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Abstract 
This paper describes AQUA, a question answering system. AQUA combines Natural Language processing (NLP), 
Ontologies, Logic, and Information Retrieval technologies in a uniform framework. AQUA makes  intensive use of an 
ontology (which encode knowledge) in several parts of the question answering system.  The ontology is used in the 
refinement of the initial query, the reasoning process (a generalization/specialization process using classes and 
subclasses from the ontology), and in the novel similarity algorithm. The  similarity algorithm is a key feature of 
AQUA. It is used to find similarities between relations/concepts in the translated query and relations/concepts in the 
ontological structures. The similarities detected then allow the interchange of concepts or relations in a logic formula 
corresponding to the user query.  In this way, we make the mapping between user’s queries and ontological spaces. The 
AQUA architecture is flexible enough to allow that AQUA can be used as closed-domain and open domain question 
answering system. 
 

1. Introduction 
 
 In recent years, the rise in popularity of the web has created a demand for services which help users to skip 
over all irrelevant information quickly.  One of the services is question answering (QA), the technique of 
providing  answers to specific questions. Given a question such as ‘which country had the highest inflation 
rate in 2002?’ a keyword-based search engines such as Google might present the user  with web pages from 
the Financial Times, whereas a QA system would attempt to directly answer the question with the name of 
a country. On the web, a typical example of a QA system is Jeeves1 (Askjeeves 2000) which allows users to 
ask questions in natural language.  It looks up the user's question in its own database and returns the list of 
matching questions which it knows how to answer. The user then selects the most appropriate entry in the 
list.  However, users would usually prefer a precise answer to a precise question.  Therefore, a reasonable 
aim for an automatic system is to provide textual answers instead of a set of documents. In this paper we 
present AQUA a question answering  system which amalgamates Natural Language Processing (NLP), 
Logic, Ontologies and Information Retrieval techniques to provide answers to queries in a specific domain 
in real time. 
 
The first instantiation of our ontology-driven Question Answering System, AQUA (as QA-closed domain), 
is designed to answer questions about academic people and organizations.  However, an important future 
target application of AQUA would be to answer questions posed within company intra-nets; for example, 
giving AQUA an ontology of computer systems might allow it to be used for trouble-shooting or 
configuration of computer systems. 
AQUA is also designed to play an important role in the Semantic Web2. One of the goals of the Semantic 
Web is the ability to annotate web resources with semantic content.  These annotations can then be used by 
a reasoning system to provide intelligent services to users.  AQUA would be able to perform incremental 

                                                                 
1 http://www.ask.com/ 
2 The goal of the Semantic Web is to help users or software agents to organize, locate and process content 
on the WWW. 



markup of home pages with semantic content. These annotations can be written in RDF (Lassila et al. 1999, 
Hayes 2002) or RDFS (Brickley et al. 2000), notations which provide a basic framework for expressing 
meta-data on the web.  We envision that AQUA can perform the markup concurrently with looking for 
answers, that is, AQUA can annotated pages as it finds them. In this way then, semantically annotated web 
pages can be cached to reduce search and processing costs. 
 
The main contribution of AQUA is the intensive use of an ontology in several parts of the question 
answering system.  The ontology is used 
 

• in the refinement of the initial query 
• in the reasoning process (a generalization/specialization process using classes and subclasses from 

the ontology),  and 
• in the (novel) similarity algorithm. 
 

The last of these, the similarity algorithm, is a key feature of AQUA. It is used to find similarities between 
relations/concepts in the translated query and relations/concepts in the ontological structures. The 
similarities detected then allow the interchange of concepts or relations in the formulae. The ontology is 
used to provide an intelligent reformulation of the question, with the intent to reduce the chances of failure 
to answer the question. 
 
In this paper, we describe the overall workings of AQUA.  Briefly, queries formulated in plain English are 
translated by AQUA into logic formulae using the grammatical components obtained by our parser.  
AQUA then looks for an answer in different resources such as databases, a populated ontology (or 
knowledge base) and the Web. Currently, AQUA makes use of an inference engine which is based on the 
Resolution algorithm. AQUA uses also our similarity algorithm which is based on both the ontological 
structures and instances of the ontology, a WordNet thesaurus and the Dice coefficient.  
Finally, AQUA also has facilities for analyzing and explaining proofs. The explanation is provided both in 
pseudo-natural language and as a visualization. Throughout this paper, we will illustrate AQUA using 
queries based on the AKT reference ontology3. 
 
Our current work is focusing on embedding AQUA in the AKT semantic portal  which will offer a variety 
of services to support academics in knowledge intensive tasks. A semantic portal can be seen as an entry 
point to knowledge resources that may be distributed across several locations. Such portal should provide 
means for navigating through all these resources in an easy way, since it may be used by users with all 
levels of computing knowledge. This semantic portal  will offer users services such as semantic browsing,  
smart question answering and ontological browsing (Stojanovic et al., 2001; Studer et al., 2002; Moreale 
and Vargas-Vera 2003).   
 
The paper is organized as follows:  Section 2 describes the  AQUA  process model. Section 3 describes  a 
comprehensive set of components used in AQUA such as Query Logic Language (QLL); the AQUA query 
satisfaction-algorithm; the similarity algorithm embedded in AQUA; an evaluation of our similarity 
algorithm; failure analysis; output enhancements and an evaluation using  queries relevant to the AKT 
ontology. Section 4 presents AQUA as a open-domain question answering system. It describes the query 
classification component and learning patterns and extraction of answers using a library of patterns. Section 
5 describes related work closest in spirit to AQUA. Finally, section 6 gives conclusions and directions  for  
future work. 
 
 

                                                                 

 
3  The AKT ontology contains classes and instances of people, organizations, research areas, publications, 
technologies and events (http://akt.open.ac.uk/ocml/domains/akt-support-ontology/). 



 

2. AQUA process model 
 
The AQUA process model generalizes other approaches by providing a uniform framework which 
integrates NLP, Logic, Ontologies and information retrieval.  Within this work we have focused on creating 
a process model for the AQUA system.  Figure 1 shows the architecture of our AQUA system. 
 

