
Semi-Automatic Population of Ontologies from Text

Tech Report kmi-04-18

David Celjuska and Dr. Maria Vargas-Vera



Semi-Automatic Population of Ontologies from
Text

Dávid Čeljuska1 and Dr. Maria Vargas-Vera2

1 Department of Artificial Intelligence and Cybernetics, Technical University Košice,
Letna 9/A, 04001 Košice, Slovakia

davidmdsk@centrum.sk
2 KMi - Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes MK7 66A, United Kingdom

m.vargas-vera@open.ac.uk

Abstract. This paper describes a system for semi-automatic popula-
tion of ontologies with instances from unstructured text. The system is
based on supervised learning and therefore learns extraction rules from
annotated text and then applies those rules on newly documents for on-
tology population. It is based on three componentes: Marmot, a natural
language processor; Crystal, a dictionary induction tool; and Badger, an
information extraction tool. The important part of the entire cycle is
a user who accepts, rejects or modifies newly extracted and suggested
instances to be populated. A description of experiments performed with
text corpus consisting of 91 documents is given in turn. The results cover
the paper and support a presented hypothesis of assigning a rule confi-
dence value to each extraction rule to improve the performance.

Introduction

Ontologies are popular in a number of fields such as knowledge engineering
and representation, qualitative modeling, database design, information modeling
and integration, object-orientated analysis, information retrieval and extraction,
knowledge management, agent systems, and more (Guarino; 1998). In addition to
those fields, research analyst companies report on the critical roles of ontologies
in areas such as, browsing and searching for e-commerce, and for interoperability
for facilitation of knowledge management and configuration (McGuinness; 2002).

However, the problem of their construction and engineering remains not to
be completely solved and their development today is more craft than a science.
Automated ontology construction tools provide little support to knowledge ac-
quisition. Therefore, the ontology construction process becomes time consuming
and this leads to the fact that their wide usage has been limited.

A number of proposals have been published to facilitate ontology engineer-
ing (Vargas-Vera et al.; 2001; Craven and Kumilien; 1999; Faure and N’edellec;
1998).

Information Extraction could be considered as a technology that might help
an ontology expert during the ontology population and maintenance process.



2 Čeljuska and Vargas-Vera

Information extraction could be seen as the task of pulling predefined entities,
objects such as name of visitor, location, date, and so on from texts.

1 Goal of the system and assumptions

Designed system, Ontosophie, in which its framework was motivated by Info-
Extractor (Vargas-Vera et al.; 2001) and MnM (Vargas-Vera et al.; 2002) is ca-
pable of semi-automatic population of given ontology O with instances. The in-
stances are extracted automatically from natural language text such as plain text
or HTML. The task is to identify important entities, slot values v1, v2, . . . , vNi

such as (visitor, date, location, and so on – depending on a class Ci) in a
document and thus to construct a vector Vij = (v1, . . . , vNi) for each class
Ci ∈ C1, C2, . . . , CM in the given ontology O. In the next step, it is necessary to
determine whether the constructed instance described by Vij vector for class Ci

is correct and whether it should be fed into the class or not. This determination
is based on the extracted entities and their confidence which will be described
later.

Experiments were performed by using KMi’s3 Event ontology O. This consists
of events or activities that are defined formally in the ontology as classes Ci : i ∈
{1, 2, . . . ,M}. A small part of the ontology is shown in figure 14. Each class/event
Ci is defined with set of slots s1, s2, . . . , sNi, which might be instantiated into
v1, v2, . . . , vNi. Type of each slot is in default String which gives high flexibility
in terms that all integers, floats, dates, strings, list of names and so on could be
expressed in a string form.

The following part shows one class definition from the event topology in or-
der to explain its structure:
Class Event: Conferring-an-Award

Description: Class of an event describing an event of awarding someone

Slots:

has-duration (when or how long the event took)

has-location (a place where it took place)

recipient-agents (the agents who received the award)

has-awarding-body (an organization, donor)

has-award-rationale (for what the award is)

object-acted-on (award, name of the award or amount of money)

One might notice that this particular class is named Conferring-an-Award
and it describes any even talking about awarding someone an award for some
reason. The slots such as has-duration, has-location, and so on are attributes of
the class and give detailed information about one specific event/instance which
the system is intended to construct. The task of the system is therefore to identify
those attributes v1, . . . , vNi, entities in a document and then to construct an
instance and fed it into appropriate class Ci within the ontology O.
3 Knowledge Media Institute, The Open University, United Kingdom
4 classes that this paper refers to are highlighted



Semi-Automatic Population of Ontologies from Text 3

Fig. 1. A Part of Event Ontology

2 System’s framework

The system’s framework consists of the following parts (figure 2):

– Annotation/Mark-up
– Learning
– Extraction
– Population

Each of these steps will be explained in turn.

