
AQUA:
A Knowledge-Based Architecture for a Question Answering System

Tech Report kmi-04-15

Maria Vargas-Vera and Enrico Motta

AQUA: A Knowledge-Based Architecture for a Question Answering
System

Maria Vargas-Vera and Enrico Motta

Knowledge Media Institute (KMi), The Open University,
Walton Hall, Milton Keynes MK7 6AA, England

{m.vargas-vera}@open.ac.uk
http://kmi.open.ac.uk/

Abstract
This paper describes AQUA, a question answering system. AQUA combines Natural Language processing (NLP),
Ontologies, Logic, and Information Retrieval technologies in a uniform framework. AQUA makes intensive use of an
ontology (which encode knowledge) in several parts of the question answering system. The ontology is used in the
refinement of the initial query, the reasoning process (a generalization/specialization process using classes and
subclasses from the ontology), and in the novel similarity algorithm. The similarity algorithm is a key feature of
AQUA. It is used to find similarities between relations/concepts in the translated query and relations/concepts in the
ontological structures. The similarities detected then allow the interchange of concepts or relations in a logic formula
corresponding to the user query. In this way, we make the mapping between user’s queries and ontological spaces. The
AQUA architecture is flexible enough to allow that AQUA can be used as closed-domain and open domain question
answering system.

1. Introduction

 In recent years, the rise in popularity of the web has created a demand for services which help users to skip
over all irrelevant information quickly. One of the services is question answering (QA), the technique of
providing answers to specific questions. Given a question such as ‘which country had the highest inflation
rate in 2002?’ a keyword-based search engines such as Google might present the user with web pages from
the Financial Times, whereas a QA system would attempt to directly answer the question with the name of
a country. On the web, a typical example of a QA system is Jeeves1 (Askjeeves 2000) which allows users to
ask questions in natural language. It looks up the user's question in its own database and returns the list of
matching questions which it knows how to answer. The user then selects the most appropriate entry in the
list. However, users would usually prefer a precise answer to a precise question. Therefore, a reasonable
aim for an automatic system is to provide textual answers instead of a set of documents. In this paper we
present AQUA a question answering system which amalgamates Natural Language Processing (NLP),
Logic, Ontologies and Information Retrieval techniques to provide answers to queries in a specific domain
in real time.

The first instantiation of our ontology-driven Question Answering System, AQUA (as QA-closed domain),
is designed to answer questions about academic people and organizations. However, an important future
target application of AQUA would be to answer questions posed within company intra-nets; for example,
giving AQUA an ontology of computer systems might allow it to be used for trouble-shooting or
configuration of computer systems.
AQUA is also designed to play an important role in the Semantic Web2. One of the goals of the Semantic
Web is the ability to annotate web resources with semantic content. These annotations can then be used by
a reasoning system to provide intelligent services to users. AQUA would be able to perform incremental

1 http://www.ask.com/
2 The goal of the Semantic Web is to help users or software agents to organize, locate and process content
on the WWW.

markup of home pages with semantic content. These annotations can be written in RDF (Lassila et al. 1999,
Hayes 2002) or RDFS (Brickley et al. 2000), notations which provide a basic framework for expressing
meta-data on the web. We envision that AQUA can perform the markup concurrently with looking for
answers, that is, AQUA can annotated pages as it finds them. In this way then, semantically annotated web
pages can be cached to reduce search and processing costs.

The main contribution of AQUA is the intensive use of an ontology in several parts of the question
answering system. The ontology is used

• in the refinement of the initial query
• in the reasoning process (a generalization/specialization process using classes and subclasses from

the ontology), and
• in the (novel) similarity algorithm.

The last of these, the similarity algorithm, is a key feature of AQUA. It is used to find similarities between
relations/concepts in the translated query and relations/concepts in the ontological structures. The
similarities detected then allow the interchange of concepts or relations in the formulae. The ontology is
used to provide an intelligent reformulation of the question, with the intent to reduce the chances of failure
to answer the question.

In this paper, we describe the overall workings of AQUA. Briefly, queries formulated in plain English are
translated by AQUA into logic formulae using the grammatical components obtained by our parser.
AQUA then looks for an answer in different resources such as databases, a populated ontology (or
knowledge base) and the Web. Currently, AQUA makes use of an inference engine which is based on the
Resolution algorithm. AQUA uses also our similarity algorithm which is based on both the ontological
structures and instances of the ontology, a WordNet thesaurus and the Dice coefficient.
Finally, AQUA also has facilities for analyzing and explaining proofs. The explanation is provided both in
pseudo-natural language and as a visualization. Throughout this paper, we will illustrate AQUA using
queries based on the AKT reference ontology3.

Our current work is focusing on embedding AQUA in the AKT semantic portal which will offer a variety
of services to support academics in knowledge intensive tasks. A semantic portal can be seen as an entry
point to knowledge resources that may be distributed across several locations. Such portal should provide
means for navigating through all these resources in an easy way, since it may be used by users with all
levels of computing knowledge. This semantic portal will offer users services such as semantic browsing,
smart question answering and ontological browsing (Stojanovic et al., 2001; Studer et al., 2002; Moreale
and Vargas-Vera 2003).

The paper is organized as follows: Section 2 describes the AQUA process model. Section 3 describes a
comprehensive set of components used in AQUA such as Query Logic Language (QLL); the AQUA query
satisfaction-algorithm; the similarity algorithm embedded in AQUA; an evaluation of our similarity
algorithm; failure analysis; output enhancements and an evaluation using queries relevant to the AKT
ontology. Section 4 presents AQUA as a open-domain question answering system. It describes the query
classification component and learning patterns and extraction of answers using a library of patterns. Section
5 describes related work closest in spirit to AQUA. Finally, section 6 gives conclusions and directions for
future work.

3 The AKT ontology contains classes and instances of people, organizations, research areas, publications,
technologies and events (http://akt.open.ac.uk/ocml/domains/akt-support-ontology/).

2. AQUA process model

The AQUA process model generalizes other approaches by providing a uniform framework which
integrates NLP, Logic, Ontologies and information retrieval. Within this work we have focused on creating
a process model for the AQUA system. Figure 1 shows the architecture of our AQUA system.

 Figure 1. The AQUA architecture

In the process model there are four phases: user interaction, question processing,
document processing and answer extraction.

1. User interaction. The user inputs the question and validates the answer (indicates whether it is
correct or not). This phase uses the following components:

• Query interface. The user inputs a question (in English) using the user interface -a simple

dialogue box. The user can reformulate the query if the answer is not satisfactory.

• Answer. A ranked set of answers is presented to the user.

• Answer validation. The user gives feedback to AQUA by indicating agreement or
disagreement with the answer.

