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Abstract 
This paper describes a proposal of multiple ontology  data integration system for a  question 
answering framework called AQUA. We propose an approach for mediating between a given 
query and a set of resources. This method is based on a Meta-ontology (which contains contents 
of each individual sources) and our similarity algorithm based on analysis of neighborhood of 
classes. We argue that AQUA can perform mappings between queries and an ontological space 
by using a mediator agent based on a Meta-ontology and our similarity algorithm. 
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1. Introduction 
 
This paper focuses on the problem of incorporating an integration system to AQUA (Vargas-Vera 
and Motta 2004; Vargas-Vera et al 2003a,b), with a mediator agent. AQUA was developed at the 
Open University in England, United Kingdom. AQUA joins two different paradigms of closed-
domain and open domain question answering into a single framework. One of the main 
characteristics of AQUA is that it uses knowledge  (encoded in ontologies). This knowledge is 
used in several steps of the question answering process like query reformulation. AQUA 
translates user query written in English to first order logic (FOL). Currently, AQUA when is used 
as closed-domain question answering uses a single populated ontology. Therefore, we aimed to 
extend the architecture in order to handle multiple-ontologies. To achieve this goal we needed a 
mediator agent which could perform mappings between terms in queries and ontological 
relations.  
 
Our solution to the ontology data integration problem was the use a Meta-ontology coupled with 
our similarity algorithm (described in section 3.1). This Meta-ontology contains information 
about relations of each resource. This is not a limitation of the system because new meta-
information (a new resource) can be added incrementally.  The process of answering a query is 
divided in four steps  

1. A query planner which takes a given a query written as first order logic (FOL) and  
divides  into  sub-queries. 

2. A selection procedure provides with a subset of ontologies relevant to the query.  
3. The query-satisfaction algorithm answers the using standard techniques in question 

answering already implemented in AQUA Vargas-Vera and Motta 2004; Vargas-Vera et 
al 2003a,b). 

 



The main contributions of our paper can be summarized as 1) identifying the information which 
need to be kept in the meta-ontology and identification of fragments of information which are 
relevant to a given query. 2) algorithms for generating relevant ontologies and similarity 
algorithm based on neighborhood of classes. 
 
The paper is organized as follows: 
Section 2 presents briefly the current architecture of AQUA which uses a single ontology. Section 
3 introduces the problem of data integration and outlines our suggested algorithm for generating 
relevant ontologies and  it also introduces our similarity algorithm embedded in AQUA. Section 4 
describes related work. Finally, Section 5 gives conclusions and directions for future work. 

2. AQUA process model 
 
The AQUA process model generalizes other approaches by providing a uniform framework 
which integrates NLP, Logic, Ontologies and information retrieval.  Within this work we have 
focused on creating a process model for the AQUA system.  Figure 1 shows the architecture of 
our AQUA system. 
 
 

 
                       Figure 1. The AQUA process model 
 
 
In the process model there are four phases: user interaction, question processing, document 
processing and answer extraction. 
 

1. User interaction. The user inputs the question and validates the answer (indicates 
whether it is correct or not). This phase uses  the following components: 
• Query interface. The user inputs a question (in English) using the user interface -a 

simple dialogue box. The user can reformulate the query if the answer is not 
satisfactory. The answers consist of  a ranked set of answers is presented to the user. 

• Answer validation. The user gives feedback to AQUA by indicating agreement or 
disagreement with the answer. 

 
2. Question processing. Question processing is performed in order to understand the 

question asked by the user.  This ‘understanding’ of the question requires several steps 



such as parsing the question, representation of the question and classification.  The 
question processing phase uses the following components: 
•    NLP parser. This segments the sentence into subject, verb, prepositional phrases, 

adjectives and objects.  The output of this module is the logic representation of the 
query. 

•    Interpreter. This finds a logical proof of the query over the knowledge base using 
unification and resolution algorithms. 