 
                       Figure 1. The AQUA architecture 
 
 
In the process model there are four phases: user interaction, question processing, 
document processing and answer extraction. 
 
 

1. User interaction. The user inputs the question and validates the answer (indicates whether it is 
correct or not). This phase uses  the following components: 

 
• Query interface. The user inputs a question (in English) using the user interface -a simple 

dialogue box. The user  can reformulate the query if the answer is not satisfactory. 
 

• Answer. A ranked set of answers is presented to the  user. 
 

• Answer validation. The user gives feedback to AQUA by  indicating agreement or 
disagreement with the answer. 

 
 

2. Question processing. Question processing is performed in order to understand the question asked 
by the user.  This  ‘understanding’ of the question requires several steps such as parsing the 
question, representation of the question and classification.  The question processing phase uses the 
following components: 

 
• NLP parser. This segments the sentence into subject, verb, prepositional phrases, adjectives and 

objects.  The output of this module is the logic representation of the query. 
 

• Interpreter. This finds a logical proof of the query over the knowledge base using unification and 
resolution  algorithms. 

 
• WordNet/Thesaurus. AQUA's lexical resource. 



 
• Ontology. Currently AQUA works with a single ontology – the AKT reference ontology which 

contains people, organizations, research areas, projects, publications, technologies and events.  
But in future the AQUA architecture will have a mediator which will select ontologies relevant 
to a Query. This is ongoing work at the Knowledge Media Institute (KMi). 

 
  
• Failure-analysis system. This analyzes the failure of  given question and gives an explanation of 

why the query failed. Then the user can provide new information for the pending proof and the 
proof can be re-started. This process can be repeated as needed. 

 
• Question classification & reformulation. This classifies questions as belonging to any of the types 

supported in AQUA, (what,  who,  when, which,  why and where). This classification is only 
performed if the proof failed. AQUA then tries to use an information retrieval approach. This 
means that AQUA has to perform document processing and answer extraction phases. 

 
 

3. Document Processing.  A set of documents are selected and a set of paragraphs are extracted. 
This relies on the identification of the focus4 of the question. Document processing consists of two 
components: 

 
• Search query formulation. This transforms the original question,  Q  into a new question Q', 

using transformation rules. Synonymous words can be used, punctuation symbols are 
removed, and words are stemmed. 

 
• Search engine. This searches the web for a set of documents using a set of keywords. 

  
 

4. Answer processing. In this phase answers are extracted from passages and given a score, using 
the two components: 

 
• Passage selection. This extracts passages from the set of documents likely to have the answer. 

 
• Answer selection. This clusters answers, scores answers (using a voting model), and lastly 

obtains a final ballot. 
 
 

3. AQUA as closed-domain QA 

3.1   Query Logic Language (QLL) 

In this section we present the Query Logic Language (QLL) used within AQUA for the translation of the 
English question into its Logic form.  In QLL variables and predicates are assigned types.  Also, QLL 
allows terms (in the standard recursively-defined Prolog sense (Clocksing et al.  1981, Lloyd 1984). AQUA 
uses QLL as an inter-media language as is shown in example (section 5). 
 

                                                                 
4 Focus is a word or a sequence of words which defines the question and disambiguates it in the sense that 
it indicates what the question is looking for. 



Like Prolog or OCML (Motta 1999), QLL uses unification and resolution (Lloyd 1984).  However, in the 
future we plan to use Contextual Resolution (Pulman 2000). Given a context, AQUA could then provide 
interpretation for sentences containing contextually dependent constructs. 
Again like Prolog QLL uses closed-world assumption. So facts that are not provable are regarded as false 
as opposed to unknown. Future work needs to be done in order to provide QLL with three-valued logic. 
When this is done an evaluation of a predicate could produce yes, no or unknown as in Fril (Baldwin et al. 
1995). Finally, QLL handles negation as failure  but  it does not use cuts.  
 
Translation rules are used when AQUA is creating the logical form of a query, i.e. from grammatical 
components into QLL.  The set of translation rules we have devised is not intended to be complete, but it 
does handle all the grammatical components produced by our parser. Note that variables are denoted by 
strings starting with a ?, for example, ?t.  The form of the logical predicates introduced by each syntax 
category is described as follows: 
 

• Nouns (without complement) introduce a predicate of arity 1. For example the noun capital 
introduces the predicate capital (?x :type  ?t1) which restricts the type of value ?x to be the name of 
the city. 

 
• Nouns (with complement) introduce a predicate of arity equal to the number of complements 

plus one.  The pattern for n complements is as  follows: 
 
 
pred_name( ? argument1: type   ?t1, ....,? argumentn: type    ?tn, ? argument n+1: type  ?t n+1). 
 

For example, in the question ``What is the population of the UK?'' the noun population is 
translated into the predicate: 
 

population(uk: ?type   t1, ?x: type ?t2). 
 

• Qualitative adjectives introduce a predicate of arity 1. For example, the adjective ``AKT 
technology'' translates into 

 
akt_technology(?x : type   ?t1). 
 

• Quantitative adjectives introduce a binary predicate.  For example, the question ``How big is 
London?''  translates into the  following predicate: 

 
has-size(london: type   ?t1,  ?t :type ?t2).   
 

• Prepositions introduce a binary predicate. The pattern is  as follows: 
 
name_preposition( ?argument1 : type ?t1,  ? argument2: type  t2).  
 
For example, the preposition between gets translated in the predicate: 
 
between(?x : type  t1,  ?y : type  t2). 
 

• Verbs introduce predicates with one or more arguments. The first argument should be the subject 
of the verb, the second is the direct object, the third is the indirect object (if any) and complements 
(if any).  For example, ``David Brown visited KMi?'' is  translated into the following predicate: 

 
visited(david_brown: type  ?t1 ,  kmi: type  ?t2). 
 
A set of built-in predicates is also available in QLL. These include length, max, min, 
greater_than,less_than. 