2. Question processing. Question processing is performed in order to understand the question asked
by the user. This ‘understanding’ of the question requires several steps such as parsing the
question, representation of the question and classification. The question processing phase uses the
following components:

• NLP parser. This segments the sentence into subject, verb, prepositional phrases, adjectives and

objects. The output of this module is the logic representation of the query.

• Interpreter. This finds a logical proof of the query over the knowledge base using unification and
resolution algorithms.

• WordNet/Thesaurus. AQUA's lexical resource.

• Ontology. Currently AQUA works with a single ontology – the AKT reference ontology which

contains people, organizations, research areas, projects, publications, technologies and events.
But in future the AQUA architecture will have a mediator which will select ontologies relevant
to a Query. This is ongoing work at the Knowledge Media Institute (KMi).

• Failure-analysis system. This analyzes the failure of given question and gives an explanation of

why the query failed. Then the user can provide new information for the pending proof and the
proof can be re-started. This process can be repeated as needed.

• Question classification & reformulation. This classifies questions as belonging to any of the types

supported in AQUA, (what, who, when, which, why and where). This classification is only
performed if the proof failed. AQUA then tries to use an information retrieval approach. This
means that AQUA has to perform document processing and answer extraction phases.

3. Document Processing. A set of documents are selected and a set of paragraphs are extracted.
This relies on the identification of the focus4 of the question. Document processing consists of two
components:

• Search query formulation. This transforms the original question, Q into a new question Q',

using transformation rules. Synonymous words can be used, punctuation symbols are
removed, and words are stemmed.

• Search engine. This searches the web for a set of documents using a set of keywords.

4. Answer processing. In this phase answers are extracted from passages and given a score, using
the two components:

• Passage selection. This extracts passages from the set of documents likely to have the answer.

• Answer selection. This clusters answers, scores answers (using a voting model), and lastly

obtains a final ballot.

3. AQUA as closed-domain QA

3.1 Query Logic Language (QLL)

In this section we present the Query Logic Language (QLL) used within AQUA for the translation of the
English question into its Logic form. In QLL variables and predicates are assigned types. Also, QLL
allows terms (in the standard recursively-defined Prolog sense (Clocksing et al. 1981, Lloyd 1984). AQUA
uses QLL as an inter-media language as is shown in example (section 5).

4 Focus is a word or a sequence of words which defines the question and disambiguates it in the sense that
it indicates what the question is looking for.

Like Prolog or OCML (Motta 1999), QLL uses unification and resolution (Lloyd 1984). However, in the
future we plan to use Contextual Resolution (Pulman 2000). Given a context, AQUA could then provide
interpretation for sentences containing contextually dependent constructs.
Again like Prolog QLL uses closed-world assumption. So facts that are not provable are regarded as false
as opposed to unknown. Future work needs to be done in order to provide QLL with three-valued logic.
When this is done an evaluation of a predicate could produce yes, no or unknown as in Fril (Baldwin et al.
1995). Finally, QLL handles negation as failure but it does not use cuts.

Translation rules are used when AQUA is creating the logical form of a query, i.e. from grammatical
components into QLL. The set of translation rules we have devised is not intended to be complete, but it
does handle all the grammatical components produced by our parser. Note that variables are denoted by
strings starting with a ?, for example, ?t. The form of the logical predicates introduced by each syntax
category is described as follows:

• Nouns (without complement) introduce a predicate of arity 1. For example the noun capital
introduces the predicate capital (?x :type ?t1) which restricts the type of value ?x to be the name of
the city.

• Nouns (with complement) introduce a predicate of arity equal to the number of complements

plus one. The pattern for n complements is as follows:

pred_name(? argument1: type ?t1,,? argumentn: type ?tn, ? argument n+1: type ?t n+1).

For example, in the question ``What is the population of the UK?'' the noun population is
translated into the predicate:

population(uk: ?type t1, ?x: type ?t2).

• Qualitative adjectives introduce a predicate of arity 1. For example, the adjective ``AKT
technology'' translates into

akt_technology(?x : type ?t1).

• Quantitative adjectives introduce a binary predicate. For example, the question ``How big is
London?'' translates into the following predicate:

has-size(london: type ?t1, ?t :type ?t2).

• Prepositions introduce a binary predicate. The pattern is as follows:

name_preposition(?argument1 : type ?t1, ? argument2: type t2).

For example, the preposition between gets translated in the predicate:

between(?x : type t1, ?y : type t2).

• Verbs introduce predicates with one or more arguments. The first argument should be the subject
of the verb, the second is the direct object, the third is the indirect object (if any) and complements
(if any). For example, ``David Brown visited KMi?'' is translated into the following predicate:

visited(david_brown: type ?t1 , kmi: type ?t2).

A set of built-in predicates is also available in QLL. These include length, max, min,
greater_than,less_than.

3.2 The AQUA query-satisfaction algorithm

This section presents the main algorithm implemented in the AQUA system. For the sake of space, we
present a condensed version of our algorithm. In this following algorithm AQUA uses steps 1-4.1 to
evaluate query over the populated AKT reference ontology. Steps 4.2 to 5 are used by AQUA trying to
satisfy the query using the Web as resource.

1. Parse the question into its grammatical components such as subject, verb, prepositions, object and
so on.

2. Use the ontology to convert from the language of QLL to a standard predicate logic. The ontology

is used by a pattern-matching algorithm5 to instantiate type variables, and allow them to be
replaced with unary predicates.

3. Re-write the logic formulae using our similarity algorithm (described in the next section)

4. Evaluate/execute the re-written logic formula over the knowledge base.

 4.1 If the logic formulae is satisfied, then use it to provide an answer

 4.2 else

• Classify the question as one of the following types:

o what - specification of objects, activity definition
o who - person specification
o when - date
o which - specification of objects, attributes
o why - justification of reasons
o where - geographical location

• Transform the query Q into a new query Q' using the important keywords.

• Launch a search engine such as Google6 with the new question Q'. AQUA will try to satisfy the user

query using other resources such as the Web.

• Analyze retrieved documents which satisfy the query Q'.

• Perform passage extraction.

• Perform answer selection.

• Send answer to user for validation.

5 The pattern-matching algorithm tries to find an exact match with names in the ontology.
6 http://www.google.com

5. Stop.

The example below shows just one aspect of use of ontology in question answering: ‘ontology traversal’
(i.e. generalization/specialization). Suppose we have the question:

 Which technologies are used in AKT?'

 AQUA tries to answer question as follows.

The English question is translated into the QLL expression

use(?x : type technology, akt : type ?y)

which is then converted – using the AKT ontology - to the standard (Prolog-style) expression by using the
AKT ontology

∃ X:Domain technology(X) & project(akt) & use(X,akt).

 where the meaning of the quantifier is determined by the type of the variable it binds. For our example, let
us decide that Domain is the set containing the union of of each of the following congruence classes:
people, projects, organizations, research areas, technologies, publications and events.