•    WordNet/Thesaurus. AQUA's lexical resource. 
•    Ontology. Currently AQUA works with a single ontology – the AKT reference 

ontology which contains people, organizations, research areas, projects, publications, 
technologies and events.   

•    Failure-analysis system. This analyzes the failure of given question and gives an 
explanation of why the query failed. Then the user can provide new information for 
the pending proof and the proof can be re-started. This process can be repeated as 
needed. 

•    Question classification & reformulation. This classifies questions as belonging to any 
of the types supported in AQUA, (what, who,  when, which,  why and where). This 
classification is only performed if the proof failed. AQUA then tries to use an 
information retrieval approach. This means that AQUA has to perform document 
processing and answer extraction phases. 

 
3. Document Processing.  A set of documents are selected and a set of paragraphs are 

extracted. This relies on the identification of the focus1 of the question. Document 
processing consists of two components: 
• Search query formulation. This transforms the original question,  Q  into a new 

question Q', using transformation rules. Synonymous words can be used, punctuation 
symbols are removed, and words are stemmed. 

• Search engine. This searches the web for a set of documents using a set of keywords. 
  

4. Answer processing. In this phase answers are extracted from passages and given a score, 
using the two components: 
• Passage selection. This extracts passages from the set of documents likely to have 

the answer. 
• Answer selection. This clusters answers, scores answers (using a voting model), and 

lastly obtains a final ballot.  
 
We want to remind the reader that phases 1, and 2 deals with the AQUA part as closed-domain 
question answering. Whilst 1,2, 3 and 4 deals with AQUA as open-domain question answering.. 
 

 
3. Data integration 
 
Integration of different sources has been one of the fundamental problems faced in the Database 
community in the last decades (Batini et al., 1986) . The goal of  a data integration system is to 
provide a uniform interface between various data sources (Levy 2000). As a result of a data 
integration  users obtain  some benefits such as  

                                                 
1 Focus is a word or a sequence of words which defines the question and disambiguates it in the sense that 
it indicates what the question is looking for. 



• users do not need to find the relevant sources to a given query,  
• to interact with each source in isolation, 
• to select and cleaning and   
• to combine data from multiple sources in order to answer a given query.  
 

 
Description Logics have been used in data integration projects to represent the conceptual level 
(Catarci and Lenzerini, 1993; Arens et al 1993; Goasdoue et al 2000). In our work we have 
extended Halevy et al. (Halevy et al 1996) work on data integration for Databases.  The design of 
a data integration system is a very complex task which comprises several aspects. In this paper 
we only concentrate in one part of the mediator agent (the selection of sources). This selection 
procedure has as a target goal to find relevant fragments to a given query using different 
resources.  It can be seen as a  way to trim  the ontological  search space. 
 
We propose a generate-relevant-ontologies procedure which works for ontologies. The 
generate-relevant-ontologies procedure relies on the fact that there is a meta description of the 
different sources (Meta-Ontology). Once that the relevant sources are identified the answer to the 
question can be performed using the selected sources. The Meta-ontology contains a formal 
description of the concepts, relationships between concepts A good feature is that such 
descriptions are independent of any system consideration. Our meta-ontology Meta-O consists of 
the union of each individual description of each ontology i.e.  
 
Meta-O = O1  U    ….  U  On 
 
where Meta-O is the global schema and Oi is one the description of ontology i and  

Oj = {  R1j ,…, Rnj } 

 

where Rij means the relation i in the ontology j. 
 
Each ontology description consists of a set of relations written in FOL with types and 
arities. These  descriptions can be defined in a  formal language which can be FOL or DL 
(description Logic).    
 