3 Annotation

The activity of semantic tagging refers to the activity of annotating text articles
(written in natural language in plain text or HTML) with a set of tags defined
in the ontology.

Each slot that occur within any class of the ontology is assigned a unique
XML tag. Thus mark-up step is ontology driven. Once the user identified desired
class for a displayed document from the ontology he is offered with relevant tags
only. An annotated article might then look as follows:



4 Čeljuska and Vargas-Vera

Fig. 2. The framework of the system

<EV>KMi</EV> has been awarded <EZ>L1.2M</EZ> by the <EX>UK’s
Engineering and Physical Sciences Research Council</EX> to
carry out <EY>research in the application of knowledge tech-
nologies to support knowledge creation and sharing in organi-
zations</EY>.

One might notice that the tag EV refers to recipient-agent, an agent who
was given an award, EX to has-awarding-body, a name of the organization which
gave, sponsored the award, EZ to object-acted-on, the award itself and EY to
has-award-rationale, the reason of the award or for what the award was.

Once a set of documents is annotated with XML tags and all articles are
stored, the following learning phase may begin.

4 Learning

Thus the system is based on supervised learning, the training set of documents
is required. The learning set in this context means a set of annotated articles
(section 3). Learning consists of two steps:

– Natural language processing
– Learning extraction rules

Each of the steps will be described in detail as follows.

4.1 Natural language processing

Natural language analysis is extremely crucial and is very often under-estimated.
Ontosophie, as most information extraction systems, uses shallow parsing

to recognize syntactic constructs without generating a complete parse tree for



Semi-Automatic Population of Ontologies from Text 5

each sentence. Such shallow parsing has the advantages of higher speed and ro-
bustness. High speed is necessary to apply the information extraction to a large
volume of documents. The robustness achieved by using a shallow parsing is es-
sential to deal with unstructured texts. In particular, Ontosophie uses Marmot5,
a natural language processing system.

Marmot accepts ASCII files and produces an intermediate level of text analy-
sis that is useful for information extraction applications. Sentences are separated
and segmented into noun phrases, verb phrases and other high-level constituents.

After each document was annotated and pre-processed with the Natural Lan-
guage Processing tool, the set of documents enters the Learning phase itself.

4.2 Generating extraction rules

Learning extraction rules from an annotated set of documents is a task of gener-
ating a set6 of extraction rules. Ontosophie in this phase uses Crystal, a dictio-
nary induction system. Crystal7 (Soderland at al.; 1995) is a conceptual dictio-
nary induction tool, which derives a dictionary of concept nodes, extraction rules,
from a training corpus. Crystal is based on specific-to-general algorithm and its
purpose is to learn extraction rules – concept node definitions. For illustration, an
extraction rule might be understood as following: conferring-an-award: <VB-P
”been awarded”> <OBJ1 any> <PP ”by” has-awarding-body> Coverage: 5 Error:
1 8 The rules purpose is to extract conferring-an-award, which refers to name
of a class from the ontology O (figure1). This concept node, extraction rule, is
defined to extract has-awarding-body, name of a donor or sponsor of some award.
The rule fires only in case all the constraints are satisfied. This, in particular,
means that the entity conferring-an-award is extracted from any sentence or its
part only in case it consists of “has been awarded” as passive verb (VB-P), an ob-
ject (OBJ1) that might be anything and it contains a prepositional phrase (PP),
which starts with preposition “by”. When those constraints are satisfied the rule
fires, meaning the prepositional phase (PP) is extracted as has-awarding-body.
For example, from the sentence: “KMi has been awarded L1.2M by the UK’s
Engineering and Physical Sciences Research Council to carry out research in
. . . ”9 it will extract “by the UK’s Engineering and Physical Sciences Research
Council” as the particular value of the slot has-awarding-body.

