
A Knowledge-Based Approach to Ontologies Data
Integration

Tech Report kmi-04-17

Maria Vargas-Vera and Enrico Motta

A Knowledge-Based Approach to Ontologies Data Integration

Maria Vargas-Vera and Enrico Motta
Knowledge Media Institute (KMi),
The Open University, Walton Hall,
Milton Keynes, MK7 6AA,
United Kingdom
{m.vargas-vera@open.ac.uk}

Abstract
This paper describes a proposal of multiple ontology data integration system for a question
answering framework called AQUA. We propose an approach for mediating between a given
query and a set of resources. This method is based on a Meta-ontology (which contains contents
of each individual sources) and our similarity algorithm based on analysis of neighborhood of
classes. We argue that AQUA can perform mappings between queries and an ontological space
by using a mediator agent based on a Meta-ontology and our similarity algorithm.

Keywords: Ontologies, Data Integration, Meta-ontology, Similarity

1. Introduction

This paper focuses on the problem of incorporating an integration system to AQUA (Vargas-Vera
and Motta 2004; Vargas-Vera et al 2003a,b), with a mediator agent. AQUA was developed at the
Open University in England, United Kingdom. AQUA joins two different paradigms of closed-
domain and open domain question answering into a single framework. One of the main
characteristics of AQUA is that it uses knowledge (encoded in ontologies). This knowledge is
used in several steps of the question answering process like query reformulation. AQUA
translates user query written in English to first order logic (FOL). Currently, AQUA when is used
as closed-domain question answering uses a single populated ontology. Therefore, we aimed to
extend the architecture in order to handle multiple-ontologies. To achieve this goal we needed a
mediator agent which could perform mappings between terms in queries and ontological
relations.

Our solution to the ontology data integration problem was the use a Meta-ontology coupled with
our similarity algorithm (described in section 3.1). This Meta-ontology contains information
about relations of each resource. This is not a limitation of the system because new meta-
information (a new resource) can be added incrementally. The process of answering a query is
divided in four steps

1. A query planner which takes a given a query written as first order logic (FOL) and
divides into sub-queries.

2. A selection procedure provides with a subset of ontologies relevant to the query.
3. The query-satisfaction algorithm answers the using standard techniques in question

answering already implemented in AQUA Vargas-Vera and Motta 2004; Vargas-Vera et
al 2003a,b).

The main contributions of our paper can be summarized as 1) identifying the information which
need to be kept in the meta-ontology and identification of fragments of information which are
relevant to a given query. 2) algorithms for generating relevant ontologies and similarity
algorithm based on neighborhood of classes.

The paper is organized as follows:
Section 2 presents briefly the current architecture of AQUA which uses a single ontology. Section
3 introduces the problem of data integration and outlines our suggested algorithm for generating
relevant ontologies and it also introduces our similarity algorithm embedded in AQUA. Section 4
describes related work. Finally, Section 5 gives conclusions and directions for future work.

2. AQUA process model

The AQUA process model generalizes other approaches by providing a uniform framework
which integrates NLP, Logic, Ontologies and information retrieval. Within this work we have
focused on creating a process model for the AQUA system. Figure 1 shows the architecture of
our AQUA system.

 Figure 1. The AQUA process model

In the process model there are four phases: user interaction, question processing, document
processing and answer extraction.

1. User interaction. The user inputs the question and validates the answer (indicates
whether it is correct or not). This phase uses the following components:
• Query interface. The user inputs a question (in English) using the user interface -a

simple dialogue box. The user can reformulate the query if the answer is not
satisfactory. The answers consist of a ranked set of answers is presented to the user.

• Answer validation. The user gives feedback to AQUA by indicating agreement or
disagreement with the answer.

2. Question processing. Question processing is performed in order to understand the

question asked by the user. This ‘understanding’ of the question requires several steps

such as parsing the question, representation of the question and classification. The
question processing phase uses the following components:
• NLP parser. This segments the sentence into subject, verb, prepositional phrases,

adjectives and objects. The output of this module is the logic representation of the
query.

• Interpreter. This finds a logical proof of the query over the knowledge base using
unification and resolution algorithms.

• WordNet/Thesaurus. AQUA's lexical resource.
• Ontology. Currently AQUA works with a single ontology – the AKT reference

ontology which contains people, organizations, research areas, projects, publications,
technologies and events.