The procedure generate-relevant-ontologies  can be defined as follows: 
 
 
Procedure  generate-relevant-ontologies(O,Q) 
/* O is the set of ontologies 
    Q is  a query in conjuctive form  */ 
 
 
1. Query planner decompose  query in subqueries  
 

Q (X1, ...., Xn ) = Q1(Z1)   U   Q2(Z2)  U,…, U  Qn(Zn) 
 
Where each Qi  can be defined as a predicate   Qi (W1,…Wn)  =  Э X1, ...., Xn ω (X1, ...., Xn) 
 
2. S = Ө;  i=1; 
 



3  For each  Qj do 
 
4.  For each ηi (Y1,…,Yn)  Є  Meta-O  do i 
           Begin 

Compute  Sim(ω(X1, ...., Xn), η(Y1,…,Yn) ) using our ontology-based similarity algorithm                              
given in section 3.1 
 
If  Э β a mapping between ω(X1, ...., Xn and , η(Y1,…,Yn ) then 
 
 П = П  U {( η(Y1,…,Yn ), Oi  )}  were relation  η(Y1,…,Yn ) is on ontology Oi 
 Else   
 
End do i 

 
5. S =   S U П 
End do j 
6. Return  S 
 
7. If S is Ө print “there is not set of ontologies relevant to the query’’ 
    else evaluate query using the subset of ontologies in S 
 
8. End generate-relevant ontologies 
 
 
 
 
3.1 Similarity 
 
Similarity has been an important research topic in several fields such linguistic, Artificial 
intelligence (in particular in the field of Natural Language Processing and Fuzzy Logic). The 
range of application of measure of similarity ranges from word sense disambiguation, text 
summarization, information extraction and retrieval, question answering, automatic indexing and 
automatic correction of codes. There are two types of similarity: syntactically and semantic 
similarity. Syntactic similarity can be defined as functions over terms. For instance, the hamming 
distance (used in Information Theory). This similarity is defined as the number of positions with 
different characters in two terms with the same length. Whilst semantic similarity can be defined 
as Miller and Charles (Miller et al 1991) as a continuous variable that describes the degree of 
synonymy between two words. 
 
When evaluating similarity in a taxonomy the most natural way to access similarity is to evaluate 
the distances between the two concepts being compared. Therefore the shorter is the path from 
one to another means that they are more similar. This approach has been used as measure of 
similarity. However, one of the main drawbacks is that it relies on the notion that links in a 
taxonomy represent uniform distances (Resnik 1995; 1998). Our own view is that similar entities 
are assumed to have common features2. For instance (university,  research_institute) but it is also 
the case that dissimilar entities may also be semantically related by the relation meronym or 
holonym such as (student –person;  bicycle-wheel) .  

                                                 
2 The common features in two entities  might  not be so discriminative as the features which are 
different in them.  



 
We have designed and implemented a similarity algorithm to assess concept similarity and 
relation similarity (Vargas-Vera and Motta 2004, Vargas-Vera et al 2003a,b). Our algorithm 
compares extended graph obtained from the user query (using entities in the query itself plus 
informative classes from ontology) and  a  graph which represents a subset of the ontology 
(relevant to the query). As an inter-media stage it creates the intersection upon nodes between the 
two graphs (the graph of the query and the graph obtained from the ontology).  In short, our 
similarity algorithm assess concept similarity and relation similarity using the Dice Coefficient 
using the most informative classes from the ontology. 
 
Our similarity algorithm differs from other similarity algorithms in that it uses ontological 
structures and also instances. Instances provide evidential information about the relations being 
analyzed.  This is  an important distinction  between the kind of similarity which can be  achieved 
using only  WordNet or the similarity which can be achieved using distances to super-classes  
followed by Wu et al. (Wu et al 1994).  In the first one WordNet brings all the synsets found even 
the ones which are not applicable to the problem being solved. Whilst in the latest the idea of a 
common super-class between concepts is required (i.e. two concepts are similar if they share a 
common ancestor). 
 
 We present an explanation of our algorithm when arguments in the user query are grounded 
(instantiated terms) and they match exactly (at the level of strings) with instances in the ontology. 
A detailed description of the algorithm and example can be found in (Vargas-Vera et al. 2003b). 
 