In addition to that, Crystal gives two values – Coverage and Error. In this
particular example, the rule covered five instances (one incorrectly) in the corpus
in which the rule was generated from. Which gives some-what feel of rule’s
precision10.

5 Marmot was developed at University of Massachusetts, MA, USA
6 also called dictionary
7 Crystal was developed at University of Massachusetts, MA, USA
8 Due to sake of space the extraction rule is shown in a short form. It is much more

complex in reality, but this form is enough to explain the most important parts.
9 this is one of the sentence from the annotated article described in section 3

10 P = (5− 1)/5



6 Čeljuska and Vargas-Vera

Getting extraction rules by using Crystal is not sufficient as one rule might
have higher confidence than another. Thus, computing rule confidence becomes
essential.

4.3 Assigning rule confidence values to extracted rules

In most cases having a precise and correct ontology rather than having it over-
populated with incorrect instances is more important. Therefore, in the area of
fully-automated ontology population more pressure is applied on precision rather
than recall11. On the other hand, when dealing with semi-automatic approach,
it is often required to have high recall also at a cost of lower precision. In this
case users prefer to have higher control over the process and be offered with
multiple choices from which they can pick the desired one.

From what was said, the optimal is to keep high recall while in default,
automatically pre-select those options that are believed to be precise enough.

In order to achieve this task Ontosophie attaches a rule confidence value to
each rule12. The rule confidence tells how sure the system is about the thruthness
of a particular rule.

Experimentation showed, that some extraction rules that were learned by
Crystal are very weak and therefore firing too often, while other rules might
be overly specific. In addition, previous experiments (Riloff; 1996) showed that
precision improves if those rules are manually removed. However, our approach
is to take an automatic control over this. Thus, those rules need to be either
eliminated or given low rule confidence value. The extraction rule confidence
tells, how sure the system is about its quality in comparison to other rules in
the dictionary.

Ontosophie is equipped with two ways of computing the rule confidence value.
The first and most simple method uses Coverage and Error values that are

automatically provided for each rule by Crystal (section 4.2). In this case the
rule confidence is computed as:

C =
c

n
=

Coverage− Error

Coverage
(1)

Where c is the number of times the rule is fired correctly and n is the num-
ber of times the rule is fired in total. Coverage tells how many instances the
particular rule covers, or in other words, how many times the rule is fired on the
entire training set and Error tells how many times it is fired incorrectly.

However, (1) does not distinguish between, for example C2 = (2− 0)/2 and
C10 = (10)/10, because C2 = C10 = 1.0. At this point, one might argue that C10

is more accurate and has higher support, because in this case the rule fired ten
times out of ten correctly, while the other one only fired two out of two. This is

11 as a reminder: precision P = c/n and recall R = c/m, where c is number of correctly
extracted entities, n is the total number of extracted entities and m the total number
of entities that should be extracted

12 None of the mentioned systems including MnM and Info-Extractor has this feature.



Semi-Automatic Population of Ontologies from Text 7

why Ontosophie was designed to take this fact into consideration. In particular
it uses Laplace Expected Error Estimate (Clark and Boswell; 1991) which is
defined as 1− LaplaceAccuracy, where:

LaplaceAccuracy =
nc + 1

ntot + k
(2)

where:13

– nc is the number of examples in the predicted class covered by the rule
– ntot is the total number of examples covered by the rule
– k is the number of classes in the domain

Implementing the equation 2 to the valuation of confidence is then:

C =
c + 1
n + 2

(3)

Where k = 2 because it deals with two classes for each rule. One, the rule
fires and two, the rule does not fire. When k = 2 a posteriori probability is set
to 1/2 = 0.5 14. Meaning, that if C = 0.5 the rule fires correctly as often as it
does incorrectly. This is the state when nothing serious can be said about the
rule and thus all rules with C ≤ 0.5 should be eliminated.

The other method is more sophisticated and it is based on different math-
ematical model. In this case the rule confidence is computed independently on
Covers and Error values provided by Crystal.