• Failure-analysis system. This analyzes the failure of given question and gives an
explanation of why the query failed. Then the user can provide new information for
the pending proof and the proof can be re-started. This process can be repeated as
needed.

• Question classification & reformulation. This classifies questions as belonging to any
of the types supported in AQUA, (what, who, when, which, why and where). This
classification is only performed if the proof failed. AQUA then tries to use an
information retrieval approach. This means that AQUA has to perform document
processing and answer extraction phases.

3. Document Processing. A set of documents are selected and a set of paragraphs are

extracted. This relies on the identification of the focus1 of the question. Document
processing consists of two components:
• Search query formulation. This transforms the original question, Q into a new

question Q', using transformation rules. Synonymous words can be used, punctuation
symbols are removed, and words are stemmed.

• Search engine. This searches the web for a set of documents using a set of keywords.

4. Answer processing. In this phase answers are extracted from passages and given a score,
using the two components:
• Passage selection. This extracts passages from the set of documents likely to have

the answer.
• Answer selection. This clusters answers, scores answers (using a voting model), and

lastly obtains a final ballot.

We want to remind the reader that phases 1, and 2 deals with the AQUA part as closed-domain
question answering. Whilst 1,2, 3 and 4 deals with AQUA as open-domain question answering..

3. Data integration

Integration of different sources has been one of the fundamental problems faced in the Database
community in the last decades (Batini et al., 1986) . The goal of a data integration system is to
provide a uniform interface between various data sources (Levy 2000). As a result of a data
integration users obtain some benefits such as

1 Focus is a word or a sequence of words which defines the question and disambiguates it in the sense that
it indicates what the question is looking for.

• users do not need to find the relevant sources to a given query,
• to interact with each source in isolation,
• to select and cleaning and
• to combine data from multiple sources in order to answer a given query.

Description Logics have been used in data integration projects to represent the conceptual level
(Catarci and Lenzerini, 1993; Arens et al 1993; Goasdoue et al 2000). In our work we have
extended Halevy et al. (Halevy et al 1996) work on data integration for Databases. The design of
a data integration system is a very complex task which comprises several aspects. In this paper
we only concentrate in one part of the mediator agent (the selection of sources). This selection
procedure has as a target goal to find relevant fragments to a given query using different
resources. It can be seen as a way to trim the ontological search space.

We propose a generate-relevant-ontologies procedure which works for ontologies. The
generate-relevant-ontologies procedure relies on the fact that there is a meta description of the
different sources (Meta-Ontology). Once that the relevant sources are identified the answer to the
question can be performed using the selected sources. The Meta-ontology contains a formal
description of the concepts, relationships between concepts A good feature is that such
descriptions are independent of any system consideration. Our meta-ontology Meta-O consists of
the union of each individual description of each ontology i.e.

Meta-O = O1 U …. U On

where Meta-O is the global schema and Oi is one the description of ontology i and

Oj = { R1j ,…, Rnj }

where Rij means the relation i in the ontology j.

Each ontology description consists of a set of relations written in FOL with types and
arities. These descriptions can be defined in a formal language which can be FOL or DL
(description Logic).

The procedure generate-relevant-ontologies can be defined as follows:

Procedure generate-relevant-ontologies(O,Q)
/* O is the set of ontologies
 Q is a query in conjuctive form */

1. Query planner decompose query in subqueries

Q (X1,, Xn) = Q1(Z1) U Q2(Z2) U,…, U Qn(Zn)

Where each Qi can be defined as a predicate Qi (W1,…Wn) = Э X1,, Xn ω (X1,, Xn)

2. S = Ө; i=1;

3 For each Qj do

4. For each ηi (Y1,…,Yn) Є Meta-O do i
 Begin

Compute Sim(ω(X1,, Xn), η(Y1,…,Yn)) using our ontology-based similarity algorithm
given in section 3.1

If Э β a mapping between ω(X1,, Xn and , η(Y1,…,Yn) then

 П = П U {(η(Y1,…,Yn), Oi)} were relation η(Y1,…,Yn) is on ontology Oi
 Else

End do i

5. S = S U П
End do j
6. Return S

7. If S is Ө print “there is not set of ontologies relevant to the query’’
 else evaluate query using the subset of ontologies in S

8. End generate-relevant ontologies

3.1 Similarity

Similarity has been an important research topic in several fields such linguistic, Artificial
intelligence (in particular in the field of Natural Language Processing and Fuzzy Logic). The
range of application of measure of similarity ranges from word sense disambiguation, text
summarization, information extraction and retrieval, question answering, automatic indexing and
automatic correction of codes. There are two types of similarity: syntactically and semantic
similarity. Syntactic similarity can be defined as functions over terms. For instance, the hamming
distance (used in Information Theory). This similarity is defined as the number of positions with
different characters in two terms with the same length. Whilst semantic similarity can be defined
as Miller and Charles (Miller et al 1991) as a continuous variable that describes the degree of
synonymy between two words.