 If there is a technology in the AKT project which is defined in the knowledge base then X will be bound to
the name of the technology. Let us imagine the scenario where instances of technology are not defined in
the AKT reference ontology. However, AQUA found in the AKT reference ontology that the relation
‘commercial_technology’ is a subclass of ``technology''. Then commercial_technology is a particular kind
of technology, i.e.

commercial_technology ⊆ technology

By using the subsumption relation our initial formula is transformed into the following one:

∃ X:commercial_technology commercial_technology(X) & project(akt) & use(X,akt).

AQUA then tries to re-satisfy the new question over the knowledge base. This time the question succeeds
with X instantiated to the name of one of the AKT technologies.

We can see from the algorithm that AQUA tries to satisfy a user query using several resources. Future
implementations of AQUA could benefit from using the results obtained by the Armadillo7 (Ciravegna et
al. 2003) information extraction engine running in the background as a complementary knowledge
harvester. For instance, the user could ask the question ‘What publications has Yorik Wilks produced?’
This is a good example of a query for which AQUA could make a request to Armadillo. Armadillo would

7 Armadillo is an information extraction engine which uses resources such as CiteSeer to find a limited
range of information types such as publications.

find the publications of Yorik Wilks (for example, using CiteSeer8 or his personal web site). Next,
Armadillo would parse documents, retrieve the requested information and pass the set of publications back
to AQUA to render an appropriate answer.

3.3 Concept and relation similarity algorithm

Similarity ha been an important research topic in several fields such linguistic, Artificial intelligence (in
particular in the field of Natural Language Processing and Fuzzy Logic). The range of application of
measure of similarity ranges from word sense disambiguation, text summarization, information extraction
and retrieval, question answering, automatic indexing and automatic correction of codes.
We found that there are two types of similarity: syntactically and semantic similarity. Syntactic similarity
can be defined as functions over terms. For instance the hamming distance (used in Information Theory).
This similarity is defined as the number of positions with different characters in two terms with the same
length. Whilst semantic similarity can be defined as Miller and Charles (Miller et al 1991) as a continuous
variable that describes the degree of synonymy between two words.

When evaluating similarity in a taxonomy the most natural way to access similarity is to evaluate the
distances between the two concepts being compared. Therefore the shorter is the path from one to another
means that they are more similar. This approach has been used as measure of similarity. However one of
the main drawbacks is that it relies on the notion that links in a taxonomy represent uniform distances
(Resnik 1995; 1998). Our own view is that similar entities are assumed to have common features9. For
instance (university, research_institute) but it is also the case that dissimilar entities may also be
semantically related by the relation meronym or holonym such as (student –person; bicycle-wheel) .

Our similarity algorithm assess concept similarity and relation similarity. It compares extended graph
obtained from the user query (plus informative classes from ontology) and a graph which represents a
subset of the ontology (relevant to the query). As an inter-media stage our it creates the intersection upon
nodes (described in section 3) between the two graphs (the graph of the query and the graph obtained
from the ontology). Then, our similarity algorithm assess concept similarity and relation similarity using
the Dice Coefficient using the most informative classes from the ontology.

The success of the attempt to satisfy a query depends on the existence of a good mapping between the
names of relations used in the query and names of relations used in the knowledge base/ontology.
Therefore, we have embedded in AQUA a similarity algorithm. Our similarity algorithm uses both
ontological structures and instances in the selected ontology, the Dice coefficient and the WordNet
thesaurus. Our similarity algorithm differs from other similarity algorithms in that it uses ontological
structures and also instances. Instances provide evidential information about the relations being analyzed.
This is an important distinction between the kind of similarity which can be achieved using only WordNet
or the similarity which can be calculated using distances to super-classes (Wu et al. 1994). In the former,
WordNet brings all the synsets found even the ones which are not applicable to the problem being solved.
Whilst in the latter one, the idea of a common super-class between concepts is required. In our case, it is
not a necessary condition.

 We present an explanation of our algorithm when arguments in the user query are grounded (instantiated
terms) and they match exactly (at the level of strings) with instances in the ontology. A detailed description
of the algorithm and example can be found in (Vargas-Vera et al. 2003a, 2003b, 2004).

8 http://citeseer.nj.nec.com/cs
9 The common features in two entities might not be so discriminative as the features which are different in
them.

The algorithm uses grounded terms in the user query. It tries to find them as instances in the ontology.
Once they are located a portion of the ontology (G2) is examined including neighborhood classes. Then,
using knowledge from the ontology, an intersection 10 (G3) is found between augmented query G1 and G2
to assess structural similarity. It could be the case that in the intersection G3 several relations can include
the grounded arguments. Then the similarity is computed for all relations (containing elements of the user
query) using the Dice Coefficient. Finally, the relation with the maximum Dice Coefficient value is
selected as the most similar relation.

AQUA reformulates the query using the most similar relation and it then tries to prove the reformulated
query. If no similarity is achieved using our similarity algorithm then AQUA provides the user with the
synsets obtained from WordNet. From this offered set of synsets, the user selects the suitable one.

The similarity algorithm for relations is defined as follows:

SimilarityBase algorithm:

 Case 1: X1 and X2 are grounded arguments.

1. Translate the question to First Order Logic i. e. predicate_name(X1, X2)

2. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 such that

relation(C1,C2) where relation is an ontological relation between C1 and C2.

3. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 such that

 relation(C1, C2) Λ ∃ S1 ⊃ (U11 ⊂ U12 ⊂ … ⊂ U1n) ⊃ C1 Λ ∃ S1 Λ (U11 ⊂ U12 ⊂ …⊂ U1n) ⊃
C2

4. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 Λ S1 ⊃ X1 Λ S2 ⊃ X2 Λ ∃ (U11 ⊂
U12 ⊂ … ⊂ U1n) ⊂ C1 Λ ∃ (U21 ⊂ … ⊂ U2 n) ⊂ C2

 where Uij is a subclass of Uij+1

 5. Find the intersection, G3, of G1 and G2 based upon the node labels.

6. Let be A and B vectors containing the features used to compare similarity.

 Compute Concept _similarity = 0 no common concepts

 Concept _similarity = 1 same set of concepts , otherwise

 Concept_similarity = sim_dice(A,B) = 2*∑1

n aibi / ∑1
n ai2 + ∑1

n bi2
vectors A and B are filled with the number of concept nodes of graph G1 and G2 respectively.

7. Compute Relation_ similarity = di = sim_dice(A,B) = 2*∑1

n aibi / ∑ 1
n ai2 + ∑ 1

n bi2
 vector A and B are filled with the number of arcs in the immediate neighborhood of the graph G1
and G2 respectively.

10 Intersection means to find a sub-graph in G2 which contains all concepts contained in graph G1 using
subsumption relation.