The algorithm uses all grounded terms in the user query.  It tries to find them as instances in the 
ontology. Once they are located a portion of the ontology (G2) is examined including 
neighborhood classes. Then an intersection 3 (G3) between augmented query (using knowledge 
from the ontology) G1 and G2 is performed to assess structural similarity. It could be the case that 
in the intersection G3 several relations can include the grounded arguments. Then the similarity is 
computed for all relations (containing elements of the user query) using Dice Coefficient. Finally, 
the relation with the maximum Dice Coefficient value is selected as the most similar relation. 

 
Our similarity algorithm for relations  is  defined as follows:  
 

SimilarityBase algorithm: 
 

  Case 1:  X1 and X2 are grounded arguments. 
 
1.  Translate the question to First Order Logic  i. e. predicate_name(X1, X2) 
 
2. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 such that 
  
relation(C1,C2) where relation is an ontological relation between C1 and C2. 
 
 
3. ∃  relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 such that 
 

                                                 
3 Intersection means to find a sub-graph in G2 which contains all concepts contained in graph G1using 
subsumption relation. 
 



  relation(C1, C2)  Λ  ∃ S1 ⊃ (U11  ⊂  U12  ⊂  …  ⊂ U1n ) ⊃ C1 Λ ∃ S1 Λ  (U11 ⊂ U12 ⊂ …⊂ U1n )  
⊃ C2 
 
4. ∃ relation connecting C1 and C2 Λ ∃ C1 ⊃ X1 Λ ∃ C2  ⊃ X2 Λ  S1 ⊃ X1 Λ  S2 ⊃ X2 Λ  ∃ (U11 

⊂ U12 ⊂ … ⊂ U1n  ) ⊂ C1 Λ  ∃  (U21  ⊂  … ⊂ U2 n )  ⊂  C2         
               where Uij is a subclass of Uij+1 
                

     5. Find the intersection,  G3,  of G1 and G2 based upon the  node labels.  
 
6.  Let  be A and B vectors containing the features used to compare similarity. 
 
              Compute:  
               
              Concept _similarity  = 0 no common concepts 
               
              Concept _similarity = 1    same set of concepts , otherwise 
  
              Concept_similarity = sim_dice(A,B) =  2*∑1 

n aibi / ∑1 
n ai2 + ∑1 

n bi2   
vectors A and B are filled with the  number of concept nodes of graph G1 and G3 respectively. 
 
7. Compute  Relation_ similarity = di = sim_dice(A,B) =  2*∑1 

n aibi / ∑ 1 
n ai2 + ∑ 1 

n bi2 
               vector A and B are filled with  the number of arcs in the immediate neighborhood of 
the graph G1 and G2 respectively. 
 
               8. maximum(di) where i=1,n 

 
 

 
 
The algorithm builds  graphs from the user query G1, obtain a fragment from the ontology 
containing the relevant nodes G2  and build an intersection (G3) between  G1 and G2.  
Step 2  describes the construction of the  graph G1  for the query. This  is created  using  
subject (X1), relation, object (X2) and the  most representative classes for X1 and X2 
respectively.  
Step  3 describes how the algorithm finds  sub-hierarchy containing grounded4 
arguments/concepts from the user question  (i.e.  the  neighborhood containing the grounded 
arguments).   
Step 6.  the similarity between G1  and G3 using the Dice coefficient is computed. The vectors 
A and B are filled with the  number of concept nodes of graphs G1  and G3  respectively  then 
 

        Concept _similarity  = 0 no common concepts 
               
              Concept _similarity  = 1    same set of concepts , otherwise 
  
              Concept _similarity  = 2*∑1 

n aibi / ∑1 
n ai2 + ∑1 

n bi2 

 
 Step 7.  the similarity between G1  and G2 using the Dice coefficient is computed. 
                   