When evaluating similarity in a taxonomy the most natural way to access similarity is to evaluate
the distances between the two concepts being compared. Therefore the shorter is the path from
one to another means that they are more similar. This approach has been used as measure of
similarity. However, one of the main drawbacks is that it relies on the notion that links in a
taxonomy represent uniform distances (Resnik 1995; 1998). Our own view is that similar entities
are assumed to have common features2. For instance (university, research_institute) but it is also
the case that dissimilar entities may also be semantically related by the relation meronym or
holonym such as (student –person; bicycle-wheel) .

2 The common features in two entities might not be so discriminative as the features which are
different in them.

We have designed and implemented a similarity algorithm to assess concept similarity and
relation similarity (Vargas-Vera and Motta 2004, Vargas-Vera et al 2003a,b). Our algorithm
compares extended graph obtained from the user query (using entities in the query itself plus
informative classes from ontology) and a graph which represents a subset of the ontology
(relevant to the query). As an inter-media stage it creates the intersection upon nodes between the
two graphs (the graph of the query and the graph obtained from the ontology). In short, our
similarity algorithm assess concept similarity and relation similarity using the Dice Coefficient
using the most informative classes from the ontology.

Our similarity algorithm differs from other similarity algorithms in that it uses ontological
structures and also instances. Instances provide evidential information about the relations being
analyzed. This is an important distinction between the kind of similarity which can be achieved
using only WordNet or the similarity which can be achieved using distances to super-classes
followed by Wu et al. (Wu et al 1994). In the first one WordNet brings all the synsets found even
the ones which are not applicable to the problem being solved. Whilst in the latest the idea of a
common super-class between concepts is required (i.e. two concepts are similar if they share a
common ancestor).

 We present an explanation of our algorithm when arguments in the user query are grounded
(instantiated terms) and they match exactly (at the level of strings) with instances in the ontology.
A detailed description of the algorithm and example can be found in (Vargas-Vera et al. 2003b).

The algorithm uses all grounded terms in the user query. It tries to find them as instances in the
ontology. Once they are located a portion of the ontology (G2) is examined including
neighborhood classes. Then an intersection 3 (G3) between augmented query (using knowledge
from the ontology) G1 and G2 is performed to assess structural similarity. It could be the case that
in the intersection G3 several relations can include the grounded arguments. Then the similarity is
computed for all relations (containing elements of the user query) using Dice Coefficient. Finally,
the relation with the maximum Dice Coefficient value is selected as the most similar relation.

Our similarity algorithm for relations is defined as follows:

SimilarityBase algorithm:

 Case 1: X1 and X2 are grounded arguments.

1. Translate the question to First Order Logic i. e. predicate_name(X1, X2)

2. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 such that

relation(C1,C2) where relation is an ontological relation between C1 and C2.

3. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 such that

3 Intersection means to find a sub-graph in G2 which contains all concepts contained in graph G1using
subsumption relation.

 relation(C1, C2) Λ ∃ S1 ⊃ (U11 ⊂ U12 ⊂ … ⊂ U1n) ⊃ C1 Λ ∃ S1 Λ (U11 ⊂ U12 ⊂ …⊂ U1n)
⊃ C2

4. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2 ⊃ X2 Λ S1 ⊃ X1 Λ S2 ⊃ X2 Λ ∃ (U11

⊂ U12 ⊂ … ⊂ U1n) ⊂ C1 Λ ∃ (U21 ⊂ … ⊂ U2 n) ⊂ C2
 where Uij is a subclass of Uij+1

 5. Find the intersection, G3, of G1 and G2 based upon the node labels.

6. Let be A and B vectors containing the features used to compare similarity.

 Compute:

 Concept _similarity = 0 no common concepts

 Concept _similarity = 1 same set of concepts , otherwise

 Concept_similarity = sim_dice(A,B) = 2*∑1

n aibi / ∑1
n ai2 + ∑1

n bi2
vectors A and B are filled with the number of concept nodes of graph G1 and G3 respectively.