In this case the confidence number for each rule is computed by the k-Fold
Cross validation methodology (Mitchell; 1997) on the training set. At each run a
new set/dictionary of extraction rules is generated by Crystal. The algorithm 1
outlines the methodology that Ontosophie uses. The algorithm computes for
each rule ri how many times it fired correctly cri , how many times it fired in
total nri , performs merging of identical rules and assigns xri to each rule that
tells how many times the rule was merged.

If two rules ri and rj generated from two different runs are identical, regarding
their constraints, they are merged to form one new rule rnew which is identical
to the ri and rj while the number of times the rule rnew is fired correctly crnew

=
cri + crj and number of times it is fired in total nrnew = nri + nrj . After the
whole process is then:

crnew
=

∑
∀i,j;i 6=j:constrains(ri)=constrain(rj)

ci + cj

nrnew =
∑

∀i,j;i 6=j:constrains(ri)=constrain(rj)

ni + nj

13 The presented Laplace Error Estimate is borrowed from Classification, that is why
the particular variables are defined as they are.

14 one might note that (K + 1)/(2K + 2) = 0.5 : ∀ K ∈ R → if c = 2n then C = 0.5



8 Čeljuska and Vargas-Vera

Algorithm 1 Computation of rule confidence by k-Fold-Cross in Ontosophie
N ← number of classes
Sij ← is j-th fold of i-th class, 1 ≤ i ≤M and 1 ≤ j ≤ k
Si ← S11 ∪ S12 . . . ∪ S1k {is set of documents of i-th class}
S ← S1 ∪ S2 ∪ . . . ∪ SN {is entire training set}
W ← ∅ {the final set of rules with rule confidence computed for each of them}
for all j such that 1 ≤ j ≤ k do

T = V = ∅ {T is a training set and V is a validation set}
for all i such that 1 ≤ i ≤M do

T ← T ∪ Si − Sij {training set}
V ← V ∪ Sij {validation set}

end for
R ← generateExtractionRules(T ) {generates a set of rules by running Crystal
for set T}
R← setXtoZero(R) {sets x, number of time the rule was merged, to zero for each
rule in the set R}
Re ← evaluate(R, V ) {Re is set of evaluated R rules with V }
W ←W ∪Re

end for
while ∃ i, j, i 6= j; ri, rj ∈W : constrains(ri) = constrains(rj) do

rnew ← merge(ri, rj) {constrains(rnew)← constrains(ri) = constrains(rj)}
crnew ← cri + crj {number of times it fired correctly (refers to c)}
nrnew ← nri + nrj {number of times it fired in total (refers to n)}
xrnew ← xri + xrj + 1 {counting number of times the rule was merged}
W ←W − {ri} − {rj}+ {rnew}

end while



Semi-Automatic Population of Ontologies from Text 9

The evaluation of a rule (algorithm 1) is only one aspect that has not been
covered yet. The evaluation is always performed on the validation set, as it is
clear from the algorithm. At each run after all the rules have been generated by
Crystal, Ontosophie enters evaluation state which is based on the extraction. All
rules that were responsible for correctly extracting an entity are then awarded
ci ← ci +1. Certainly, ni is incremented ni ← ni +1 for all rules that were active
during the extraction. The tough phase is to recognize whether an extracted
entity is correct or not. However this is beyond the scope of this paper – we
advice you to have a look at (Čeljuska; 2004) for more details.

5 Extraction and ontology population

Once all the extraction rules are learnt and assigned a rule confidence value, the
system is ready for extraction.

The task of this phase is to extract appropriate entities from a document15

and feed a newly created instance into given Ontology O. The document is pre-
processed with Marmot (similarly as described in section 4.1) prior to extraction
itself.

The extraction is run class by class. Firstly, a set of extraction rules for only
one specific class from the ontology is taken and only those rules are used for
the extraction. The step is then repeated for all the classes within the ontology
and thus for each class the system gets a couple of entities that correspond to
slots from the ontology. Three different outcomes might be observed:

1. None of the entity was extracted and the document then remains unclassified
2. Only entities of one class within the ontology were extracted. It’s clear that

the document can only belong to this class.
3. Entities from more than one class were extracted. The decision has to be

undertaken to determine which classes the instances16 should be linked to.

Ontosophie is a semi-automatic system and thus in order to give a user a
large volume of control without the need of too much interaction, the following
has been implemented in Ontosophie.