 
 

3.2   The AQUA query-satisfaction algorithm  

This section presents the main algorithm implemented in the AQUA system. For the sake of space, we 
present a condensed version of our algorithm.  In this following algorithm AQUA uses steps 1-4.1 to 
evaluate query over the populated AKT reference ontology.  Steps 4.2 to 5 are used by AQUA trying to 
satisfy the query using the Web as resource. 
 
  

1. Parse the question into its grammatical components such as subject, verb, prepositions, object and 
so on. 

 
2. Use the ontology to convert from the language of QLL to a standard predicate logic.  The ontology 

is used by a  pattern-matching algorithm5  to instantiate type variables, and allow them to be 
replaced with unary predicates. 

 
3. Re-write the logic formulae using our similarity algorithm (described in the next section) 

 
4. Evaluate/execute the re-written logic formula over  the knowledge base. 

 
    4.1  If the logic formulae is satisfied,  then use it to provide an answer 
 
 
    4.2 else 
 
• Classify the question as  one of the following types:  

o what - specification of objects, activity definition 
o who  - person specification 
o when -  date 
o which - specification of objects, attributes 
o why - justification of reasons 
o where - geographical location 

       
    
• Transform the query Q into a new query  Q' using the important keywords.  
 
• Launch a search engine such as Google6  with the new question  Q'. AQUA will try to satisfy the user 

query using other resources such as the Web. 
 
• Analyze retrieved documents which satisfy the query  Q'. 

 
• Perform passage extraction. 

 
• Perform answer selection. 

 
• Send answer to user for validation. 

                                                                 
5 The pattern-matching algorithm tries to find an exact match with names in the ontology. 
6 http://www.google.com 



 
5. Stop. 
 
 
The example below shows just one aspect of use of ontology in question answering: ‘ontology traversal’ 
(i.e. generalization/specialization). Suppose we have the question:  
 
 
                                   Which technologies are used in AKT?'                                           
 
 
 AQUA tries to answer question as follows. 
 
The English question is translated into the QLL expression 
 
use(?x : type technology, akt : type ?y) 
 
 
which is then converted – using the AKT ontology - to the standard (Prolog-style) expression by using the 
AKT ontology 
 
∃ X:Domain   technology(X) & project(akt) & use(X,akt).   
 
 
 where the meaning of the quantifier is determined by the type of the variable it binds.  For our example, let 
us decide that Domain is the set containing the union of of each of the following congruence classes: 
people, projects, organizations, research areas, technologies, publications and events. 
 
 If there is a technology in the AKT project which is defined in the knowledge base then X will be bound to 
the name of the technology. Let us imagine the scenario where instances of technology are not defined in 
the AKT reference ontology. However, AQUA found in the AKT reference ontology that the relation 
‘commercial_technology’ is a subclass of ``technology''.  Then commercial_technology is a particular kind 
of technology, i.e. 
 
commercial_technology  ⊆  technology   
 
By using the subsumption relation our initial formula is transformed into the following one: 
 
   
∃  X:commercial_technology   commercial_technology(X)  & project(akt) & use(X,akt).  
 
AQUA then tries to re-satisfy the new question over the knowledge base. This time the question succeeds 
with X instantiated to the  name of one of the AKT technologies. 
 
We can see from the algorithm that AQUA tries to satisfy a user query using several resources.  Future 
implementations of AQUA could benefit from using the results obtained by the Armadillo7  (Ciravegna et 
al. 2003) information extraction engine running in the background as a complementary knowledge 
harvester. For instance, the user could ask the question ‘What publications has Yorik Wilks produced?’ 
This is a good example of a query for which AQUA could make a request to Armadillo. Armadillo would 

                                                                 
7 Armadillo is an information extraction engine which uses resources such as CiteSeer to find a limited 
range of information types such as publications. 



find the publications of Yorik Wilks (for example, using CiteSeer8 or his personal web site).  Next, 
Armadillo would parse documents, retrieve the requested information and pass the set of publications back 
to AQUA to render an appropriate answer. 
 

3.3   Concept and relation similarity algorithm  

Similarity ha been an important  research topic in several fields such linguistic,  Artificial intelligence (in 
particular in the field of Natural Language Processing and Fuzzy Logic). The range of application of 
measure of similarity ranges from word sense disambiguation, text summarization, information extraction 
and retrieval, question answering, automatic indexing and automatic correction of codes.  
We  found  that there are two types of similarity: syntactically and semantic similarity. Syntactic similarity 
can be defined as functions over terms. For instance the hamming distance (used in Information Theory). 
This similarity is defined as the number of positions with different characters in two terms with the same 
length. Whilst semantic similarity can be defined as Miller and Charles (Miller et al 1991) as a continuous 
variable that describes the degree of synonymy between two words. 
 
When evaluating similarity in a taxonomy the most natural way to access similarity is to evaluate the 
distances between the two concepts being compared. Therefore the shorter is the path from one to another 
means that they are more similar. This approach has been used  as measure of similarity. However one of 
the main drawbacks is that  it relies on the notion that links in a taxonomy represent uniform distances 
(Resnik 1995; 1998). Our own  view is that similar entities are assumed to have common features9. For 
instance (university,  research_institute) but it is also the case that dissimilar entities may also be 
semantically related by the relation meronym  or holonym such as (student –person;  bicycle-wheel) .  
 
Our similarity algorithm  assess concept similarity and relation similarity. It compares extended graph  
obtained from the user query (plus informative classes from ontology) and  a  graph which represents a 
subset of the ontology (relevant to the query). As an inter-media stage our it creates the intersection upon 
nodes (described in section 3) between  the two graphs  (the graph of the query and the graph obtained 
from the ontology).  Then, our similarity algorithm assess concept similarity and relation similarity using 
the Dice Coefficient using the most informative classes from the ontology. 
 