7. Compute Relation_ similarity = di = sim_dice(A,B) = 2*∑1

n aibi / ∑ 1
n ai2 + ∑ 1

n bi2
 vector A and B are filled with the number of arcs in the immediate neighborhood of
the graph G1 and G2 respectively.

 8. maximum(di) where i=1,n

The algorithm builds graphs from the user query G1, obtain a fragment from the ontology
containing the relevant nodes G2 and build an intersection (G3) between G1 and G2.
Step 2 describes the construction of the graph G1 for the query. This is created using
subject (X1), relation, object (X2) and the most representative classes for X1 and X2
respectively.
Step 3 describes how the algorithm finds sub-hierarchy containing grounded4
arguments/concepts from the user question (i.e. the neighborhood containing the grounded
arguments).
Step 6. the similarity between G1 and G3 using the Dice coefficient is computed. The vectors
A and B are filled with the number of concept nodes of graphs G1 and G3 respectively then

 Concept _similarity = 0 no common concepts

 Concept _similarity = 1 same set of concepts , otherwise

 Concept _similarity = 2*∑1

n aibi / ∑1
n ai2 + ∑1

n bi2

 Step 7. the similarity between G1 and G2 using the Dice coefficient is computed.

4 Grounded argument means instantiated argument.

 Relation_similarity = di = 2*∑1
n aibi / ∑1

n ai2 + ∑1
n bi2

vector A and B are filled with the number of arcs in the immediate neighborhood of the
graph G1 and G2 respectively.

A procedure called SimilarityTop uses the SimilarityBase algorithm (defined above),
WordNet synsets, and feedback from the user. The SimilarityTop procedure checks if there
is similarity between the name of the relation/concept in the query and the relation/concept in
the selected ontology. If there is no similarity then it offers all the senses which are found in
the WordNet thesaurus to the user. It is SimilarityTop that AQUA uses, with the selected
sense, to rewrite the logic formulae. The main steps are defined as follows:

SimilarityTop procedure:

• Call our SimilarityBase algorithm (defined above)

• If ontological_relation ≠ Ө then

evaluate_query(ontological_relation(β1,β2))

• Else

To obtain synsets for relation_question using WordNet thesaurus
To ask user to select sense from the ones that WordNet thesaurus provided
Call evaluate_query(selected_sense(β1, β2))

As a fist instance we have implemented on AQUA our similarity algorithms (which perform
mappings between relation in a user query and ontological relations using neighborhood of
classes). However, in future we would analyze other mappings algorithms which could be
explored such as the one described by Compatangelo and Meisel (Compatangelo and Meisel
2003) or the mapping algorithm implemented in the system Glue which learns from examples of
mappings (Doan et al., 2001).

4. Related Work

Levy et al. have suggested an architecture and question answering algorithm used in the
information Manifold (Levy et al 1996). The information manifold have some features . First
contents of information sources are described by query expressions that can uses classes and
roles as well as predicates of any arity. Secondly, the query planning algorithm uses the source
descriptions to determine precisely which information sources can produce answers to a given
query. In our multi-ontology framework, the integration system is close in spirit to Levy (Levy et
al., 1996; Levy 1998). The difference is that approach works over an ontological space and
introduces the notion of meta-ontology.

Florescu et al suggested the use of probabilistic knowledge in mediator systems (Florescu et al.,
1997). According to Florescu et al. probabilistic information is useful for ordering access to

information sources. They have suggested several algorithms for ordering access to data sources
However a greedy algorithm seems to work better performance. In future, we might want to
explore if by ordering access to data sources the AQUA performance can be improved.

5. Conclusions

We have extended the idea of Levy et al. (Levy et al., 1996) of having a data integration system
for databases but in our work we deal with ontologies/knowledge bases. It is clear that a great
deal of work needs to be done to deploy this technology. However, this is one stone to our goal
is to have an automatic system which can deals with queries from users written in NLP (Natural
Language Processing) using different resources. These resources are heterogeneous and use
different data models and vocabularies. Therefore, to build such system is a challenge. The main
advantages are described as follows:

• free users from the task of finding the sources where the answer can be found and
• interact with each one separately.