 8. maximum(di) where i=1,n

The algorithm builds graphs from the user query G1, obtains a fragment from the ontology containing the
relevant nodes G2 and builds an intersection (G3) between G1 and G2.
Step 2 describes the construction of the graph G1 for the query. This is created using subject (X1),
relation, object (X2) and the most representative classes for X1 and X2 respectively.
Step 3 describes how the algorithm finds sub-hierarchy containing grounded11 arguments/concepts from
the user question (i.e., the neighborhood containing the grounded arguments).
Step 6. the similarity between G1 and G3 is computed using the Dice coefficient. The vectors A and B are
filled with the number of concept nodes of graph G1 and G3 respectively then

Concept _similarity = 0 no common concepts

 Concept _similarity = 1 same set of concepts , otherwise

Concept _similarity = 2*∑1

n aibi / ∑1
n ai2 + ∑1

n bi2

 Step 7. the similarity between G1 and G2 is computed using the Dice coefficient.

 Relation_similarity = di = 2*∑1

n aibi / ∑1
n ai2 + ∑1

n bi2

vector A and B are filled with the number of arcs in the immediate neighborhood of the graph G1 and G2
respectively.

A procedure called SimilarityTop uses the SimilarityBase algorithm (defined above), WordNet synsets, and
feedback from the user. The SimilarityTop procedure checks if there is similarity between the name of the
relation/concept in the query and the relation/concept in the selected ontology. If there is no similarity, then
it offers the users all the senses which are found in the WordNet thesaurus. It is SimilarityTop that AQUA
uses, with the selected sense, to rewrite the logic formulae. The main steps are defined as follows:

SimilarityTop procedure:

• Call our SimilarityBase algorithm (defined above)

• If ontological_relation ≠ null_string then

evaluate_query(ontological_relation(Arg1,Arg2))

• Else
o Obtain synsets for relation_question using WordNet thesaurus
o Ask user to select sense from the ones that WordNet thesaurus provided
o Call evaluate_query(selected_sense(Arg1, Arg2))

To illustrate how our similarity algorithm works we present an example.

11 grounded argument means instantiated argument.

3.3.1 Working Example

In this section we illustrate how our similarity algorithm works by presenting a working example. Note
that, in more complex examples, the graph G2 could have several relations which could be assessed for
similarity.

Let us imagine that someone asks the question: ''Does Enrico Motta work on AKT?''

work(enrico-motta,akt).

 By refining our query using the AKT reference ontology we obtain the following formula:

project(akt) & researcher(enrico-motta) & work(enrico-motta,akt).

If AQUA evaluates this query over the knowledge base, it is likely that the question will fail. The problem
is that the name of the relations in the knowledge base and the names of relations in the question might be
completely different. AQUA will ask the user if they want to use similarity. If the answer to this question
is ``yes'' then AQUA builds three graphs: the graph associated with the question (G1), the graph using
ontological structures (G2) and the intersection graph of G1 and G2. These graphs are shown in Figure 2.

Figure 2. Graph G1 and G2 and intersection G3

The relation similarity is computed as follows:
In the example shown in Figure 2 using G1 and G3.

Concept _similarity = 1

In order to compute Relation_similarity we use G1 and G2 graphs and vectors A=(2,2) and B=(3,2)

Then, Relation_similarity = di = 2*∑ aibi / ∑1

2 ai2 + ∑1
2 bi2

 di = (A,B) = (2 *(6+4)) / (4+4) +(9+4) = (2*10)/21 = 20/21=0.9

The outputs of the similarity algorithm is 0.9 and the name of the relation between concept researcher and
concept project is ''involved-in'', Then the question is re-written as follows:

project(akt) & researcher(enrico-motta) & involved-in(enrico-motta,akt).

The question is re-evaluated by the interpreter. By using the similarity algorithm AQUA tries to reduce to a
minimum the possibility of failure because of mismatches between relation names. Since there are several
techniques for assessing similarity (Doan et al. 2002, Noy et al. 2000, Wu et al. 1994), a future
implementation of AQUA will contain several algorithms for similarity.

3.3.2 Similarity algorithm evaluation

Some of the typical queries used in our experiment are shown in Table I. This table shows the concept and
relation similarity values obtained using SimilarityBase algorithm. The evaluation has been performed
using the AKT reference ontology which describes academic life.

Questio
n
number

 NLP query

Query expressed as
logic predicate

Reformulated predicate
using SimilarityBase
algorithm

Concept
Similarity
value

Relation
Similarit
y value

1 Does Enrico Motta
work in akt?

work(enrico-motta, akt)
& project(akt)

involved (enrico-motta,akt) &
project(akt)

 1

 0.9

2 Does Maria Vargas-
Vera is employed by
akt?

employed(maria-vargas-
vera,akt) & project(akt)

involved (maria-vargas-
vera,akt) & project(akt)

 1

0.9

3 Is David Celjuska
associated to akt?

associated(david-
celjuska,akt) &
project(akt)

involved(david-celjuska,akt)
& project(akt)

 1

0.9

4 Does Peter Scott
works in Semantic
Web and in akt?

work(peter-
scott,semantic_web) &
research_area(peter-
scott,semantic_web) &
work(X,akt) &
project(akt)

involved(peter-
scott,semantic_web) &
research_area(peter-
scott,semantic_web) &
involved(peter-scott,akt) &
project(akt)

 1

0.9

Table I. query and its reformulation using the SimilarityBase algorithm

Question 3 can be reformulated as suggested in Table I by using our SimilarityBase algorithm. However
if we use the suggested WordNet senses as first resource then the query can be reformulated as is shown
Table II. The latest is not an optimal solution for AQUA since it will try to evaluate (as logic predicates)
each of the reformulation. Therefore, our goal of having a question answering system in real time it might
suffers of the problem of slow response time. The question 3 example (from Table I) illustrates that by
using a domain specific ontology queries can have less alternative reformulations.

Query

Reformulations using WordNet senses

Is David Celjuska associated to
akt?

 linked(david-celjuska,akt) & project(akt)
 related(david-celjuska,akt) & project(akt)
 connected(david-celjuska,akt) & project(akt)
 affiliated(david-celjuska,akt) & project(akt)
 linked-up(david-celjuska,akt) & project(akt)

Table II. query and its reformulation using WordNet suggested senses

When AQUA fails to find a candidate for similarity using SimilarityBase (i.e. null value is returned). Then
,it tries to find possible reformulations using the synsets of WordNet. Table III shows an examples of
queries and possible reformulations offered to the user by AQUA.

3.4. Failure Analysis

A question is evaluated over the knowledge base. If the evaluation fails then the system must provide an
explanation for why the question fails? There are several reasons why a query evaluated over the
knowledge base could fail:

o The term/concept is not defined in the knowledge base. Failure occurred because the noun in the
English question was not defined in the ontology and also AQUA did not find any similarity with
any of the terms/concepts in the ontology.

o One or more relations are not defined in the ontology (i.e. the similarity algorithm did not find

similar relations).

o A predicate evaluation fails. The reason could be that the predicate used in translation is not a
built-in predicate in QLL.

