on the target object) and similar

characterisation holds for the resources, which is represented in terms of the target object.

The only evaluation criterion that is considered in this task ontology is the number of

constraints that are satisfied by the completion of a schedule. It is important to keep in mind

that the scheduling task is usually seen as a problem of finding the optimal or sub-optimal

solution. By using the evaluation criteria considered in the job-assignment one can only get

the feasible schedule solution but the optimality criteria remains unanswered. In order to

achieve the optimal solution one needs to consider the cost as an optimality criterion in order

to choose the cheaper scheduling solutions. Also, there is no clear indication about separation

of a constraint into hard constraints and soft constraints. The constraints are treated simply as

hard constraints throughout the generation of a schedule that can act as an over-constrained

approach for a scheduling problem. One way of dealing with the different constraints in

scheduling is to divide them into two basic categories such as hard constraints and soft

constraints. The hard constraints can be used as minimum satisfactory condition for the

schedule to be valid and then satisfying the soft constraints can be seen as a full-proof

criterion on the schedule solution.

5.2. MULTIS Task Ontology

The MULTIS task ontology [77] is the outcome of the MULTIS project conducted at Osaka

University since 1987. This task ontology is developed through a task analysis interview

system for a general class of scheduling problem. The MULTIS task ontology is called as a

system of “generic vocabulary” [77] it mainly consists of generic nouns, generic verbs, and

generic adjectives along with other task related concepts. The generic process is mainly a

Literature Review

Page 53

combination of generic verbs and nouns that occur in the domain. More than one generic

processes creates the network of these processes which is called as a “generic process

network” (GPN). The GPN is a knowledge level representation/skeleton for representing the

problem structure under scrutiny i.e. scheduling. The lexical level task ontology consist of

four main types of concepts such as:

• Generic Nouns: that represents the objects reflecting their roles appearing in the problem

solving process. For example, Schedule Recipient (job, order etc.), Schedule Resource

(line, machine etc.), Schedule representation, Constraints, Goal and priority etc.

• Generic Verbs: that represents unit activities appearing in the problem solving process.

For example, Assign job, classify job, select, pick up, neglect etc.

• Generic Adjectives: that modifies the pre-existing objects. For example, unassigned job,

the last etc.

• Other related words that are specific to the task. For example, Strong/weak constraints,

constraint predicates and attributes etc.

The knowledge about the generic verbs, nouns etc. is acquired by the task analysis interview

with the domain experts that establishes the interview system. The main framework of the

MULTIS task ontology is based on three basic terminologies for representing the final

schedule such as Schedule Recipient i.e., a job, Schedule Resource that is, a resource e.g. line,

machine, track etc., and the time slots which can be allocated to the job. A final solution to

the scheduling task is represented as a generic noun such as schedule. The solution to the

schedule is represented as a generic verb, which represents the assignment of Schedule

Recipient to the Schedule Resource. The goal of a scheduling task in MULTIS is based on

optimising the priority of jobs or data information according to specific domains. In MULTIS

the constraint related vocabulary is divided into two parts such as strong constraints (hard)

and weak constraints (soft) and they are subject to satisfaction for the jobs by using the

generic adjectives such as satisfying or violating the constraints for the assigned/unassigned

job etc.

The main optimisation criterion considered in the MULTIS is based on optimisation of a

priority of jobs or a data information based on domain specific situation. The task ontology is

developed in such a way that it provides the required vocabulary for the problem solvers.

5.3. OZONE Ontology for Scheduling

The OZONE [108] scheduling ontology was developed at the Carnegie Mellon University for

developing a toolkit for configuring the constraint-based scheduling system. It is built as a

part of project named Ontology Development Environment (ODO) [12]. The OZONE

scheduling ontology is partly available through the WebPages of Enterprise Integration

Literature Review

Page 54

Laboratory of University of Toronto [130]. It is used by uniting constraint-directed search

under a foundation of assertion and retraction of commitments (with propagation of the

commitments to the related problem variables). The OZONE ontology lies at the core of this

framework to provide the necessary base of concepts in order to describe and represent the

scheduling problem. The OZONE ontology adopts the job centric scheduling viewpoint. The

ontology is based on the concept that in scheduling the jobs can be assigned to the resources

and on the other hand the resources may remain assigned once the complete assignment of all

the jobs is done.

The main base concepts considered for building OZONE ontology is Demand, Product,

Activity, Resource and Constraint. Where activity is considered to be a non-deterministic

selection of an action with respect to the available resources. The activity has a same

meaning as that of the concept job from Job-Assignment task ontology and the concept

Schedule Recipient from the MULTIS task ontology. The concept Resource is the central to

the definition of this scheduling ontology. The main concept resource is considered as a set

of homogeneous resources with respect to some activity. The capacity of the resources is

determined by the cardinality value of the associated set of resources and is further divided

into Capacitated-Resource, Reusable-Resource, Consumable-Resource and Renewable-

Resource. The precedence relations have been defined in terms of time intervals among any

two activities such as, before, after etc.

The OZONE scheduling ontology considers various external environmental factors as well

such as Demand, Order etc. (more specifically it considers the planning phase as well). The

main scheduling task triggers once the Demand for the particular Product arises. The

demands as well as order are user-defined concepts in which the user has to specify the

Demand for the particular Product. The final goal in the OZONE ontology is considered to be

achieved once the Demand for the Product is satisfied by assigning all the Activities to the

Resources while satisfying all the constraints.