                                                 
4 Grounded argument means instantiated argument. 



                Relation_similarity   =  di =  2*∑1 
n aibi / ∑1 

n ai2 + ∑1 
n bi2         

                               
vector A and B are filled with  the number of arcs in the immediate neighborhood of the 
graph G1 and G2  respectively. 
 
A procedure called SimilarityTop uses the SimilarityBase algorithm (defined above), 
WordNet synsets, and feedback from the user.  The SimilarityTop procedure checks if there 
is similarity between the name of the relation/concept in the query and the relation/concept in 
the selected ontology. If there is no similarity then it offers all the senses which are found in 
the WordNet thesaurus  to the user.  It is SimilarityTop that AQUA uses, with the selected 
sense, to rewrite the logic formulae.  The main steps are defined as follows: 

  
 

SimilarityTop procedure: 
 
• Call our SimilarityBase algorithm (defined above)  
  
• If  ontological_relation  ≠ Ө then  
 

evaluate_query(ontological_relation(β1,β2)) 
 
• Else 

To obtain  synsets for relation_question using WordNet thesaurus 
To ask user to select sense from the ones that WordNet thesaurus provided 
Call evaluate_query(selected_sense(β1, β2)) 

      
 
 

 
As a fist instance we have implemented on AQUA our similarity algorithms (which perform 
mappings between relation in a user query and ontological relations using neighborhood of 
classes). However, in future we would analyze other mappings  algorithms which  could be 
explored such as the one described by Compatangelo and Meisel (Compatangelo and Meisel 
2003) or the mapping algorithm implemented in the system Glue  which learns from examples of 
mappings (Doan et al., 2001). 
 
 
4. Related Work 
 
Levy  et al. have suggested an architecture  and question answering algorithm used in the 
information Manifold (Levy et al 1996). The information manifold have some features . First 
contents of information sources are described by query expressions that can uses classes  and 
roles as well as predicates of any arity.  Secondly, the query planning algorithm uses the source 
descriptions to determine precisely which information sources can produce answers to a given 
query.  In our multi-ontology framework, the integration system is close in spirit to Levy (Levy et 
al., 1996; Levy 1998). The difference is that  approach works over an ontological space and 
introduces the notion of meta-ontology. 
 
Florescu et al  suggested the use of probabilistic knowledge in mediator systems (Florescu et al., 
1997). According to  Florescu et al. probabilistic  information is useful for ordering access to 



information sources.  They have suggested several algorithms for ordering access to data sources   
However a greedy algorithm seems to work better performance. In future, we might want to 
explore if by ordering access to data sources the AQUA performance can be improved.  
 
 
5. Conclusions 
 
We have extended the idea of Levy et al. (Levy et al.,  1996) of having a data integration system 
for databases but  in our work we deal with  ontologies/knowledge bases. It is clear that a great 
deal of  work needs to be done to deploy this technology.  However, this is one stone to  our goal 
is to have an automatic system which can deals with queries from users written in NLP (Natural 
Language Processing) using different resources. These resources are heterogeneous and use 
different data models and vocabularies. Therefore, to build such system is a challenge. The main 
advantages are described as follows: 
 

• free users from the task of finding the sources where the answer can be found and  
• interact with each one  separately. 

 
We have outlined a solution to the problem of data integration over an ontological space. This 
solution relies on a Meta-ontology which contains descriptions of each individual ontology in the 
ontological space. This meta knowledge is used in conjunction with similarity measures to 
determine relevant sources to a given query. We argue that by using meta-knowledge and 
similarity algorithms the data integration task can be performed automatically on behalf of users. 
Preliminary results are encouraging. However, further research is needed in similarity 
measurements.  
  
The main application of the data integration system is in AQUA. Currently, AQUA deals with a 
single ontology at the time. Therefore, we expect that by means of data integration system AQUA 
will deal on behalf of the user (in a transparent way) with many sources.   
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