The success of the attempt to satisfy a query depends on the existence of a good mapping between the 
names of relations used in the query and names of relations used in the knowledge base/ontology. 
Therefore, we have embedded in AQUA a similarity algorithm. Our similarity algorithm uses both 
ontological structures and instances in the selected ontology, the Dice coefficient and the WordNet 
thesaurus. Our similarity algorithm differs from other similarity algorithms in that it uses ontological 
structures and also instances. Instances provide evidential information about the relations being analyzed.  
This is an important distinction between the kind of similarity which can be  achieved using only WordNet 
or the similarity which can be calculated using distances to super-classes  (Wu et al. 1994). In the former, 
WordNet brings all the synsets found even the ones which are not applicable to the problem being solved. 
Whilst in the latter one, the idea of a common super-class between concepts is required. In our case, it is 
not a necessary condition. 
 
 We present an explanation of our algorithm when arguments in the user query are grounded (instantiated 
terms) and they match exactly (at the level of strings) with instances in the ontology. A detailed description 
of the algorithm and example can be found in  (Vargas-Vera et al. 2003a, 2003b, 2004). 
 

                                                                 
8 http://citeseer.nj.nec.com/cs 
9 The common features in two entities  might  not be so discriminative as the features which are different in 
them.  



The algorithm uses grounded terms in the user query.  It tries to find them as instances in the ontology. 
Once they are located a portion of the ontology (G2) is examined including  neighborhood classes. Then, 
using knowledge from the ontology, an  intersection 10 (G3) is found between augmented query  G1 and G2   
to assess structural similarity. It could be the case that in the intersection G3 several relations can include 
the grounded arguments. Then  the similarity is computed for all relations (containing elements of the user 
query) using the Dice Coefficient. Finally, the relation with the maximum Dice Coefficient value is 
selected as  the most similar  relation. 
 
AQUA reformulates the query using the most similar relation and it then tries to prove the reformulated 
query.  If no similarity is achieved using our similarity algorithm then AQUA provides the user with the  
synsets obtained from WordNet. From this offered set of synsets, the user selects the suitable one.   
 
The similarity algorithm for relations  is  defined as follows:  
 
SimilarityBase algorithm: 
 
  Case 1:  X1 and X2 are grounded arguments. 
 

1.  Translate the question to First Order Logic  i. e. predicate_name(X1, X2) 
 
2. ∃ relation connecting C1 and C2  Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 such that 
  
relation(C1,C2) where relation is an ontological relation between C1 and C2. 
 
 
3. ∃  relation connecting C1 and C2  Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 such that 
 
  relation(C1, C2)  Λ  ∃ S1 ⊃ (U11  ⊂  U12  ⊂  …  ⊂ U1n ) ⊃ C1 Λ ∃ S1 Λ  (U11 ⊂ U12 ⊂ …⊂ U1n )  ⊃ 
C2 
 
4. ∃ relation connecting C1 and C2  Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 Λ  S1 ⊃ X1 Λ  S2 ⊃ X2 Λ  ∃ (U11 ⊂ 
U12 ⊂ … ⊂ U1n  ) ⊂ C1 Λ  ∃  (U21  ⊂  … ⊂ U2 n )  ⊂  C2         

               where Uij is a subclass of Uij+1 
                
               5. Find the intersection,  G3,  of G1 and G2 based upon the  node labels. 

 
6.  Let  be A and B vectors containing the features used to compare similarity. 
 

              Compute Concept _similarity  = 0 no common concepts 
               
              Concept _similarity = 1    same set of concepts , otherwise 

  
       Concept_similarity = sim_dice(A,B) =  2*∑1 

n aibi / ∑1 
n ai2 + ∑1 

n bi2   
vectors A and B are filled with the  number of concept nodes of  graph G1 and G2 respectively. 
 
7. Compute  Relation_ similarity = di = sim_dice(A,B) =  2*∑1 

n aibi / ∑ 1 
n ai2 + ∑ 1 

n bi2 
               vector A and B are filled with  the number of arcs in the immediate neighborhood of the graph G1 
and G2 respectively. 

                                                                 
10 Intersection means to find a sub-graph in G2 which contains all concepts contained in graph G1 using 
subsumption relation. 
 



 
               8. maximum(di) where i=1,n 

 
 
The algorithm builds graphs from the user query G1, obtains a fragment from the ontology containing the 
relevant nodes G2  and builds an intersection (G3) between  G1 and G2.  
Step 2 describes the construction of the graph G1  for the query. This  is created  using  subject (X1), 
relation, object (X2) and the  most representative classes for X1 and X2 respectively.  
Step  3 describes how the algorithm finds  sub-hierarchy containing grounded11 arguments/concepts from 
the user question  (i.e.,  the  neighborhood containing the grounded arguments).   
Step 6.  the similarity between G1  and G3 is computed using the Dice coefficient. The vectors A and B are 
filled with the  number of concept nodes of graph  G1 and G3 respectively then 

 
Concept _similarity  = 0 no common concepts 

               
              Concept _similarity  = 1    same set of concepts , otherwise 

  
Concept _similarity  = 2*∑1 

n aibi / ∑1 
n ai2 + ∑1 

n bi2 

 
 Step 7.  the similarity between G1  and G2 is computed using the Dice coefficient. 
                   
                Relation_similarity   =  di =  2*∑1 

n aibi / ∑1 
n ai2 + ∑1 

n bi2         
                               
vector A and B are filled with  the number of arcs in the immediate neighborhood of the graph G1 and G2 
respectively. 
 
A procedure called SimilarityTop uses the SimilarityBase algorithm (defined above), WordNet synsets, and 
feedback from the user.  The SimilarityTop procedure checks if there is similarity between the name of the 
relation/concept in the query and the relation/concept in the selected ontology. If there is no similarity, then 
it offers the users all the senses which are found in the WordNet thesaurus. It is SimilarityTop that AQUA 
uses, with the selected sense, to rewrite the logic formulae.  The main steps are defined as follows: 
  
SimilarityTop procedure: 

 
• Call our SimilarityBase algorithm (defined above)  

  
 

• If  ontological_relation  ≠ null_string then  
 

evaluate_query(ontological_relation(Arg1,Arg2)) 
 

• Else 
o Obtain  synsets for relation_question using WordNet thesaurus 
o Ask user to select sense from the ones that WordNet thesaurus provided 
o Call evaluate_query(selected_sense(Arg1, Arg2)) 

      
 
To illustrate how our similarity algorithm works we present an example.  