The user is provided with all the extracted possibilities while automatically
pre-selecting those that are believed to be strongly accurate. The figure 3 shows
a part of original text17 and a window dialog with suggestions for ontology
population. To give a user control over automatic pre-selection, two threshold
numbers are provided for pruning.

However, before the pruning is explained the following description of extrac-
tion and slot/class confidence value computation is given.

For the information extraction a third component called Badger18 was also
integrated into the system. Badger makes the instantiation of templates. The
15 not yet processed nor annotated document
16 an instance consists of slots and its values (extracted entities)
17 automatically recognized entities were printed in bold.
18 Badgar was developed at the University of Massachusetts, USA



10 Čeljuska and Vargas-Vera

Ed Feigenbaum Visits AIAI
Wednesday, 18th July 2001
Ed Feigenbaum of Stanford Univer-
sity visited AIAI on 2nd July 2001
to hear about the knowledge-based sys-
tems and applied AI work of the Insti-
tute. He heard about the plans to form
CISA on 1st August 2001. . . He is cur-
rently working with the European Office
of Aerospace Research and. Development
in London, part of the US Air Force Of-
fice of Scientific.

Fig. 3. A part of original text and a dialog with extracted entities

main task of Badger is to take each sentence from the document and see if any
of the learnt rules can be applied (section 4.2). If no extraction rule applies to
a sentence, then no information is being extracted - irrelevant text is processed
very quickly.

Badger in addition to extracted entities gives a list of extraction rule Id’s that
were responsible for the extraction of a particular entity. This way Ontosophie
can pull confidence values Ci for each of the fired rule from the dictionary and
performs post-computing and pruning.

It might happen that Crystal extracts more than one value for a given slot
name. This is the collision that has to be solved. Therefore, extraction phase
might lead to the following problems that have to be undertaken:

– The same piece of information, an entity was extracted with more than one
rule - value collision

– More than one value was extracted for a given slot - slot collision
– Entities from different classes where extracted - class collision

The following section will describe solutions given by Ontosophie.

5.1 Solving collisions

In Ontosophie, not only are rules assigned confidence values, but also extracted
entities, slots and classes.

If one piece, an entity is extracted by only one rule, then the value confidence
Cvalue associated to that piece of information is equal to the confidence of the
rule that extracted it Cvalue = C. Where rule confidence C is computed by either
(3) or (1).

However, if one entity is extracted with more than one rule, then Cvalue is
computed as the maximum overall rule confidences of rules that fired it.



Semi-Automatic Population of Ontologies from Text 11

Cvalue = max
∀i:ri is in collision

Ci (4)

The same applies for the slot confidence Cslot. If one value was extracted for a
given slot (i.e. visitor = “Ed Feigenbaum”) then Cslot = Cvalue. However, if more
then one value was extracted for a slot visitor = “Ed Feigenbaum” and visitor
= “Ed Feigenbaum of Stanford University”, then only the value with its high-
est confidence is considered. Thus, Cslot = max∀i:Cvalue,i is in collision Cvalue,i.
The highest scored value/entity for a given slot is then pre-selected and val-
ues/entities are ordered by their confidence (figure 3).

It might happen, that the system extracts some entities from one class and
some entities from another class (visiting-a-place-or-people and conference - fig-
ure 3). It is important to determine which classes the new instances should be
fed into. For this purpose, the class confidence value Cclass is assigned to each
class. Although there is more than one way of computing class confidence Cclass

we used the following equation:

Cclass =

∑
∀ extracted slots for the given class Cslot,i

mclass
(5)

Where mclass is a number of different slots the system is able to fill in with
extracted entities for a class class.

5.2 Pruning

There are two different threshold values. One is for pruning slots and one for
classes. When in the extraction phase some slot is assigned a slot confidence
value Cslot < Thresholdslot then this slot is not pre-selected and also do not
play any role in the phase of computing class confidence value (section 5.1).
Otherwise it is pre-selected.

The second threshold value Thresholdclass is used in case of classification.
Classes that have confidence Cclass < Thresholdclass are not pre-selected.

Threshold values are very helpful to speed up the process of rejecting/accepting.
In case a user is offered only with trusted and confident pre-selections the high
volume of interaction is avoided and this goal of Ontosophie is achieved.