In sum, the OZONE ontology is mainly concerned with modelling the entities and constraints

of particular domain. It can be realised from the available literature on OZONE that it is

mainly developed for the constraint-based scheduling as a prime problem solver. And usually

the constraint-based solvers do not reason about the cost criteria. It might be one of the

reasons that there is no indication about any optimisation criteria such as cost and preferences

in OZONE ontology.

6. The Libraries of Problem-Solving Methods for Scheduling

In this section we will review the existing libraries of problem-solving methods for the

scheduling task. As mentioned earlier the ultimate aim of our research work is to construct

the generic library of problem-solving methods for scheduling. In order to fulfil the objective

Literature Review

Page 55

the current status of the libraries will be helpful in realising the kind of technology and

approaches that other researchers have used. While reviewing the libraries we will mainly

concentrate towards the organisation of these libraries and the types of problem solving

methods incorporated in the library.

6.1. Hori and Yoshida’s Domain-Oriented Library for Scheduling

Hori and Yoshida [56] proposed a domain-oriented perspective for constructing the library of

production scheduling, which is one of the classes of scheduling problem. The library

consists of three loosely coupled sub-systems such as, a manufacturing domain, scheduling

method and graphical user interface (GUI). The domain model of library provides the

fundamental concepts that needs to be employed by the remaining two sub-systems.

The overall principle of problem-solving knowledge of the library is influenced by

Chandrasekaran and Musen’s philosophy of hierarchical task-methods decomposition. In

which the top-level task in the library i.e., a production scheduling is iteratively decomposed

into smaller tasks based on their functionality. The sub-tasks are in turn solved by the sub-

methods. The sub-methods in the library are organised on the basis of their data flow i.e. a

control knowledge. One aspect of this library is that the control knowledge is clarified in

terms of the domain model. In other words the control between the execution of any two sub-

tasks depends on the domain specific requirements for achieving the corresponding top-level

tasks. The domain model in this library corresponds to a model that includes concepts

employed by the problem-solving processes. In order to bridge the gap between domain

model and problem solving knowledge the mapping mechanisms are added.

Mainly the library can be divided in terms of three basic dimensions such as the task level,

problem-solving level and the domain level. At the task level the task is specified in terms of

its task ontology. At the problem solving level the problem solving inferences are specified

by integrating with the domain level concepts. As it is not always possible to relate the top-

level task in terms of its control knowledge, the collection of such methods is organised in a

family of method. As mentioned earlier the problem solving and domain knowledge are

separated with each other in such a way that it could be possible to change the problem

solving knowledge even during the run time. In the library three main problem solving

patterns are analysed such as, Divide & Merge, Transform & Restore and Check & Modify

[55]. In Divide & Merge, the given problem is divided into sub-problems and by invoking

another component the solution to the sub-problem is achieved. The solution of all these sub-

problems is merged into the schedule hypothesis. The merging is not always necessary if

each sub-problem shares the same assignment space. In Transform & Restore, the problem

structure is reformulated that invokes another component and the schedule hypothesis is

restored obtained by the original problem. Check & Modify, is mainly responsible for finding

Literature Review

Page 56

the unexpected situation such as constraint violation in a schedule hypothesis and then for

modifying the hypothesis. All the three patterns have same set of input/output parameters,

that is, jobs, resources, time ranges, constraints and assignments.

In our point of view the library has limited scope of applicability because primarily the library

is reusable only in a single domain that is production scheduling. Talking specifically about

the underlying principle of the library it is unclear the way various components are executed.

The assignment method of the library is executed in terms of three basic operations such as,

‘reset’, ‘isDone’ and ‘doNext’. Some of these operations are low-level actions as ‘doNext’

simply performs single step iteration for assigning a unit to an appropriate resource. On the

other hand the Dispatching method uses completely different vocabulary such as ‘isEmpty’

that checks if there is any lot in the queue to be dispatched. The same task is carried out by

‘isDone’ in the assignment method. Hence, it is difficult to compare and contrast their

knowledge requirements. Even though three problem-solving methods are collected together

in a family of methods, such a library organisation does not provide any accountability for

realising how the generality of these components is achieved. The reusability of the library is

investigated in terms of the ratios of code reuse in a real case.

6.2. CommonKADS Library of Assignment and Scheduling

The CommonKADS [114] provides the library of problem-solving methods for assignment

and scheduling. The assignment is a kind of synthesis task that operates on two sets such as

demands and supplies. Each member of one set must be assigned to the each member from

another set. The scheduling is considered as a special case of assignment problem type. The

problem-solving methods in the CommonKADS library are based on the Propose and Revise

[72]. The Propose and Revise class of methods is the general approach for solving the

synthesis task e.g. scheduling, design, configuration etc. The CommonKADS library of

assignment and scheduling takes the ‘top-down’ approach for tackling the problem. In the

proposed library of assignment and scheduling two variants of Propose and Revise are

discussed such as, simple propose and revise and hierarchical propose and revise. In simple

propose and revise the complete problem is solved by considering the three basic steps of

Propose and Revise consisting of, proposing the solution to the initial problem, then

identifying the violation of constraints on the proposed solution and finally revising the

solution in order to remove the constraint violation if there are any. In hierarchical propose

and revise first large chucks of components (jobs) are assigned to high level resources. This

abstract solution is specialised in order to obtain a solution to the initial problem. For every

rule types in Propose and Revise such as propose rule, constraints violation identification rule

and revise rule various ‘functions’ are discussed in order to accomplish that rule type. For

Literature Review

Page 57

each of the variants of Propose and Revise problem-solving method the knowledge

requirements and data flow is discussed explicitly.