When a goal fails the system keeps a record of the failed goal. This helps AQUA to produce a suitable
failure message. AQUA also has facilities for analyzing and explaining proofs. The explanation is provided
both in pseudo natural language and as a visualization. In this way the user might be able to re-write the
English question using only entity definitions which are already defined in the ontology and predicates
defined in QLL.

3.5 Output enhancements

Figure 3 and Figure 4. show snapshots of the AQUA system. In Figure 5 we can see that AQUA not only
provides a set of names which satisfy the query, but enhances its answer using information from the AKT
reference ontology. It provides more information about each element in the set. For instance, it brings
additional contextual information such as ‘‘AKT is a project at KMi’’ and ‘‘each person of the AKT team
is a researcher at KMi’’.

Validation of answers is a difficult task in general. Therefore, AQUA provides a visualization of proofs for
supporting validation of answers. Another way, provided by AQUA, to help users in validation, could be
by enhancing answers with extra information. There is ongoing work at KMi on this problem. We use
Magpie (Domingue et al. 2003) in this task of enhancing answers. Magpie is a semantic browser which
brings information about ontological entities. For instance, it can retrieve home pages related to AKT or
personal web pages of researchers working in the AKT project. All this extra information could be used by
our AQUA users in answer validation.

 Figure 3. The question “Who works on akt?’’ is provided to AQUA

 Figure 4. AQUA’s answers to a question

3.6. AQUA Evaluation as closed-domain QA

We conducted experiments using 43 questions related to the AKT ontology. AQUA was able to answer
them correctly. However, one of the limitations of the current AQUA implementation was that the parser
needs to be extended in order to cope with misspelling errors and unknown verbs. A solution to the latter
(unknown verbs) could be to use the approach followed in Camille (the contextual Acquisition mechanism
for incremental lexeme learning (Hasting 1994,1995,1996), where the meaning of verbs is inferred from
context.

Some of the typical queries used in the experiment are shown in Table III. However, a more
comprehensive set of questions used in our experiment can be found at the AQUA home page:
http://kmi.open.ac.uk/projects/akt/aqua/

Some questions are answered by AQUA by performing statistical analysis of the data contained in the
knowledge base. Examples of such questions are, Which researchers work on most projects?
Do most researchers work on most projects?

Question type Answers

Who
Who works in akt? A set of people who works on the akt project
Who owns webonto? Name of institution
Who is John Domingue? Senior Research Fellow

 KMi deputy director

http://kmi.open.ac.uk/projects/akt/aqua/

What
What is MnM? KMi tool
 What is akt Project

Which/What
Which technologies KMi had
produced?

A set of technologies

Which researchers do not work on the
akt project?

A set of researchers except researchers
working on the akt project.

Which researchers work on most
projects?

A set of researchers who work on almost all
projects in Kmi

Which tools support the technique of
Information Extraction?

A set of KMi tools making use of Information
Extraction.

Which researchers work on all
projects?

A set of researchers working in all Kmi
projects

Which researchers work on few
projects?

A set of researchers working in less than 1/3 of
KMi projects

Which researchers do not work on most
projects?

A set of researches working on few projects

Which publications has KMi
published?

A list of publications

Where
Where is researcher Maria Vargas-Vera
based?

KMi

Type Yes/No questions:
Do all researchers work on the akt
project?

No.

Do most researchers work on most
projects?

Yes

Were all technologies produced by the
institution known as KMi?

No

Does Enrico Motta work on the akt
project?

Yes

Table III. AQUA has been evaluated with the following category of questions and using the AKT

ontology.

Further work is planned in the direction of handling a wider range of question. For example the when and
why type described in section 4.

4. AQUA as open-domain QA

4.1 Query Classification

Query classification is performed in the case that the proof fails, and gives information about the kind of
answer AQUA should expect. Therefore, query classification plays an important role in the case that the
answer needs to be found from the Web, and cannot be satisfied using just the populated ontology. For
example, given the query ``What is the capital of Mexico?'' AQUA will not find anything from the
ontology, and will instead a generate keyword search and pass it to the search engine.

The classification phase involves processing the query to identify the category of answer that the user is
seeking. The classification is performed using the information obtained during segmentation of the
sentence. During segmentation, the system finds nouns, verbs, prepositions and adjectives. The categories
of possible answers are listed below.

• what/which - this kind of question appears with a head noun that describes the category of the
entity involved. For this category the head noun is extracted and WordNet is used to perform the
mapping between head noun and category.

• who, whom - the category of the answer is 'person'.
• when - the category of the answer is 'date'.
• why - the category of the answer should be 'reason'.
• where - the category of the answer is 'location'.

The range of answers provided by AQUA - our question answering system - varies from yes/no answers,
true/false answers, and answers consisting of a word or a sentence. In some cases, questions could have
more than one answer, whilst in other cases the system might not find the answer. Currently, AQUA
handles six categories of questions. Table IV shows categories of queries that AQUA is able to handle.
These categories are based on the conceptual categories used in Lehnert’s QUALM system (Lehnert
1978).

Question categories Specification Examples

Verification Is a fact true? Does Maria Vargas-Vera work on akt?
Does D. Fensel work on akt?

Definition What is X? What is akt? What is ontoweb ?
Quantification How many How many researchers work on akt?

How many people work in artificial
intelligence?

Reason Why X? Why the sky is blue?
Concept Who? What? When?

Where
Who is D. Fensel?

Directive Give me X Give me Microsoft technologies
Give me KMi technologies

Table IV shows a categorization of queries which can be handled using AQUA

Several answers can be correct but, in a given context, some of them can be useless. To illustrate this
example we took an example from Lehner “ Where is Derfield Illinois?’’ (Lehnert 1978).

A set of possible answers are as follows:

1. Answer: 87o 54’ longitude 42o 12’ latitude.
2. Answer: Near to Lake Michigan, about 20 miles north of Chicago.
3. Answer: Next to Highland Park.
4. Answer: On the planet Earth.

For example, answer 4 (‘On the planet earth’) is not a meaningful answer to someone who wants to travel
to Derfield Illinois. Similarly, answer 3 is useless if the person who is asking the question does not know
where Highland Park is. Answer 1 is appropriate if a technical specification is required.