After the extraction process is finished, a users interaction is required to take
the final decision about the extracted instances. The user has the ability to re-
select pre-selected options or completely reject to populate the ontology with any
instance. However as it was stated above, the goal of the system is to automati-
cally fill as many slots as possible while only pre-select those values/slots/classes
that are most likely to be correct based on the threshold values.



12 Čeljuska and Vargas-Vera

6 Validation of the system and experiments

6.1 Description of the set

For the experiments the ontology described in section 1 was used. Although, it
contains 41 classes, only three of them were used for the experimentation due to
low number of different kind of documents talking about different events.

Particular short text articles, similar to the example given in section 3, were
gathered from five different archives. Thus they were not all in common format
they were normalized by using a little Java program into one uniform form.

All of the articles were annotated, as described in section 3, and every doc-
ument was classified into one and only one of the mentioned class.

Table 1. Statistical information for each class and its slots. Pos. – number of positive
instances per slots; Tot. pos. – number of positive instances per class; Total – number
of instance including positive and negative; Docs – number of documents per class

Class Slot name #Pos. #Tot. pos. # Total # Docs

conference has-duration 31 205 561 27
has-location 38
main-agent 69
meeting-attendees 50
meeting-organizer 17

conferring-an-award has-duration 10 206 517 29
has-location 3
recipient-agents 79
has-awarding-body 30
has-award-rationale 30
object-acted-on 54

visiting-a-place-or-* has-duration 35 272 707 35
has-location 6
visitor 132
people-or-org* 99

The table 1 shows a number of documents for each of the class (“Docs”).
In addition, it gives number of annotated entities (positive instances - “Pos.”),
number of positive instance (“Tot. pos.”) in total for a given class and total
number of instances for each class (“Total”). Slots that have not been annotated
within the entire dataset are not listed.

6.2 Validation of the system

The goal of the validation of the system was to give answers to the following
questions:

– How using rule confidences effects precision and recall.



Semi-Automatic Population of Ontologies from Text 13

– Which of the two ways of computing the rule confidence (section 4.3) is
better.

– How elimination of rules effects the precision and recall.

When the rule confidence is being computed by k-Fold-Cross methodology,
as it was stated it section 4.3, at each run a new set of rules is generated by
Crystal. Then the rules that are identical are merged and xi which tells how
many time a rule ri was merged, is computed (algorithm 1). It is believed, that
a rule which was generated from more than one run is more likely to do good
in the entire set and not just within the part it was generated from. Thus, it
is believed that removing all rules ri : ∀i;xi < Merge might result in better
quality rule dictionary (set). The parameter Merge controls which rules will be
kept in the dictionary and which will be removed. For example if Merge = 1
then the system will remove all the rules that were not merged at least once. Or
by other words, rules that were only generated from one run, fold.

Four different experiments were run. For the validation of each of the ex-
periment the 5-fold-cross19 validation methodology was used. More over, each
experiment was repeated five times to get better statistical results and in case of
experiments where k-Fold-Cross was used to compute rule confidence the dataset
was randomly split each time into k folds.

The following experiments were run:

1. “No confidence” – without using any rule confidence value. Thus no pruning
was used. The rules were treated as equal without any preferences and all
generated rules were used.

2. “Simple” – the first, simple method for computation of rule confidence was
used - equation (1) with Laplace error estimate: C = c+1

n+2 = Coverage−Error+1
Coverage+2

3. “k-Fold” – the second, k-Fold-Cross validation method was used for comput-
ing the rule confidence. The k was set to 5 so in particular 5-fold-cross was
used. No rule was eliminated thus Merge = 0 and all the rules generated
from each run/fold were used.

4. “Elimination” – similarly to “k-Fold”, 5-fold-cross was used to compute rule
confidence. However, this time rules that did not show up from at least 3
folds were removed: Merge = 2.

Computation of class confidence was done by (5) for the experiments from 2
to 4. In addition threshold values in case of experiments 2 – 4 were set as follows:
Thresholdclass = 0.3 and Thresholdslot = 0.7.

The table 2 shows precision (P ) and recall (R) for each of the experiment
and for each of the class separately. The presented values shows the minimum,
maximum and the average values observed throughout the five trials.