The CommonKADS library of problem solving methods directly associates each problem

solving method with the problem type i.e., assignment/scheduling. It is difficult to realise the

generic components of these problem solving methods in order to specialise for the other

types of problem solving methods. Similar to the Hori’s library based on such organisation it

is difficult to understand the generic components of these problem solving methods.

Nevertheless, the basic principle applied in CommonKADS is obviously quite useful for

achieving the hierarchical decomposition of task, sub-task in order to solve the top-level task.

6.3. Le Pape’s Library of Resource Constraint Scheduling (ILOG)

The scheduling problem has a long history from constraint satisfaction literature [63]. Many

researchers have tackled the scheduling problem successfully by using constraint-directed

search. The ILOG library of constraint satisfaction mainly concentrates on the resource

scheduling as a class of scheduling problems. ILOG library of constraint scheduling supports

three types of programming models of constraint propagation that consist of,

• The constraint satisfaction problem such as a graph, in which the nodes in the graph

represents the problem variables, to which finite domains are associated and the edges

represents the constraints the needs to be satisfied. The constraints are typical binary-

constraints that are associated with each of the node.

• The second type of model is logic programming, in which constraint satisfaction is viewed

as an extension of unification.

• And the third type of model consists of distinguishing the concepts of a generic constraint

and the concept of an instance for the constraint application to the specific variables of the

problem to be solved.

Various timetables in constraint satisfaction are proposed by using the Resource Time-Table.

The resource-time table represents a constraint variable for the value to which a function is

associated a value v(t) for representing the time at which the resources can be available for

the execution. The semantic model proposed for the implementation of a timetable is quite

straightforward. First, it assumes the discrete representation of a time (which is usually the

case for all scheduling problems) and then memorises the status of the variable for any

instance of time (t) during the interval of a time. The second implementation of a timetable

does not make assumptions about the nature of the time whether discrete or dense and simply

memorises the instants of time during which the status of the variable changes. These two

types of implementation referred to as a Discrete Array and Sequential Table respectively.

Apart from this one of the assumption for the resources in ILOG scheduling is that the

Literature Review

Page 58

resources are assumed to be a Unary capacitated Resources i.e. resources that can handle only

one job at any time. Such kind of capacity representation is particularly useful in the

scheduling domains for representing the finite capacitated resources.

The problem solving model of ILOG library does not take into account the existence of

domain knowledge, which is quite common case in the constraints satisfaction problem

solving. It mainly depends on developing the efficient algorithms for solving the problem

type. The envisaged library of problem solvers during this research work will be mainly

based on identifying the knowledge-intensive tasks and the various types of application

specific knowledge, which can be brought to bear while developing the reasoning process for

the problem solving methods.

Nevertheless, some of the techniques from the constraint-satisfaction can be useful while

developing the generic problem solver for scheduling in the proposed research work to

support domain-independent least commitment strategies such as Dynamic Search

Rearrangement techniques, some variant of variable and value ordering heuristics etc.

Along with this we conclude the review of currently existed task ontologies and the libraries

of scheduling task. This literature review has set the initial foundation in understanding the

basic concepts involved in the development of task ontologies and the different approaches

adopted for developing the libraries of problem solver. Also, while reviewing the various

task ontologies and libraries we have opportunistically pointed out the strength and

weaknesses of those approaches along with the scope for the further development which will

be helpful while developing the envisaged library of problem-solving methods.

7. Discussion and Summary

In the literature review we reviewed some of the important research activities involved in

three major disciplines, consisting of, planning and scheduling, the intelligent scheduling

approach and finally from the knowledge acquisition perspective. During the first part of the

review the main focus was on informing the main concepts involved in two different

paradigms such as planning and scheduling and their basic philosophy. During which we

have identified the basic differences between planning task and scheduling task. The former

deals with finding the sequence of actions in order to transform the initial world state into

goal state whereas the latter mainly deals with allocation or assigning the jobs over the

available resources or time while satisfying the different constraints. Also, we have seen the

various kinds of problems that can be tackled by the synthesis tasks such as planning,

scheduling etc. This phase of the review has set the initial foundation in understanding the

basic nature of the problem that has lead in finding the status of scheduling task particularly

from the artificial intelligence background.

Literature Review

Page 59

The review in section 3 has presented different approaches that can be applicable to the

scheduling task and then various intelligent scheduling systems have been reviewed that are

evolved over the period of last two decades or so in order to solve the scheduling problem.

These intelligent systems differed in their working principle and architecture for dealing with

the problem in their respective domains. Over the time period it has been realised that even

though the currently existed intelligent scheduling systems were working efficiently to tackle

the problem, they are hard-wired in nature. The main reason for this inflexibility was that all

these systems were built by keeping a targeted application domain thus could not be used in

different domains. In order to overcome such a serious bottleneck of inflexibility the need for

the reusable components arisen in the systems development.