4.2 Learning patterns

When the query cannot be satisfied using the AKT ontology (knowledge base), AQUA tries to satisfy the
query using the web as a resource. In the downstream part of the AQUA architecture, we used information
extraction and Machine Learning techniques. AQUA contains a set of learnt patterns from a predefined
domain. As a first instance, we learnt patterns using as corpus an electronic news stories archive that we
have available in our institution (Knowledge Media Institute). An example of a new story in our corpus is
shown below. The title is The AKT begins

The AKT begins.....KMI awarded £1.2M by EPSRC

Enrico Motta
01.03.00
“KMi has been awarded £1.2M by the UK's Engineering and Physical Sciences Research Council to carry
out research in the application of knowledge technologies to support knowledge creation and sharing in
organizations. This highly prestigious award has been obtained in the context of the EPSRC Programme on
Interdisciplinary Research Collaborations centred on Information Technology’’

We have used UMass tools (Marmot , Badger and Crystal (Riloff:96)) for information extraction. Our
answer extraction system, as most information extraction systems, uses some form of partial parsing to
recognize syntactic constructs without generating a complete parse tree for each sentence. Such partial
parsing has the advantages of greater speed and robustness. High speed is necessary to apply the
information extraction to a large set of documents. The robustness achieved by allowing useful work to be
done from a partial parsing is essential to deal with unstructured and informal texts.
The nature of the domain is very important in determining which kind of patterns are necessary in our
library of patterns. Currently, in order to apply our system to a new domain the entire knowledge process
of defining templates has to be repeated.

4.2.1 Learning process model

Within this work, we have focused on creating a generic process model for learning patters for the AQUA
system. In the learning phase, we have devised three activities : markup, learning and extraction. We will
provide more details of each of the activities in turn.

http://kmi.open.ac.uk/people/motta/

Markup

In markup phase, we used half of the corpus (100 news stories). We trained the system using three
categories of news stories: visits, awards and academic conferences. We annotated text documents (written
in plain ASCII or HTML) with a set of tags. These tags are semantic annotations to relevant entities in the
text. During the markup phase as the text is selected the system inserts the relevant SGML tags into the
document. This markup was done using the TMI interface provided with the UMass tools.

Learning

This phase was implemented by integrating two components: Marmot and a learning component called
Crystal, both from UMass . We describe them briefly in this paper. However, full descriptions can be found
in (Riloff 1996a)

Marmot is a natural language preprocessing tool that accepts ASCII files and produces an intermediate
level of text analysis that is useful for information extraction applications. Sentences are separated and
segmented into noun phrases, verb phrases prepositional phrases. Marmot has several functionalities: it
preprocesses abbreviations to guide sentence segmentation, resolves sentences boundaries, identifies
parenthetical expressions, recognizes entries from a phrasal lexicon and replace them, recognizes dates and
duration phrases, performs phrasal bracketing of noun, preposition and adverbial phrases, and finally
scopes conjunctions and disjunctions.

Crystal is a dictionary induction tool. It derives a dictionary of concept nodes from a training corpus. The
first step in dictionary creation is the annotation of a set of training texts by a domain expert. Each phrase
that contains information to be extracted is tagged (with SGML style tags).
Crystal initializes a concept nodes dictionary for each positive instance of each type of event. The initial
concept node definitions are designed to extract the relevant phrases in the training instance that creates
them but are too specific to apply to unseen sentences. The main task of Crystal is to gradually relax the
constraints on the initial definitions and also to merge similar definitions. Crystal finds generalizations of
its initial concept node definitions by comparing definitions that are similar. This similarity is deduced by
counting the number of relaxations required to unify two concept node definitions. Then a new definition is
created with constraints relaxed. Finally the new definition is tested against the training corpus to insure
that it does not extract phrases that were not marked with the original two definitions. This means that
Crystal takes similar instances and generalizes into a more general rule by preserving the properties from
each of the concept node definitions which are generalized.

Extraction

A third component called Badger (from UMass) was also integrated into our event recognition system.
Badger makes the instantiation of templates: its main task is to take each sentence in the text and see if it
matches any of our concept node definitions. If no extraction concept node definition applies to a sentence,
then no information will be extracted; this way irrelevant text can be processed very quickly.

9.2.2 Examples of extracted patterns using KMi news stories as training corpus

Each event in our system has several patterns which can be used to recognize it (e.g. see questions of the
visitor , academic-conference and award types). The patterns are shown in Table V.

KMi News stories Corpus
Visits patterns

Questions

X visited Y Who visited Edinburgh University?
Y was visited by X Does OU was visited by Mr Blair ?
Y visited by X on Z Who visited the OU on 12 July 2003?
Y were visited by X Who were visited by Mr Davis?
Visit to Y
X came Who came?
X came to visit Y Who came to visit The Open University?
Y hosted X Who hosted Ernesto Compatangelo?
Y hosted a visit from X Who hosted a visit from Ernesto Compatangelo?
Y had a visit from X Who had a visit ?
Y welcomes X Who welcomes Gilliam Vincent?
In all patterns shown above X is a person, Y is a
place/institution and Z is a location.

Awards patterns
ORG has been awarded MONEY by FUNDER Who was awarded 10000 Euros by the European

Commission ?
ORG has been received MONEY from FUNDER to
carry out research in TOPIC

Which organization has been awarded 10000 Euros
from the EC to carry out research in the semantic
web?

ORG has been awarded MONEY by FUNDER to
carry out research in TOPIC

Which organization has been awarded 10000 Euros
by EC to carry out research in the semantic web?

ORG has been awarded MONEY on TOPIC Which organization has been awarded 10000 Euros
by EC to carry out research on the semantic web?

awards MONEY to ORG
FUNDER has awarded MONEY to ORG What funder has awarded 10000 Eu to Kmi?
brings MONEY to ORG Who brings money to ORG?

Academic conference patterns
held at PLACE What was held at the Open University?
taking place in PLACE Where did the meeting take place?
hosted by ORG Who hosted the conference?
organized by ORG Who organized the conference?
paper entitled TITLE What was the title of the paper?

Table V shows a list of patterns and questions

The experiments showed that an automatic mechanism is needed in order to determine which extraction
rules are spurious. We believe this problem can be solved by associating confidence value to the extraction
rules (Vargas-Vera and Celjuska 2003c). Previous work has reported that spurious patterns were deleted
manually from the library of rules under the assumption that they were not likely to be of much value
(Riloff 1996a). However, our experiments reported in (Vargas-Vera and Celjuska 2003c) were carried out
without deleting spurious rules.

5. Related work

There are many trends in question answering (Katz 1997, Katz et al. 1988a, Katz 1988b, Plamondon et al.
2001, Burke et al. 1997, Moldovan 1999, Hovy et al. 2001a, Hovy et al. 2001b,Attardi 2001). However, in
this paper, we only describe the systems most closely related to the AQUA system philosophy.

MULDER is a web-based QA system (Kwok 2001) that extracts snippets called summaries and generates a
list of candidate answers. However, unlike AQUA, the system does not exploit an inference mechanism,
and so, for example, cannot use semantic relations from an ontology.

QUANDA is closest to AQUA in spirit and functionality. QUANDA takes questions expressed in English
and attempts to provide a short and concise answer (a noun phrase or a sentence) (Breck et al. 99). Like
AQUA, QUANDA combines knowledge representation, information retrieval and natural language
processing. A question is represented as a logic expression. Also knowledge representation techniques are
used to represent questions and concepts. However, unlike AQUA, QUANDA does not use ontological
relations.