One might notice from the table, that the variability20 almost crosses 10%
in case of “Elimination”, which implies that the computed average values is not
statistically very reliable. The figures 4 and 5 gives better picture of the results.
19 5-fold-cross validation is not a standard. Most of the time 10-fold-cross is used.

However, to save processing time the 5-fold-cross was used instead
20 difference between an average, minimum and maximum



14 Čeljuska and Vargas-Vera

Table 2. Comparison of different experiments

No confid. Simple k-Fold Elimination
P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Max 80.25 10.86 100.00 7.23 - 0.00 - 0.00
Conference Min 51.78 7.11 100.00 0.72 - 0.00 - 0.00

Avg 67.11 8.75 100.00 4.38 - 0.00 - 0.00

Max 85.41 11.00 93.33 8.71 100.00 5.72 100.00 1.76
Award Min 74.85 7.10 76.28 6.24 81.25 3.26 50.00 0.00

Avg 81.46 9.19 82.49 7.82 92.47 4.58 66.67 0.57

Max 72.36 30.25 81.02 17.51 90.16 14.71 96.66 11.99
Visiting Min 65.83 25.74 73.34 15.95 81.38 12.13 86.00 7.83

Avg 70.32 28.11 77.57 16.78 84.97 13.16 90.77 9.87

Max 72.17 16.96 80.81 10.64 88.33 6.76 94.66 5.28
Total Min 65.86 15.40 76.10 9.66 84.38 6.31 81.39 3.30

Avg 69.45 16.10 78.38 10.19 85.62 6.53 89.22 4.09

Fig. 4. Precision for each method - per class and in total

It can be observed from the table 2, that there is significant change in preci-
sion between cases when the rule confidence is taken into consideration and not.
The recall however goes rapidly down and variability increases. Only looking
at total precision it might seem that “Elimination” is the best choice with its
89.22% average. However, as one can see, the recall is extremely low – for the
class conference no entity was extracted. Even more in this case the precision at
conferring-an-award is, comparable to the total, very low. A deeper analysis of



Semi-Automatic Population of Ontologies from Text 15

Fig. 5. Recall for each method - per class and in total

this particular case showed that throughout all five trials the slot recipient-agent
was extracted only two times correctly out of four and the slot object-acted-on
three out of five. From all of the possible 545 positive instances21 only 5 were
extracted correctly from 9 tries. This is why this particular result does not sig-
nificantly affect the total average precision of the experiment. For example in
case of visiting-a-place-or-people the system for the total five trials extracted 132
times correctly out of 147 tries from possible 1326 positive instances.

“k-Fold-Cross” obtains a lower average of total precision 85.62% while recall
is a little higher. At each class it went well, besides conference. It might be
considered as one of the better options from all the experiments.

It can be concluded from the experiments that using a rule confidence is a
big plus. It also seems that k-Fold-Cross methodology is a better choice to the
simple method if in search for high precision and not so recall depended output.
Elimination of rules in case of “Elimination” needs to be taken with care. In the
experiment the rules that were not generated from at least three different runs
out of five were strictly removed. It was observed from examples that from 79
rules it resulted into 24 after the elimination. This is quite a drastic pruning. The
figure 5 shows recall for each of the experiments and thus gives better picture
on how the recall drops by increasing the precision.

It is also important to note that the dataset (table 1) was not very big. Thus
the absolute number of positive instances is not very high. Learning on such

21 num trials(num positive for recipient agent+num positive for object acted on) =
5(79 + 30) = 545



16 Čeljuska and Vargas-Vera

a small set is always leading to more specific rules or overly generalized and
causing variability to go high.

7 Conclusion and future work

Ontology construction process is very time consuming and as a consequence,
systems for semi-automatic acquisition of ontologies from text are being devel-
oped.

This paper described designed system Ontosophie which is based on three
components: a Natural Language Processing component called Marmot, a dic-
tionary induction tool named Crystal and an Information Extraction component
called Badger. All three of these are from the University of Massachusetts, MA,
USA.