The answer to such a serious issue came from the knowledge acquisition community. The

knowledge acquisition field has tried to acquire the experience and expertise from the specific

technical areas and experts. This acquired knowledge was represented in the form of

ontologies that can be seen as a ‘common vocabulary’ for expressing the viewpoint on

particular scenarios. Various types of ontologies have been developed such as, task

ontologies, generic ontologies, domain ontologies etc. The task ontologies are helpful in

representing the vocabulary associated with the problem type whereas the method ontology

for expressing the behaviour of the problem solving procedure for solving the particular

problem type etc. The generic representation of such type of ontologies can be very useful in

order to enhance the reusability aspect of knowledge. For instance, the generic task

ontologies of scheduling can be very useful for representing the problem specification of

scheduling without subscribing to any specific application. The effort of generic

representation of various types of ontologies and problem solving methods has shown the way

to build the libraries of such technology for the further reuse.

As mentioned during the literature review opportunistically, the main aim of our research is to

build the library of problem solving methods for scheduling applications. By keeping such an

objective in mind the last section of the literature review was focused on finding out the

current status of the task ontologies and libraries of problem solving methods for scheduling.

As it can be seen from section 5 and 6 various researchers have put the efforts in building the

libraries of problem solving methods and task ontologies for the scheduling task. Based on

this understanding of a field we have realised that there are still some issues that are found to

be restrictive or partially uncovered in the current approaches in building the libraries of

problem solving methods or in developing the task ontologies for scheduling. It can act as a

main motivation in the proposed research for developing the library of problem solvers for the

scheduling applications.

Literature Review

Page 60

References

[1] Aben, M. 1993, Formally specifying re-usable knowledge model components, Knowledge

Acquisition, 5, pp. 119-141.

[2] Allen, J. F. 1983, Maintaining Knowledge about Temporal Intervals. Communications of

the Association for Computing Machinery, 26 (11).

[3] Allen, J. and Koomen, J. 1983, Planning using a temporal world models, Proc. 8th Int.

Joint Conf. On AI, pp. 741-747.

[4] Asuncion Gomez Perez and Benjamins, V. R. 1998, Applications of Ontologies and

Problem-Solving Methods, Report on ECAI'98 Workshop. in NVKI Nieuwsbrief, 15(5), pp.

146-150.

[5] Asuncion Gomez Perez and Benjamins, V. R., 1999, Overview of Knowledge Sharing and

Reuse Components: Ontologies and Problem-Solving Methods, in Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI-99),

http://sunsite.informatikrwth-aachen.de/Publications/CEUR-WS/Vol-18/.

[6] Barker, K. R. 1974, Elements of sequencing and scheduling, John Wiley and Sons, New

York.

[7] Barták, R. 1999, On the Boundary of Planning and Scheduling: A Study, Proceedings of

the Eighteenth Workshop of the UK Planning and Scheduling Special Interest Group

(PlanSIG), Manchester, UK, pp. 28-39.

[8] Bartak, B. 2000, Slot Models for Schedulers Enhanced by Planning Capabilities, 19th

Workshop of the UK Planning and Scheduling Special Interest Group, pp. 11-24.

[9] Beck, J. C. and Fox, M. S., 1998, A Generic Framework for Constraint-Directed Search

and Scheduling, AI-Magazine, 19 (4) pp. 101-130.

[10] Benjamins, V. R. 1993, Problem Solving Methods for Diagnosis, PhD thesis, University

of Amsterdam, Amsterdam, The Netherlands.

[11] Benjamins, V. R. and Aben, M. 1997, Structure-preserving KBS development through

reusable libraries: a case-study in diagnosis, International Journal of Human-Computer

Studies, 47, pp. 259-188.

[12] Blazquez, M., Fernadez, M., Garcia-Pinar, J. M., Gomez-Perez, A., 1998, Building

Ontologies at the Knowledge Level using the Ontology Design Environment, in Proceedings

http://sunsite.informatikrwth-aachen.de/Publications/CEUR-WS/Vol-18/

Literature Review

Page 61

of the 11th Knowledge Acquisition, Modelling and Management Workshop, KAW98, Banff,

Canada. Available at http://ksi.cpsc.ucalgary.ca/KAW/KAW98/KAW98Proc.html

[13] Borst, P., Akkermans, H. and Top, J. 1997, Engineering Ontologies, International Journal

of Human-Computer Studies, 46, pp. 365-406.

[14] Brazier, Frances M. T. and Wijngaards, Niek J. E. 1998, A Purpose Driven Method for

the Comparison of Modelling Frameworks, in Knowledge Acquisition Workshop, (KAW-98),

Banff, Canada. Available at http://ksi.cpsc.ucalgary.ca/KAW/KAW98/brazier1/

[15] Burke, P. and Prosser, P. 1991, A distributed asynchronous system for predictive and

reactive scheduling, Artificial Intelligence in Engineering, 6(3), pp. 106-124.

[16] Bruker, J. and Van de Velde (eds.), CommonKADS Library for Expertise Modelling:

Reusable problem solving components, IOS Press, Netherlands.

[17] Brusoni, V., L. Console, Lamma, E., Mello, P., Milano, M. and Terenziani, P. 1996,

Resource-based Vs Task-based Approaches for scheduling problems, 9th ISMIS96, LNCS

series, Springer-Verlag.

[18] Bylander, T. and Chandrasekaran, B. 1987, Generic tasks for knowledge-based

reasoning: the “right” level of abstraction for knowledge acquisition, International Journal of

Man-Machine Studies, 26, pp. 231-243.

[19] Chaib-Draa, B., Moulin, B., Mandiau, R., and Millot, R. P. 1992, Trends in Distributed

Artificial Intelligence, Artificial Intelligence Review, 6, pp. 35-66.

[20] Chandarasekaran, B. 1983, Towards a taxonomy of problem solving types, AI Magazine,

11(4), pp. 59-71.