We have outlined a solution to the problem of data integration over an ontological space. This
solution relies on a Meta-ontology which contains descriptions of each individual ontology in the
ontological space. This meta knowledge is used in conjunction with similarity measures to
determine relevant sources to a given query. We argue that by using meta-knowledge and
similarity algorithms the data integration task can be performed automatically on behalf of users.
Preliminary results are encouraging. However, further research is needed in similarity
measurements.

The main application of the data integration system is in AQUA. Currently, AQUA deals with a
single ontology at the time. Therefore, we expect that by means of data integration system AQUA
will deal on behalf of the user (in a transparent way) with many sources.

Acknowledgments
This work was funded by the Advanced Knowledge Technologies (AKT) Interdisciplinary
Research Collaboration (IRC), which is sponsored by the UK Engineering and Physical Sciences
Research Council under grant number GR/N157764/01.

References
Arens Y. Chee C. Y. Hsu C. and Knoblock C.A. (1993): Retrieving and integration data from
multiple information sources. J. of Intelligent and Cooperative Information Systems, 2(2):127-
158,1993.

Batini C. and Lenzerini M. and Shamkant B. and N. A (1986): Comparative analysis of
methologies for database schema integration. ACM computing Surveys, 18(4):323-364, 1986..

Cattarci T. and Lenzerini M. (1993): Representing and using interschema knowledge in
cooperative information systems. J of Intelligent and Cooperative Information Systems, 2(4):375-
398, 1993.

Compatangelo E., and Meisel H. (2003): “Reasonable” support to knowledge sharing through
schema analysis and articulation. Neural Computing and Applications, volume 12, number 3-4,
pages 129-141. © Springer-Verlag, 2003.

Doan A., Domingos P., and Halevy A. (2001): Reconciling Schemas of Disparate Data Sources:
A Machine Learning Approach. In Proceedings of the ACM SIGMOD Conference, 2001

Florescu D. , Koller D. , Levy A.(1997): Using Probabilistic Information in Data Integration
Proceedings of the 23rd VLDB Conference, Athens, Greece 1997 .

Goasdoue F. and Rousset M-C(2000): Rewriting conjunctive queries using views in Description
Logics with existential restrictions. In Proc. of the 2000 Description Logic Workshop (DL 2000)
pages 113-122, 2000.

Levy A. (2000): Logic-based techniques in data integration. Logic Based Artificial Intelligence ,
Kluwer Academic Publishers, Ed J. Minker, 2000.

Levy A. The Information Manifold Approach to Data Integration. (1998): IEEE Intelligent
Systems, vol. 13, pp. 12 - 16, 1998.

Levy A., Rajaraman, J. Ordille. (1996): Query Answering Algorithms for Information Agents. In
Proc. AAAI Conference, 1996.

Miller G. A. and Charles W. G. (1991): Contextual correlates of semantic similarity. Language
and Cognitive Processes , 6(1), 1-28, 1991.

Resnik P. (1995): Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of IJCAI-95, pages 448-453, Montreal, Canada, 1995.

Resnik P. (1998): Semantic Similarity in a Taxonomy: An Information-Based Measure and its
Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence
research, 1998.

Resnik P and Diab M. (2000): Measuring Verb Similarity. Proceedings of the 22nd Annual
Meeting of the Cognitive Science Society (COGSCI2000), Philadelphia, USA, 2000.

Tversky A. (1977): Feautures of similarity. Psychological Review, 84, 327-352, 1977.

Vargas-Vera M and Motta E. (2004): AQUA - Ontology-based Question Answering System.
Third International Mexican Conference on Artificial Intelligence (MICAI-2004), Lecture Notes
in Computer Science 2972 Springer Verlag, (eds R. Monroy et al), April 26-30, 2004.

Vargas-Vera M., Motta E. and Domingue J. (2003a): AQUA: An Ontology-Driven Question
Answering System (2003a): AAAI Spring Symposium, New Directions in Question Answering,
Stanford University, March 24-26, 2003.

Vargas-Vera M., Motta E. and John Domingue J. (2003b): An Ontology-Driven Question
Answering System (AQUA). KMI-TR-129, Knowledge Media Institute,The Open
University, June 2003.

	2. AQUA process model
	Acknowledgments