In the area of semi-automatic population it is important to have a system that
gives a user the control over the process while automatically offering only the
most trusted and believed to be correct suggestions for the ontology population.
Ontosophie is equipped with this feature in terms that at the extraction phase
it always performs the full extraction while pre-selecting only those suggestions
that are considered to be correct. This is done by applying a pruning based on
threshold parameters set by a user. In order to evaluate an extracted entity,
two different designed methods for computing rule confidence were introduced.
The experiments conducted using those methods showed that using the rule
confidence might increase the precision by around 15% depending on different
models and parameters. In addition, it was observed that using the k-Fold-Cross
methodology for computation seems to be a better choice to the simple method
of taking Coverage and Error values computed by the learning component
Crystal.

The system was also tested with a third party user who did not have any prior
information about the system’s framework. Although the user reported that the
system was fairly straight forward to use once it was set up, he did mention that
it was quite difficult to determine the right class and its extracted slot values, just
being based on the extraction dialog. This fact was taken into consideration and
for the next generation of Ontosophie it is suggested to perform text highlighting
of the extracted information in the original document, which the extraction is
run from. This way a user could, by clicking on each of the suggestions, see
the extracted entities within a context and also determine the right values and
desired classes much more quickly and precisely. In addition, the next generation
should provide a more superior post-processing tool that could also include the
entity type validation. This could be done by comparing the type of the slot
and the type of the extracted information as also suggested by (Vargas-Vera and
Čeljuska; 2003).



Semi-Automatic Population of Ontologies from Text 17

References

CLARK, P. – BOSWELL, R. 1991. Rule induction with CN2: Some recent im-
provements. Proceeding Fifth European Working Session on Learning, pages
151 – 163, Springer, Berlin.

CRAVEN, M. – KUMILIEN, J. 1999. Constructing Biological Knowledge Bases
by Extracting Information from Text Sources. Proceedings of The 7th Inter-
national Conference on Intelligent Systems for Molecular Biology (ISMB-99).

ČELJUSKA, D. 2004. Semi-automatic Construction of Ontologies from Text.
Master’s Thesis, Department of Artificial Intelligence and Cybernetics, Tech-
nical University Košice.

FAURE, D. – N’EDELLEC C. 1998. ASIUM: Learning sub-categorization frames
and restrictions of selection. 10th Conference on Machine Learning (ECML
98) – Workshop on Text Mining, Chemnitz, Germany.

GUARINO, N. 1998. Formal Ontology and Information Systems. Proceedings of
the 1st International Conference on Formal Ontologies in Information Systems,
FOIS’98, Trento, Italy, pages 3 – 15. IOS Press.

McGUINNESS, D. L. 2002. Ontologies Come of Age. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. MIT Press.

MITCHELL, T. 1997. Machine Learning. McGraw-Hill, ISBN 0070428077.
RILOFF, E. 1996b. Automatically Generating Extracting Patterns from Un-

tagged Text. Proceedings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), pp 1044-1049.

SODERLAND, S. – FISHER, D. – ASELTINE, J. – LEHNERT, W. 1995. CRYS-
TAL: Inducing a Conceptual Dictionary. Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence, pages 1314 – 1319.

VARGAS-VERA, M. – DOMINGUE, J. – KALFOGLOU, Y. – MOTTA, E.
– BUCKINGHAM SHUM, S. 2001. Template-Driven Information Extraction
for Populating Ontologies. In proceedings of the Workshop Ontology Learning
IJCAI-2001, Seattle, USA.

VARGAS-VERA, M. – ČELJUSKA, D. 2003. Event Recognition using Informa-
tion Extraction Techniques. KMI-TR-134, Knowledge Media Institute, The
Open University.

VARGAS-VERA, M. – MOTTA, E. – DOMINGUE, J. – LANZONI, M. –
STUTT, A. – CIRAVEGNA, F. 2002. MnM: Ontology Driven Semi-Automatic
and Automatic Support for Semantic Mark-up. The 13th International Con-
ference on Knowledge Engineering and Management (EKAW 2002), Lecture
Notes in Computer Science 2473, ed Gomez-Perez, A., Springer Verlag, 2002,
379-391, ISBN 3-540-44268-5.

MARMOT User Guide. Natural Language Processing Laboratory, Center for
Intelligent Information Retrieval, University of Massachusetts, Amherst, USA.

Task Domain Specification and User Guide for Badger and Crystal. Natural
Language Processing Laboratory, Center for Intelligent Information Retrieval,
University of Massachusetts, Amherst, USA.