[21] Chandrasekaran, B. 1986, Generic tasks in knowledge-based reasoning: High-level

building blocks for expert system design, IEEE Expert, 1, pp. 23-30.

[22] Chandrasekaran. B., 1990. Design problem solving: A task analysis, AI Mag., 11, pp. 59-

71.

[23] Chandrasekaran, B., Johnson T. R., Smith J. W. 1992, Task Structure Analysis for

Knowledge modelling, Communications of the ACM, 35 (9), pp. 124-137.

[24] Chandrasekaran, B., Josephson, J. R. and Benjamins, V. R. 1999, Ontologies: What are

they? Why do we need them? IEEE Intelligent Systems and Their Applications, 14 (1), pp.

20-26.

[25] Collinot, A., LePape, C. and Pinoteau, C. 1988, SONIA: a knowledge based scheduling

system, Artificial Intelligence in Engineering, 7 (2), pp. 38-53.

[26] Corkill, D. 1991, Blackboard systems, AI Experts, 6 (9), pp. 40-47.

[27] Clancey, 1985, Heuristic Classification, Artificial Intelligence, 27, pp. 289-350.

[28] Clancey, W. J. 1992, Model construction operators, Artificial Intelligence, 53 (1), pp. 1-

135.

Literature Review

Page 62

[29] Dean, T. and Kambhampati, S. 1996, Planning and Scheduling, In CRC Handbook on

Computer Science and Engineering.

[30] Dorn, J. 1995, Iterative improvement methods from knowledge-based scheduling, AI

communications, 8 (1), pp. 20-34.

[31] Domingue, J. 1998, Tadzebo and Webonto: Discussing, browsing, and editing ontologies

on the web, 11th Workshop on Knowledge Acquisition, Modeling and management, KAW’98,

Banff, Canada.

[32] Elleby, P., Fargher, H. E. and Addis, T. R. 1988, Reactive constraint-based scheduling,

IEE Colloquium on Artificial Intelligence in Planning of Production Control, London.

[33] Etzioni, O., Hanks, S., Weld, D. Draper, D. Lesh, N. and Williamson, M. 1992, An

approach to planning with incomplete information, 3rd Int. Conf. on Principles of Knowledge

Representation and Reasoning, pp. 115-125.

[34] Farquhar, A., Fikes, R. and Rice, J. 1997, The ontolingua server: a tool for collaborative

ontology construction, International Journal of Human-Computer Studies, 46 (6), pp. 707-

728.

[35] Fernandez, M., Gomez-Perez, A., Pazos, J. and Pazos, A. 1999, Building a chemical

ontology using methontology and the ontology design environment, IEEE Intelligent

Systems, pp. 37-46.

[36] Fensel, D., Benjamins, V. R. 1998, Key Issues for Automated Problem Solving Methods

Reuse, in Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),

pp. 63-67.

[37] Fensel, D., Straatman, A. 1998, The essence of problem-solving methods: making

assumptions to gain efficiency. International Journal of Human-Computer Studies, 48, pp.

181-215.

[38] Fikes, R. E. and Nilsson, N. J. STRIPS: A new approach to the application of theorem

proving to problem solving, Artificial Intelligence, Vol. No. 3-4, pp. 189-208.

[39] Fox, M. S. 1983, Constraint–directed search: a case study of job-shop scheduling.

Technical Report, CMU-RI-TR-83-22, Robotics Institute, Carnegie Mellon University.

[40] Fox, M. S. 1994, ISIS: A Retrospective, in M. Zweben and M. Fox (eds.), Intelligent

Scheduling, pp. 3-28.

[41] Friedland, P. and Iwasaki, Y. 1985, The concepts and implementation of skeletal plans,

Journal of Automated Reasoning, 1, pp. 161-208.

[42] Gangemi, A., Pisanelli, D. and Steve, G. 1998, Ontology Integration: Experiences with

Medical Terminologies, in Proc. 1st International Conference on Formal Ontology in

Information Systems, FOIS’98, pp. 163-178.

[43] Garrido, A., Salido, M.A., and Barber, F. 2000, Scheduling in a Planning Environment,

ECAI-2000, New Results in Planning, scheduling and design.

Literature Review

Page 63

[44] Genesereth, R. and Fikes, R. 1992, Knowledge Interchange Format, Computer Science

Dept., Stanford University, 3.0 edition, Technical Report, Logic-92-1.

[45] Gennari, J. H., Tu, S. W., Rothenfluh, T. E. and Musen, M. A. 1994, Mapping Domains

to Methods in Support of Reuse, in Proceedings of the 8th Banff Knowledge Acquisition

Workshop, Banff, Canada.

[46] Goel, V. and Pirolli, P. 1989, Motivating the notion of generic design within information

processing theory: The design problem space, AI-Magazine, pp. 19-36.

[47] Grant, T. J. 1986, Lessons for OR from AI: A scheduling case study, Journal of

Operations Research Society, pp. 41-57.

[48] Gruber, T. R. 1993, A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition, Knowledge Acquisition. 5 (2), pp. 199-221.

[49] Gruber, T. R., & Olsen, G. R. 1994, An Ontology for Engineering Mathematics. In J.

Doyle, P. Torasso, and E. Sandewall (Eds.), Fourth International Conference on Principles of

Knowledge Representation and Reasoning, Gustav Stresemann Institute, Bonn, Germany,

Morgan Kaufmann.