                                                                 
11 grounded argument  means instantiated argument. 



3.3.1   Working Example 

In this section we illustrate how our similarity algorithm works by presenting a working  example. Note 
that, in more complex examples, the graph G2 could have several relations which could be assessed for 
similarity.  
 
Let us imagine that someone  asks the question: ''Does Enrico Motta work on AKT?''  

work(enrico-motta,akt). 
 
   By refining our query using the AKT reference ontology  we obtain the following formula: 
 
project(akt)   &  researcher(enrico-motta)  & work(enrico-motta,akt).   
 
If  AQUA evaluates this query over the knowledge base, it is likely that the question will fail.  The problem 
is that the name of the relations in the knowledge base and the names of relations in the question might be 
completely different.  AQUA will ask the user if they want to use similarity. If the answer to this question 
is ``yes'' then AQUA builds three graphs: the graph associated with the question (G1), the graph using 
ontological structures (G2) and the intersection graph of G1 and G2.  These graphs are shown in Figure 2. 
 

 
                                         

Figure 2. Graph G1 and G2 and intersection G3 
 
 
The relation similarity is computed as follows: 
In  the example shown in Figure 2 using G1 and G3.  
 

Concept _similarity = 1 
 
In  order to compute Relation_similarity we use G1 and G2 graphs and vectors A=(2,2) and B=(3,2)  
 
Then,  Relation_similarity  =  di = 2*∑ aibi / ∑1 

2 ai2 + ∑1 
2 bi2 

 
 di = (A,B) = (2 *(6+4)) / (4+4) +(9+4) =  (2*10)/21 = 20/21=0.9 
 



                                                                                          
The outputs of the similarity algorithm is 0.9  and the name of the relation between concept  researcher and 
concept   project is ''involved-in'', Then the  question is re-written as follows: 
 
project(akt) & researcher(enrico-motta) & involved-in(enrico-motta,akt).    
 
The question is re-evaluated by the interpreter. By using the similarity algorithm AQUA tries to reduce to a 
minimum the possibility of failure because of mismatches between relation names.  Since there are several 
techniques for assessing similarity (Doan et al. 2002, Noy et al.  2000, Wu  et al. 1994), a future 
implementation of AQUA will contain several algorithms for similarity. 
 

3.3.2   Similarity algorithm evaluation 

Some of the typical queries used in our experiment are shown in Table I. This table  shows the concept and 
relation similarity values obtained using SimilarityBase algorithm. The evaluation has been performed 
using the AKT reference ontology which describes academic life.   
 
 
 
Questio
n 
number 
 

   
 NLP query 

 
Query expressed as 
logic predicate  

 
Reformulated predicate 
using SimilarityBase  
algorithm  

 
Concept  
Similarity 
value 

 
Relation 
Similarit
y value 

1 Does Enrico Motta  
work in akt? 
 

work(enrico-motta, akt) 
& project(akt) 
 

involved (enrico-motta,akt) & 
project(akt)     
 

 
   1 
 

 
 0.9 

2 Does Maria Vargas-
Vera  is employed by 
akt? 
 

employed(maria-vargas-
vera,akt) & project(akt) 
 

involved (maria-vargas-
vera,akt) & project(akt) 

 
   1 

 
0.9 
 

3 Is David Celjuska 
associated to akt? 

associated(david-
celjuska,akt) & 
project(akt) 

involved(david-celjuska,akt)  
& project(akt) 
 

 
   1 

 
0.9 

4 Does Peter Scott 
works in Semantic 
Web and  in akt? 

work(peter-
scott,semantic_web)  & 
research_area(peter-
scott,semantic_web) & 
work(X,akt) & 
project(akt) 

involved(peter-
scott,semantic_web) & 
research_area(peter-
scott,semantic_web) & 
involved(peter-scott,akt) & 
project(akt) 

 
 
   1 
 

  
 
0.9 

 
Table I. query and its reformulation using the SimilarityBase algorithm 

 
Question 3 can be reformulated as suggested in Table I by using our SimilarityBase algorithm.  However 
if we use the suggested WordNet senses as first resource then  the query  can be reformulated as  is shown 
Table II.  The latest  is not an optimal solution for AQUA since it will try to evaluate (as logic predicates) 
each of the reformulation. Therefore, our goal of having a question answering system  in real time it might 
suffers of the problem of slow response time. The question 3 example (from Table I)  illustrates that by 
using a domain specific ontology queries  can have  less alternative reformulations. 
 
 
 
 
 
 



 
 

 
Query 

                   
Reformulations using WordNet senses 
 

Is David Celjuska associated to 
akt? 
 

   
  linked(david-celjuska,akt) & project(akt)   
  related(david-celjuska,akt) & project(akt) 
  connected(david-celjuska,akt) & project(akt) 
  affiliated(david-celjuska,akt) & project(akt) 
  linked-up(david-celjuska,akt) & project(akt) 
 
 

 
 

Table II. query and its reformulation using WordNet suggested senses 
 
When AQUA fails to find a candidate for similarity using SimilarityBase (i.e. null value is returned).  Then 
,it tries to find possible reformulations using the synsets of WordNet. Table III shows an examples of 
queries and possible reformulations  offered to the user  by AQUA.  
 
 
 

3.4. Failure Analysis 

 
A question is evaluated over  the knowledge base. If the evaluation fails then the system must provide an 
explanation for why the question fails?  There are several reasons why a query evaluated over the 
knowledge base could fail: 
 

o The term/concept is not defined in the knowledge base. Failure occurred because the noun in the 
English question was not defined in the ontology and also AQUA did not find any similarity with 
any of the terms/concepts in the ontology. 

 
o One or more relations are not defined in the ontology  (i.e. the similarity algorithm did not find 

similar relations). 
 

o A predicate evaluation fails. The reason could be that the predicate used in translation is not a 
built-in predicate in QLL. 