ONTOSEEK is an information retrieval system coupled with an ontology (Guarino 1999). ONTOSEEK
performs retrieval based on content instead of string based retrieval. The target was information retrieval
with the aim of improving recall and precision and the focus was specific classes of information
repositories: Yellow Pages and product catalogues. The ONTOSEEK system provides interactive
assistance in query formulation, generalization and specialization. Queries are represented as conceptual
graphs, then according to the authors ''the problem is reduced to ontology-driven graph matching where
individual nodes and arcs match if the ontology indicates that a subsumption relation holds between them''.
These graphs are not constructed automatically. The ONTOSEEK team developed a semi-automatic
approach in which the user has to verify the links between different nodes in the graph via the designated
user interface. In contrast, AQUA does not require user intervention in building the graph of the query
and the graph obtained from the ontology.

6. Conclusions and future work

In this paper we have presented AQUA - a question answering system which merges NLP, Logic,
Information Retrieval techniques and Ontologies12. AQUA translates English questions into logical queries
(expressed in the QLL language) that are then used to generate of proofs. Currently, AQUA is coupled
with the AKT reference ontology for the academic domain. In the future, we plan to couple AQUA with a
set of ontologies from our repertoire of ontologies.

12 AQUA has been implemented in Sicstus Prolog, C, OCML and PHP.
information
Information extraction can be seen as the task of pulling predefined relations from texts.

AQUA makes use of an inference engine which is based on the Resolution algorithm. However, in future it
will be tested with the Contextual Resolution algorithm which will allow the carrying of context through
several related questions

We have also presented the similarity algorithm which we have embedded in AQUA: this uses Ontological
structures, the Dice coefficient and WordNet synsets. This algorithm is used by AQUA to ensure that the
question does not fail because of a mismatch between names of relations. In the future, we intend to
provide AQUA with a library of similarity algorithms.

We are currently developing M-AQUA, which is a Question Answering System which handles multiple
ontologies. It relies on a mediator which make sense of which ontology should be used for answering a
query. Further research need to be done in this direction. However, preliminary results are encouraging.

One of the main restrictions of AQUA is that it only can answer questions in a isolation (i.e. it does not
handle a set of follow up questions related to the initial question). Therefore, we will explore how to
handle context across a set of queries.

Further work needs to be carried out to determine which data are queried most frequently by users. Then
AQUA should be given patterns for such queries. We also could the improve response times for expensive
queries.

Finally, future research can be focused one of the main problems found in AQUA. One such problem is
that it needs to learn paraphrases to improve the QA process. For instance AQUA could learn that X killed
Y has the same linguistic meaning that Y was assassinated by X (Duclaye et al. 2002).

Acknowledgments

This work was funded by the Advanced Knowledge Technologies (AKT) Interdisciplinary Research
Collaboration (IRC), which is sponsored by the UK Engineering and Physical Sciences Research Council
under grant number GR/N157764/01. The AKT IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University. The authors would like to thank Arthur Stutt and Mark
Gaved for their invaluable help in reviewing the first draft of this paper. In particular we want to thank
Gaston Burek for his help in formalizing the similarity algorithm. We also thank Martin Dzbor for his help
on the AQUA interface and Gaston Burek for helping to formalize the similarity algorithm.

References
Askjeeves: http://askjeeves.com/, 2000.

Attardi G. and Cisternino A. and Formica F. and Simi M. and Tommasi A. (2001): Proceedings of
TREC-9 Conference, NIST, pp 633-641, 2001.

Baldwin J. F. and Martin T.P. and Pilsworth B. W. (1995): Fril - Fuzzy and Evidential Reasoning in
Artificial Intelligence. Research Studies Press in 1995.

Budanitsky A. and Hirst G. (2001) Semantic distance in WordNet: An experimental, application-oriented
evaluation of five measures. Workshop on WordNet and Other Lexical Resources, Second meeting of the
North American Chapter of the Association for Computational Linguistics, Pittsburgh, June 2001.

Burke R. D. and Hammond K. J. and. Kulyukin V. A. and Lytinen S. L. and Tomuro N. and
Schoenberg S. (1997): Questions answering from frequently-asked question files: Experiences with the
FAQ Finder System. The University of Chicago, Computer Science Department, TR-97-05, 1995.

Brickley D. and Guha R.(2000): Resource Description Framework (RDF) Schema Specification 1.0.
Candidate recommendation, World Web Consortium, URL:http://www.w3.org/TR/2000/CR-rdf-schema-
20000327.

Breck E. and House D. and Light M. and Mani I. (1999): Question Answering from Large Document
Collections, AAAI Fall Symposium on Question Answering Systems, 1999.

Ciravegna F. and Dingli A. , Guthrie D. and Wilks Y. (2003): Mining Web Sites Using Unsupervised
Adaptive Information Extraction. Proceedings of the 10th Conference of the European Chapter of the
Association for Computational Linguistic, Budapest Hungary, 2003.

Clocksin W. F. and Mellish C. S. (1981): Programming in Prolog, Springer-Verlag, 1981.

Doan A. and Madhavan J. and Domingos P. and Halevy A. (2002): Learning to Map between
Ontologies on the Semantic Web. In Proc. of the 11th International World Wide Web Conference
(WWW2002), 2002.

Domingue J. and Dzbor M and Motta E. (2003): Semantic Layering with Magpie. The Second
International Semantic Web Conference, Sanibel Island FL, USA, October 2003.

Duclaye F. and Francois Y. (2002): Using the Web as a Linguistic Resource for Learning Reformulations
Automatically , Proceedings of the third international conference on language resources and evaluation
(LREC'02) vol. 2, pp. 390-396, Las Palmas, Canary Islands - Spain, May 2002.

Frakes W. and Baeza-Yates R. (1992): Information Retrieval: Data Structures & Algorithms, Prentice
Hall, 1992.

Guarino N. (1999): OntoSeek: Content-Based Acess to the Web, IEEE Intelligent Systems, pp 70-80, 1999.

Hastings, P. (1994): Automatic Acquisition of Word Meaning from Context. PHD. Thesis, University of
Michigan, Ann Arbor, MI, 1994.

Hastings, P. (1995): Use of context in an automatic lexical acquisition mechanism. In Iwanska, L. (Ed),
Proceedings of the Workshop on Context in Natural Language of the 14th International Join Conference on
Artificial Intelligence, 1995.

Hastings, P. (1996): Implications of an automatic lexical acquisition mechanism. In Wermter, S ., Riloff,
E., & Scheler, C.. (Eds.), Connectionist Statistical and Symbolic Approaches to Learning for Natural
Language Processing. Springer -Verlag, Berlin, 1996.