[50] Hadavi, K., Hsu, W-L., Chen, T. and Lee, C-N. 1992, An architecture for real-time

distributed scheduling, AI Magazine, 14(3), pp. 46-56.

[51] Hadavi, K. and Shahraray, M. 1989, Release No Job Before Its Time, 3rd International

Conference on Expert Systems and the Leading Edge in Production and Operations

Management, Production and Operations Management Society.

[52] Hama, T.; Hori, M.; and Nakamura, Y. 1992, Task-Specific Language Constructs for

Describing Constraints in Job-Assignment Problems. Technical Report IBM Research Report

RT0084.

[53] Haralick, R. M. and Elliott, G. L. 1980, Increasing tree search efficiency for constraint

satisfaction problems, Artificial Intelligence, 14, pp. 263-313.

[54] Harmelen, F. VAN. and Balder, J. 1992, (ML)2: A formal language for KADS models of

expertise, Knowledge Acquisition, 4, pp. 127-161.

[55] Hori, M., Nakamura, Y., Satoh, H., Maruyama, K., Hama, T., Honda, S., Takenaka, T. &

Sekine, F. 1995, Knowledge-level analysis for eliciting composable scheduling knowledge,

Artificial Intelligence in Engineering. 9 (4), pp. 253-264.

[56] Hori, M. and Yoshida, T. 1998, Domain-oriented library of scheduling methods: design

principles and real-life applications, International Journal of Human-Computer Studies, 49(4)

pp. 601-626.

[57] Kempf, K., Le Pape, C., Smith, S. F. and Fox, B. R. 1991, Issues in the Design of AI-

Based Schedulers: A Workshop Report, AI Magazine, 11(5), pp. 37-46.

Literature Review

Page 64

[58] Keng, N. P., Yun, D. Y. and Rossi, M. 1988, Interaction Sensitive Planning Systems for

Job-Shop Scheduling, in M. D. Oliff (ed.) “Expert Systems and Intelligent Manufacturing”,

Elsevier.

[59] Klinker, G., Bhola, C., Dallemagne, G., Marques, D. and McDermott, J. 1991, Usable

and reusable programming constructs, Knowledge Acquisition, 3, pp. 117-136.

[60] Kifer, M., Lausen, G. and Wu, J., 1995. Logic foundations of object-oriented and frame-

based languages, Journal of the ACM, pp. 741 - 843

[61] Koehler, J. 1988, Planning under resource constraints, 13th European Conf. on AI, pp.

489-493.

[62] Le Pape, C. and Sauve, B. 1985, SOJA: an expert system for workshop daily planning,

Proc. Avignon-85, Avignon, France, pp. 849-867.

[63] Le Pape, C. 1994, Implementation of Resource Constraints in ILOG SCHEDULE: A

library for the development of Constraint-Based Scheduling Systems, Intelligent Systems

Engineering, 3(2), pp. 55-66.

[64] Le Pape, C. 1994, Scheduling as Intelligent Control of Decision-Making and Constraint

Propogation, in M Zweben and M Fox (eds.), Intelligent Scheduling, pp. 67-98.

[65] Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A., Yost, G. and members of the PIF

working group. 1998, The PIF Process Interchange Format and framework, Knowledge

Engineering Review, 13 (1), pp. 91-120.

[66] Liard, J. E., Newell, A., Rosenbloom, P. S. 1987, SOAR: An Architecture for general

intelligence, AI, 33 (1), pp. 1-64.

[67] Liu, B. 1988,Scheduling via reinforcement, Artificial Intelligence in Engineering, 3(2),

pp. 76-85.

[68] Liu, B. 1991, Resource Allocation and Constraint Satisfaction in Production Scheduling.

The World Congress on Expert Systems.

[69] Lloyd, E. L. 1982, Critical Path Scheduling with Resource and Processor Constraints,

Journal of ACM, 29 (3), pp. 781-811.

[70] Lenat, D.B. and Guha, R.V. 1990, Building large knowledge-based systems.

Representation and inference in the Cyc Project. Addison-Wesley, Reading, Massachusetts.

[71] Lesser, V. R. and Corkill, D. 1981, Functionally accurate, cooperative distributed

systems, IEEE Trans. SMC-11(1), pp. 81-96.

[72] Marcus, S. and McDermott, J. 1989, SALT: A Knowledge Acquisition Language for

Propose-and-Revise Systems, Artificial Intelligence, 39 (1), pp. 1-37.

[73] Marsay, D. J. 2000, Uncertainty in Planning: Adapting the framework of Game Theory,

Proceedings of the 19th Workshop of the UK Planning and Scheduling Special Interest Group,

pp. 101-107.

Literature Review

Page 65

[74] McDermott, J. 1988, Preliminary steps towards a taxonomy of problem-solving methods.

In S. Marcus (ed.), Automating Knowledge Acquisition for Knowledge-Based Systems.

Boston: Kluwer Academic Publishers.

[75] McKenzie, L. W. 1976, Turnpike theory, Econometrica, 44 (5), pp. 841-865.

[76] MacGregor, R. 1991, Inside the LOOM classifier. SIGART Bulletin, 2 (3), pp. 70-76.

[77] Mizoguchi, R., Vanwelkenhuysen, J. and Ikeda, M. Task ontology for reusable problem

solving knowledge, Towards Very Large Knowledge Bases: Knowledge Building &

Knowledge Sharing, IOS Press, pp. 46-59.