 
When a goal fails the system keeps a record of the failed goal. This helps AQUA to produce a suitable 
failure message. AQUA also has facilities for analyzing and explaining proofs. The explanation is provided 
both in pseudo natural language and as a visualization.  In this way the user might be able to re-write the 
English question using only entity definitions which are already defined in the ontology and predicates 
defined in QLL. 
 
 



 

3.5  Output enhancements 

 
Figure 3 and Figure 4. show snapshots of the AQUA system. In Figure 5 we can see that AQUA not only 
provides a set of names which satisfy the query, but enhances its answer using information from the AKT 
reference ontology.  It provides more information about each element in the set. For instance, it brings 
additional contextual information such as ‘‘AKT is a project at KMi’’ and ‘‘each person of the AKT team 
is a researcher at KMi’’. 
 
Validation of answers is a difficult task in general. Therefore, AQUA provides a visualization of proofs for 
supporting validation of answers. Another way, provided by AQUA, to help users in validation, could be 
by enhancing answers with extra information.  There is ongoing work at KMi on this problem. We use 
Magpie (Domingue et al. 2003) in this task of enhancing answers. Magpie is a semantic browser which 
brings information about ontological entities. For instance, it can retrieve home pages related to AKT or 
personal web pages of researchers working in the AKT project.  All this extra information could be used by 
our AQUA users in answer validation. 
 

 

 

                       Figure 3. The question “Who works on akt?’’ is provided to AQUA 

 

 



 

                                Figure 4.  AQUA’s  answers to a question 

 

 

3.6.  AQUA Evaluation as closed-domain QA 

We conducted  experiments using 43 questions related to the AKT ontology. AQUA was able to answer 
them correctly. However, one of the limitations of the current AQUA implementation was that the parser 
needs to be extended in order to cope with misspelling errors and unknown verbs. A solution to the latter 
(unknown verbs) could be to use the approach followed in Camille (the contextual Acquisition mechanism 
for incremental lexeme learning (Hasting 1994,1995,1996), where the meaning of verbs is inferred from 
context.  
  
Some of the typical queries used in the experiment are shown in Table III.  However, a more 
comprehensive  set of questions used in our experiment can be found at the AQUA home page: 
http://kmi.open.ac.uk/projects/akt/aqua/ 
 
Some questions are answered by AQUA by performing statistical analysis of the data contained in the 
knowledge base. Examples of such questions are,  Which researchers work on most projects?  
Do most researchers work on most projects?  
 
 
Question type Answers 
  
Who  
Who works in akt? A set of people who works on the akt project 
Who owns webonto? Name of institution 
Who is John Domingue? Senior Research Fellow 

 KMi deputy director 
  

http://kmi.open.ac.uk/projects/akt/aqua/


What  
What is MnM? KMi tool 
 What is akt Project 
  
Which/What  
Which technologies KMi had 
produced? 

A set of technologies 

Which researchers do not work on the 
akt project? 

A set of researchers except  researchers 
working on the akt project. 

Which researchers work on most 
projects? 

A  set of researchers who work on almost all 
projects in Kmi 

Which tools support  the technique of 
Information  Extraction? 

A set of  KMi tools  making use of Information 
Extraction. 

Which researchers work on all 
projects? 

A set of researchers working in all Kmi 
projects 

Which researchers work on few 
projects? 

A set of researchers working in less than 1/3 of 
KMi projects 

Which researchers do not work on most 
projects? 

A set of researches working on few projects 

Which publications has KMi 
published? 

A list of publications 

  
Where  
Where is researcher Maria Vargas-Vera 
based? 

KMi 

  
Type Yes/No questions:  
Do all researchers work on the akt 
project? 

No. 

Do most researchers work on most 
projects? 

Yes 

Were all technologies produced by the 
institution known as KMi? 

No 

Does Enrico Motta work on the akt 
project? 

Yes 

 
Table III. AQUA has been evaluated  with the following category of questions and using the AKT 

ontology. 
 
 
Further work is planned in the direction of handling  a wider range of question. For example the when and 
why type described in section 4. 



 

4. AQUA as open-domain QA 

4.1   Query Classification  

Query classification is performed in the case that the proof fails, and gives information about the kind of 
answer AQUA should expect. Therefore, query classification plays an important role in the case that the 
answer needs to be found from the Web, and cannot be satisfied using just the populated ontology. For 
example, given the query ``What is the capital of Mexico?'' AQUA will not find  anything from the 
ontology, and will instead a generate keyword search and pass it to the search engine. 
 
The classification phase involves processing the query to identify the category of answer that the user is 
seeking.  The classification is performed using the information obtained during segmentation of the 
sentence.  During segmentation, the system finds nouns, verbs, prepositions and adjectives.  The categories 
of possible answers are listed below. 
 

• what/which - this kind of question appears with a head noun that describes the category of the 
entity involved. For this category the head noun is extracted and WordNet is used to perform the 
mapping between head noun and category.         

• who, whom - the category of the answer is 'person'. 
• when - the category of the answer is 'date'. 
• why -  the category of the answer should be 'reason'. 
• where - the category of the answer is 'location'. 

 
The range of answers provided by AQUA - our question answering system - varies from yes/no answers, 
true/false answers, and answers consisting of a word or a sentence. In some cases, questions could have 
more than one answer, whilst in other cases the system might not find the answer. Currently, AQUA 
handles six categories of questions. Table IV shows categories of queries that  AQUA  is able to handle.  
These categories are based on the conceptual categories used in  Lehnert’s  QUALM system  (Lehnert 
1978). 
 
 
 
 

Question  categories          Specification                        Examples 

Verification  Is a fact true? Does Maria Vargas-Vera work on akt? 
Does D. Fensel work on akt? 

Definition What is X? What is akt? What is ontoweb ? 
Quantification How many How many researchers work on akt? 

How many people work in artificial 
intelligence? 

Reason  Why X? Why the sky is blue? 
Concept  Who? What? When? 