Hayes P. (2002): RDF Model Theory, W3C Working Draft, URL:http://www.w3.org/TR/rdf-mt/

Hovy E. and Gerber L. and Hermjakob U. and Junk M. and Liu C-Y (2001a): Question Answering in
Webclopedia, Proceedings of TREC-9 Conference, NIST, 2001.

Hovy E. and Gerber L. and Hermjakob U and Liu C-Y and Ravichandran D. (2001): Toward Semantics-
Based Answer Pinpointing, Proceedings of DARPA Human Language Technology conference (HLT),
2001.

Katz B. (1997): From sentence processing to information access on the world wide web, Proceedings of
AAAI Symposium on Natural Language Processing for the World Wide Web, 1997.

Katz B. and Levin B. (1988a): Exploiting Lexical Regularities in Designing Natural Language Systems,
MIT Artificial Intelligence Laboratory, TR 1041, 1988.

Katz B. (1988b): Using English for Indexing and Retrieving, MIT Artificial Intelligence Laboratory, TR
1096, 1988.

Kwok C. and Etzioni O. and D. S. Weld D. S. (2001): Scaling Question Answering to the Web, World
Wide Web, pp 150-161, 2001.

Lassila O. and Swick R. (1999): Resource Description Framework (RDF): Model and Syntax
Specification. Recommendation. World Wide Web Consortium, URL: http://www.w3.org/TR/REC-rdf-
syntax/.

Lehnert W. G. (1978): The Process of Question Answering . Lawrence Erlbaum Associates, Inc,
Publishers, 1978.

Lin D. and Pantel P. (2001): Discovery of Inference Rules for Question Answering, Journal of Natural
Language Engineering, 2001.

Lloyd J. W. (1984): Foundations of Logic Programming, Springer-Verlag, 1984.

Manning C. D. and Schutze H. (1999): Foundations of Statistical Natural Language Processing. The MIT
Press, Cambridge Massachusetts, 1999.

Miller G. A. and Charles W. G. (1991): Contextual correlates of semantic similarity. Language and
Cognitive Processes , 6(1), 1-28.

Moldovan D. and Harabagiu S. and Pasca M. and Mihalcea R. and Goodrum R. and Girju R. and Rus V.
(1999): LASSO: A Tool for Surfing the Answer Net. Proceedings of TREC-8 Conference, NIST, 1999.

Moreale E. and Vargas-Vera M. (2003): Towards a Student Portal. KMI-TR-136, Knowledge Media
Institute, The Open University, 2003.

Motta E. (1999): Reusable Components for Knowledge Modelling. IOS Press. Netherlands, 1999.

Noy N. and Musen M. (2000): PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment. In Proc. of the 17th National Conference on Artificial Intelligence (AAAI), 2000.

 Plamondon L. and Lapalme G. and Diro R. and Kosseim L (2001): The QUANTUM Question
Answering System, Proceedings of TREC-9 Conference, NIST, 2001.

Pulman S. G. (2000): Bidirectional Contextual Resolution, Computational Linguistic Vol 26/4, 497-538,
2000.

Ravichandran D and Hovy E. (2002): Learning Surface Text Patterns for a Question Answering System. In
Proceedings of the ACL Conference, 2002.

Resnik P. (1995) Using information content to evaluate semantic similarity in a taxonomy. In Proceedings
of IJCAI-95, pages 448-453, Montreal, Canada.

Resnik P. (1998): Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application
to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence research.

Resnik P and Diab M. (2000): Measuring Verb Similarity. Proceedings of the 22nd Annual Meeting of the
Cognitive Science Society (COGSCI2000), Philadelphia, USA, 2000.

E. Riloff (1996a): An Empirical Study of Automated Dictionary Construction for Information Extraction in
Three Domains. AI Journal, volume 85:101-134, 1996.

E. Riloff (1996b): Automatically Generating Extracting Patterns from Untagged Text. Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96)}, pp 1044-1049, 1996.

Stojanovic, N., Maedche, A., Staab, S., Studer, R. and Sure, Y. (2001). SEAL – A Framework for
Developing Semantic PortALs, K-CAP’01, October 22-23, 2001.

Studer, R., Sure, Y. and Volz, R. (2002). Managing User Focused Access to Distributed Knowledge,
Journal of Universal Computer Science (J.UCS), 8, 6, 662-672, 2002.

Vargas-Vera M. and Motta E. (2004): AQUA - Ontology-based Question Answering System. Accepted
to be presented at Third International Mexican Conference on Artificial Intelligence (MICAI-2004), LNAI
2972 Advances in Artificial Intelligence, Springer Verlag, Editor R. Monroy. April 26-30, 2004.

Vargas-Vera M. and Motta E and Domingue J. (2003a): AQUA: An Ontology-Driven Question Answering
System. AAAI Spring Symposium, New Directions in Question Answering, Stanford University, March
24-26, 2003.

Vargas-Vera M. and Motta E. and Domingue J. (2003b): An Ontology-Driven Question Answering
System (AQUA). KMI-TR-129, Knowledge Media Institute, The Open University, 2003.

Vargas-Vera M. and Celjuska D. (2003c): Ontology-Driven Event Recognition on News Stories. KMI-TR-
135, Knowledge Media Institute, The Open University, 2003.

Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A. and Ciravegna, F. (2002). MnM:
Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. The 13th International
Conference on Knowledge Engineering and Management (EKAW 2002), Lecture Notes in Computer
Science 2473, ed. Gomez-Perez, A., Springer-Verlag, 2002, 379-391, ISBN 3-540-44268-5.

Vargas-Vera M. and Domingue J and Motta E. and Buckingham Shum S. and Lanzoni.M. (2001):
Knowledge Extraction by using an Ontology-based Annotation Tool. In proceedings of the Workshop
Knowledge Markup & Semantic Annotation, held in conjuction with the First International Conference on
Knowledge Capture (K-CAP 2001). Victoria Canada, October 2001, pp 5-12, 2001.

Wu Z. and Palmer M. (1994): Verb semantics and Lexical Selection. 32nd Annual Meetings of the
Association for Computational Linguistics, 1994.

	1. Introduction
	2. AQUA process model
	AQUA as closed-domain QA
	
	3.1 Query Logic Language (QLL)
	3.2 The AQUA query-satisfaction algorithm
	3.3 Concept and relation similarity algorithm
	3.3.1 Working Example
	3.3.2 Similarity algorithm evaluation
	3.4. Failure Analysis
	3.5 Output enhancements
	3.6. AQUA Evaluation as closed-domain QA

	4. AQUA as open-domain QA
	
	4.1 Query Classification
	4.2 Learning patterns
	4.2.1 Learning process model
	9.2.2 Examples of extracted patterns using KMi news stories as training corpus

	5. Related work
	6. Conclusions and future work
	Acknowledgments
	References