[78] Morgado, E. M. and Martins, J. P. 1993, An AI based approach to crew scheduling, in

Proc. of CAIA-93, Orlando, pp. 71-77.

[79] Mott, D. H., Cunnigham, J., Kelleher, G. and Gadsen, J. A. 1988, Constraint-based

reasoning for generating naval flying programmes, Expert Systems, 5 (3), pp. 226-246.

[80] Motta, E. and Zdrahal, Z. 1997, An approach to the organisation of a library of problem

solving methods which integrates the search paradigm with task and method ontologies,

International Journal of Human-Computer Studies, 49(4), pp. 437-470.

[81] Motta, E. 1998 An Overview of the OCML Modelling Language. Paper presented at the

8th Workshop on Knowledge Engineering Methods and Languages (KEML '98).

[82] Motta, E., and Zdrahal, Z. 1998, A library of problem-solving components based on the

integration of the search paradigm with task and method ontologies, International Journal of

Human-Computer Studies, 49 (4), pp. 437-470.

[83] Motta, E. 1999, Reusable Components for Knowledge Modelling: Case Studies in

Parametric Design Problem Solving. IOS Press, Amsterdam, The Netherlands. ISBN: 1

58603 003 5.

[84] Musen, M. A., Fagan, L. M., Combs, D. M. and Shortliffe, E. H. 1987, Use of a Domain

Model to Drive an Interactive Knowledge-Editing Tool, International Journal of Man-

Machine Studies, 26, pp. 105-121.

[85] Musen, M. A. 1989, Automated Generation of Model-Based Knowledge Acquisition

Tools, Research Notes in Artificial Intelligence, Pitman, London.

[86] Newell, A. 1980, Reasoning, Problem Solving, and Decision Processes: The Problem

Space as a Fundamental Category, in The Soar Papers: Research on Integrated Intelligence,

Vol. 1, Lawrance Erlbaum Associates, Hillsdale, pp. 693-718.

[87] Newell, A. 1982, The Knowledge Level, Artificial Intelligence, 18, pp. 87-127.

[88] NII, H. P. 1986, Blackboard systems: the blackboard model of problem solving and the

evolution of blackboard architectures, AI Magazine, 7(2), pp. 38-53.

[89] Nilsson, N. J. 1998, Artificial Intelligence: A New Synthesis, Morgan Kaufmann.

Literature Review

Page 66

[90] Nilsson, N. J. 1993, Principles of Artificial Intelligence, Springer-Verlag, ISBN- 3-540-

11340-1

[91] Noronha, S.J. and Sarma, V.V.S. 1991, Knowledge-Based Approaches for Scheduling

Problems: A Survey, IEEE Transaction on Knowledge and Data Engineering, 3(2), pp. 160-

171.

[92] Nunes de, B. L., Valente, A. and Benjamins, V. R. 1996, Modelling planning tasks, 3rd

International Conference on Artificial Intelligence Planning Systems, pp. 11-18.

[93] Ow, P. S. and Smith, S. F. 1988, Viewing scheduling as an opportunistic problem

solving process, Annals of Operations Research 12, pp. 85-108.

[94] Pednault, E. 1989. “ADL: Exploring the middle ground between STRIPS and the

situation calculus”, 1st Int. Conf. On Principles of Knowledge Representation and Reasoning,

pp.324-332.

[95] Perez, A. G. and Benjamins, V. R. 1999. Overview of Knowledge Sharing and Reuse

Components: Ontologies and Problem-Solving Methods, in Proceedings of the IJCAI-99

Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden.

Available at http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

[96] Pinedo, M. 1995, Scheduling Theory, algorithms and Systems, Prentice-Hall, ISBN 0-

13-706757-7.

[97] Poeck, K. and Puppe, F. 1992, COKE: Efficient solving of complex assignment

problems with the propose-and-exchange method, 5th International Conference on Tools with

Artificial Intelligence, pp. 136-143.

[98] Poeck, P., Gappa, U. 1993, Making Role-Limiting Shells More Flexible, 7th Workshop

of Knowledge Acquisition for Knowledge-Based Systems, pp. 103-122.

[99] Puterman, M. 1994, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, Wiley.

[100] Sadeh, N. and Fox, M. S. 1996, Variable and value ordering heuristics for the job shop

scheduling constraint satisfaction problem, Artificial Intelligence, 86, pp. 1-41.

[101] Sathi, A., Fox, M. S. and Greenberg, M. 1985, Representation of activity knowledge for

project management, IEEE Transaction Pattern Anal. Machine Intelligence, 7 (5), pp. 531-

552.

[102] Saucer, J. 1997, Knowledge-Based Systems Techniques and Applications in

Scheduling, In T. L. Leondes (ed.), Knowledge-Based Systems Techniques and Applications,

Vol. 1, Academic Press.

[103] Schreiber, A. T., Wielinga, B. J., Akkermans, H., Van de Velde, W. and Anjewierden,

A. 1994, CML: The CommonKADS Conceptual Modelling Language, in L Steels, A. T.

Schreiber and Van de Velde, W. (Eds.), "A future for knowledge acquisition, in Proceedings

of the 8th European Knowledge.

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

Literature Review

Page 67

[104] Sharma, S. D. 2000, Operations Research, Kedar Nath Ram Nath & Co.

[105] Silcock, J. and Kutti, S. 1993, Taxonomy of Real-Time Scheduling, TR C93/32, Deakin

University; school of computing and mathematics.