Where 
Who is  D. Fensel? 

Directive Give me X Give me Microsoft technologies 
Give me KMi technologies 

 
Table IV shows a categorization of queries which can be handled using AQUA 

 
 



Several answers can be correct but, in a given context, some of them can be useless. To illustrate this 
example we took an example from Lehner  “ Where is Derfield Illinois?’’  (Lehnert 1978). 
 
A set of possible answers are as follows: 

 
1. Answer:  87o 54’ longitude 42o 12’ latitude. 
2. Answer:  Near to Lake Michigan, about 20 miles north of Chicago. 
3. Answer:  Next to Highland Park. 
4. Answer:  On the planet Earth. 

 
For example, answer 4  (‘On the planet earth’) is not a meaningful answer to someone who wants to travel 
to Derfield Illinois. Similarly, answer 3 is useless if the person who is asking the question does not know 
where Highland Park is. Answer 1 is  appropriate if a technical  specification is required. 

4.2   Learning patterns  

 
When the query cannot be satisfied using the AKT ontology (knowledge base), AQUA tries to satisfy the 
query using the web as a resource. In the downstream part of the AQUA architecture, we used information 
extraction and Machine Learning techniques. AQUA contains a set of  learnt  patterns from a predefined  
domain. As a first instance, we learnt patterns using as corpus an electronic news stories archive that we 
have available in  our institution (Knowledge Media Institute).  An example of a new story in our corpus is 
shown below. The title is The AKT begins 

The AKT begins.....KMI awarded £1.2M by EPSRC 

Enrico Motta  
01.03.00  
“KMi has been awarded £1.2M by the UK's Engineering and Physical Sciences Research Council to carry 
out research in the application of knowledge technologies to support knowledge creation and sharing in 
organizations. This highly prestigious award has been obtained in the context of the EPSRC Programme on 
Interdisciplinary Research Collaborations centred on Information Technology’’ 
 
 
We have used  UMass tools (Marmot , Badger and Crystal (Riloff:96)) for information extraction.  Our 
answer extraction system, as most information extraction systems, uses some form of partial parsing to 
recognize syntactic constructs without generating a complete parse tree for each sentence.  Such partial 
parsing has the advantages of greater speed and robustness. High speed is necessary to apply the 
information extraction to a large set of documents.  The robustness achieved  by allowing useful work to be 
done from a partial parsing is essential to deal with  unstructured and informal texts.  
The nature of the domain is very important in determining which kind of patterns are necessary in our 
library of patterns.  Currently, in order to apply our system to a new domain the entire knowledge process 
of defining templates has to be repeated. 

4.2.1   Learning process model  

Within this work, we have focused on creating a generic process model for learning patters for the AQUA 
system. In  the learning phase, we have devised  three activities : markup, learning and extraction. We will 
provide more details of each of the activities in turn. 
 
 
 
 
 

http://kmi.open.ac.uk/people/motta/


Markup 
 
In markup phase, we used half of the corpus (100 news stories).  We trained the system using three 
categories of news stories: visits, awards and academic conferences. We annotated text documents  (written 
in plain ASCII or HTML) with a set of tags.  These tags are semantic annotations to relevant entities in the 
text. During the markup phase as the text is selected the  system inserts the relevant SGML tags into the 
document.   This markup was done using the TMI interface provided with the UMass tools. 
  
 
Learning 
 
This phase was implemented by integrating two components: Marmot and a learning component called 
Crystal, both from UMass . We describe them briefly in this paper. However, full descriptions can be found  
in (Riloff  1996a) 
 
Marmot is a natural language preprocessing tool that accepts ASCII files and produces an intermediate 
level of text analysis that is useful for information extraction  applications. Sentences are separated and 
segmented into noun phrases, verb phrases prepositional phrases. Marmot has several functionalities: it 
preprocesses abbreviations to guide sentence segmentation,  resolves sentences boundaries, identifies 
parenthetical expressions, recognizes entries from a phrasal  lexicon and replace them, recognizes dates and 
duration phrases, performs phrasal bracketing of noun, preposition and adverbial phrases, and finally 
scopes conjunctions and disjunctions. 
 
Crystal is a dictionary induction tool. It derives a dictionary of concept nodes from a training corpus. The 
first step in dictionary creation is the annotation of a set of training texts by a domain expert. Each phrase 
that contains information to be extracted is tagged (with SGML style tags). 
Crystal initializes a concept nodes dictionary for each positive instance of each type of event. The initial 
concept node definitions are designed to extract the relevant phrases in the training instance that creates 
them but are too specific to apply to unseen sentences. The main task of Crystal is to gradually relax the 
constraints on the  initial definitions  and also to merge similar definitions. Crystal finds generalizations of 
its initial concept node definitions by comparing definitions that are similar. This similarity is deduced by 
counting the number of relaxations required to unify two concept node definitions. Then a new definition is 
created with constraints relaxed. Finally the new definition is tested against the training corpus to insure 
that it does not extract phrases that were not marked with the original two  definitions. This means that 
Crystal takes  similar instances and  generalizes into a more general rule by preserving the properties from 
each  of  the concept node definitions which are generalized.  
 
 
Extraction 
 
A third component called Badger (from UMass)  was also integrated into our event recognition system.  
Badger makes the instantiation of templates: its main task is to take each sentence in the text and see if it 
matches any of our concept node definitions.  If no extraction concept node definition applies to a sentence, 
then no information will be extracted; this way irrelevant text can be processed very quickly. 
 

9.2.2  Examples of extracted patterns using KMi news stories as training corpus 

Each event in our system has several patterns which can be  used to recognize it (e.g. see questions of the 
visitor , academic-conference and award types). The patterns  are shown in Table V. 
 
 
 
 
 



KMi News  stories  Corpus 
Visits patterns 
 

Questions 

X visited Y   Who  visited Edinburgh University? 
Y was visited by X    Does  OU was visited by Mr Blair ? 
Y visited by X on  Z Who visited the OU on 12 July 2003? 
Y were visited by X Who were visited by Mr Davis? 
Visit to Y  
X came Who came? 
X came to visit Y Who  came to visit The Open University? 
Y hosted X Who hosted Ernesto Compatangelo?   
Y hosted a visit from X Who  hosted a visit from Ernesto Compatangelo? 
Y had a visit from X Who had a visit ? 
Y welcomes X Who welcomes Gilliam Vincent? 
In all patterns  shown above  X is a person, Y is a 
place/institution and Z is a location. 
 

 

Awards patterns  
ORG has been awarded MONEY  by FUNDER Who was awarded 10000 Euros by the European 

Commission ? 
ORG has been received MONEY from FUNDER to 
carry out research in TOPIC 

Which organization has been awarded 10000 Euros 
from the EC to carry out research in the semantic 
web? 

ORG has been awarded MONEY by FUNDER to 
carry out research in TOPIC 

Which organization has been awarded 10000 Euros 
by  EC to carry out research in the semantic web? 

ORG  has been awarded MONEY on TOPIC Which organization has been awarded 10000 Euros 
by  EC to carry out research on the semantic web? 

awards MONEY to ORG  
FUNDER  has awarded MONEY to ORG What funder has awarded  10000 Eu to Kmi? 
brings MONEY to ORG Who brings money to ORG? 
  
Academic conference patterns  
held at PLACE  What was held at the Open University? 
taking place in PLACE Where did the meeting take place? 
hosted by ORG Who hosted the conference? 
organized by ORG Who organized the conference? 
paper entitled  TITLE What was the title of the paper? 
 

Table V shows a list of patterns and questions 
   

 

  

 
 
The experiments showed that an automatic mechanism is needed in order to determine which extraction 
rules are spurious. We believe this problem can be solved by associating  confidence value to the extraction 
rules (Vargas-Vera and Celjuska 2003c). Previous work has reported that spurious patterns were deleted  
manually from the library of rules  under the assumption that they were not likely to be of much value 
(Riloff 1996a). However, our experiments reported in (Vargas-Vera and Celjuska 2003c)  were carried out 
without deleting spurious rules.  



 

 

5. Related work 
 
There are many trends in question answering (Katz 1997, Katz et al. 1988a, Katz 1988b, Plamondon  et al. 
2001, Burke et al.  1997, Moldovan 1999, Hovy et al. 2001a, Hovy  et al. 2001b,Attardi 2001). However, in 
this paper, we only describe the systems most closely related to the AQUA system philosophy. 
 
MULDER is a web-based QA system (Kwok 2001) that extracts snippets called summaries and generates a 
list of candidate answers. However, unlike AQUA, the system does not exploit an inference mechanism, 
and so, for example, cannot use semantic relations from an ontology. 
 
QUANDA is closest to AQUA in spirit and functionality. QUANDA takes questions expressed in English 
and attempts to provide a short and concise answer (a noun phrase or a sentence) (Breck et al. 99). Like 
AQUA, QUANDA combines knowledge representation, information retrieval and natural language 
processing. A question is represented as a logic expression. Also knowledge representation techniques are 
used to represent questions and concepts. However, unlike AQUA, QUANDA does not use ontological 
relations. 
 
ONTOSEEK is an information retrieval system coupled with an ontology (Guarino 1999). ONTOSEEK 
performs retrieval based on content instead of string based retrieval. The target was information retrieval 
with the aim of improving recall and precision and the focus was specific classes of information 
repositories: Yellow Pages and product catalogues. The ONTOSEEK system provides interactive 
assistance in query formulation, generalization and specialization.  Queries are represented as conceptual 
graphs, then according to the authors ''the problem is reduced to ontology-driven graph matching where 
individual nodes and arcs match if the ontology indicates that a subsumption relation holds between them''.  
These graphs are not constructed automatically.  The ONTOSEEK team developed a semi-automatic 
approach in which the user has to verify the links between different nodes in the graph via the designated 
user interface. In contrast, AQUA does not require user intervention in building the graph of the query 
and the graph obtained from the ontology.  
 
  
 

6. Conclusions and future work 
 
In this paper we have presented AQUA - a question answering system which merges NLP, Logic, 
Information Retrieval techniques and Ontologies12.  AQUA translates English questions into logical queries 
(expressed in the QLL language) that are then used to generate of proofs.  Currently, AQUA is coupled 
with the AKT reference ontology for the academic domain.  In the future, we plan to couple AQUA with a 
set of ontologies from our repertoire of ontologies. 
 

                                                                 
12 AQUA has been implemented in Sicstus Prolog, C, OCML and PHP. 
information  
Information extraction can be seen as the task of pulling predefined relations from texts.   
 



AQUA makes use of an inference engine which is based on the Resolution algorithm.  However, in future it 
will be tested with the Contextual Resolution algorithm which will allow the carrying of context through 
several related questions 
 
We have also presented the similarity algorithm which we have embedded in AQUA: this uses Ontological 
structures, the Dice coefficient and WordNet synsets. This algorithm is used by AQUA to ensure that the 
question does not fail because of a mismatch between names of relations. In the future, we intend to 
provide AQUA with a library of similarity algorithms. 
 
We are currently developing M-AQUA, which is a Question Answering System which handles multiple 
ontologies. It relies on a mediator which make sense of which ontology should be used for answering a 
query.   Further research need to be done in this direction. However, preliminary results are encouraging. 
 
One of the main restrictions of AQUA is that it only can answer questions in a isolation (i.e. it does not 
handle a set of follow up questions related to the initial question). Therefore,  we will explore how to 
handle context across a set of queries. 
 
Further work needs to be carried out to determine which data are queried most frequently by users. Then 
AQUA should be given patterns for such queries. We also could the improve response times for expensive 
queries.  
 
Finally, future research can be focused one of the main  problems found in AQUA. One such problem is 
that it needs to learn paraphrases to improve the QA process. For instance AQUA could learn that  X killed 
Y  has the same linguistic meaning that Y was assassinated by X  (Duclaye et al. 2002). 
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