[106] Smith, S. F. e al. 1986, Constructing and Maintaining Detailed Production Plans:

Investigation into the Development of Knowledge-Based Factory Scheduling, 7(4), pp. 45-61.

[107] Smith, S. F., Fox, M. S., and Ow, P. S. 1987,Constructing and maintaining detailed

production plans: Investigations into the development of knowledge based factory scheduling

system, AI-Magazine, 7(4), pp. 45-61.

[108] Smith, D. and Goodwin, S. D. 1995, Constraint-based Intelligent Scheduling, CS-95-02,

University of Regina, pp. 1-26.

[109] Smith, S. and Becker, M. A., 1997, An Ontology for Constructing Scheduling Systems,

Working Notes of 1997 AAAI Symposium on Ontological Engineering, AAAI Press, March,

1997.

[110] Smith, D., Frank J. and Jonsson, A. K. 2000, Bridging the gap between planning and

scheduling, Knowledge Engineering Review, 15 (1), pp. 47-83.

[111] Sowa, J. 2000, Knowledge Representation: Logical, Philosophical and Computational

Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, USA, ISBN: 0-534-94965-7.

[112] Steels, L. 1990, Components of Expertise, AI Magazine, 11 (2), pp. 29-49.

[113] Stefik, M. 1995, Introduction to Knowledge Systems, Morgan Kaufmann, ISBN: 1-

55860-166-X.

[114] Sundin, U. 1994, Assignment and Scheduling, in J Breuker and W Van de Velde (eds.)

CommonKADS LIBRARY FOR EXPERTISE MODELLING Reusable problem solving

components, chapter 11, pp. 231-263.

[115] Swartout, W., Patil, R., Knight, K. and Russ, T. 1997, Toward distributed large-scale

ontologies. In Spring Symposium Series on Ontological Engineering, pp. 33-40.

[116] Tate, A., Drabble, B. and Kirby, R. 1994, O-plan2: an open architecture for command,

planning and control, in M Zweben and M Fox (eds.), Intelligent Scheduling, Morgan

Kaufmann, pp. 213-239.

[117] Tijerino, Y. A., Ikeda, M., Kitahashi, T. and Mizoguchi, R. 1993, A Methodology for

Building Expert Systems Based on Task Ontology and Reuse of Knowledge, Journal of

Japanese Society for Artificial Intelligence, 8 (4), pp. 476-487.

[118] Tsang, E. P. K. 1995, Scheduling techniques - a comparative study, British Telecom

Technology Journal, 13 (1), 16-28.

[119] Tu, S. W., Shahar, Y., Dawes, J., Winkles, J., Puerta, A. R. and Musen, M. A. 1992, A

problem solving model for episodic-skeletal-plan refinement, Knowledge Acquisition, 4(2),

pp. 197-216.

Literature Review

Page 68

[120] Valente, A. and Lockenhoff, C. 1993, Organisation as guidance: A library of

assessment models. 7th European Knowledge Acquisition Workshop, pp. 243-262.

[121] Valente, A., Russ, T., MacGrecor, R. and Swartout, W. 1999, Building and (Re)Using

an Ontology for Air Campaign Planning, IEEE Intelligent Systems, 14(1), pp. 27-36.

[122] Van Dyke Parunak, H., Irish, W., Kindrick, J. and Lozo, P. W. 1985, Fractors actors for

districuted manufacturing, Proc. CAIA-85, Stanford, California, pp. 653-660.

[123] Vere, S. 1983, Planning in time: windows and durations for activities and goals, Pattern

Analysis and Machine Intelligence, 5 (3), pp.246-267.

[124] Wielinga, B. J., Schreiber, A. T. and Bruker, J. 1992, KADS: A Modelling Approach to

Knowledge Engineering, Knowledge Acquisition, 4(1), pp. 5-53.

[125] Wielinga, B. and Schreiber, A. TH. 1997, Configuration-design problem solving, IEEE

Expert. 12 (2), pp. 49-56.

[126] Wielinga, B., Van de Velde, W., Schreiber, G. and Akkermans, H. 1992, The

CommonKADS Framework for Knowledge Modelling, in Proceedings of the 7th Banff

Knowledge Acquisition Workshop, Banff, Alberta, Canada.

[127] Wilkins, D. 1990, Can AI planners solve practical problems?, Computational

Intelligence, 6 (4), pp. 232-246.

[128] Zweben, M., Davis E., Daun B., Drascher E., Deale M. and Eskey M. 1992, Learning to

improve constraints-based scheduling, Artificial Intelligence, 58, pp. 271-296.

[129] Zweben, M. and Fox, M. S. (eds.) 1994, Intelligent Scheduling, Morgan Kaufmann.

[130] Enterprise Integration Laboratory. EIL, TOVE Project, University of Toronto, Canada,

available from http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html

[131] http://www.ksl.stanford.edu/knowledge-sharing/ontologies/html/job-assignment-

task/job-assignment-task.lisp.html

[132] http://www.cyc.com/cycl.html

http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html
http://www.ksl.stanford.edu/knowledge-sharing/ontologies/html/job-assignment-task/job-assignment-task.lisp.html
http://www.ksl.stanford.edu/knowledge-sharing/ontologies/html/job-assignment-task/job-assignment-task.lisp.html
http://www.cyc.com/cycl.html

	Dnyanesh Gajanan Rajpathak
	
	
	
	August- 2001

	2.1.3 Decision-theoretical Planning

	References

