
Text Mining Methods for Event Recognition in Stories

Tech Report kmi-05-2
April 2005

Kelly P. Vincent

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 2

Text mining methods for event recognition in stories

Kelly P. Vincent

Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA, UK

kpvincent@hotmail.com

Navigating an online story collection requires a system which can make connections
between the stories and their elements. One known way of accomplishing this is by
annotating the stories, which can be a costly process. Finding methods for providing
computer support for this process is a tactic for bringing the cost down. This paper
describes several experiments which tested a variety of text mining methods for
viability in accurately assisting the classification and annotation of stories in a small
document collection. Latent Semantic Indexing is tested for dimension reduction, and
decision trees, k nearest neighbor and naïve Bayes are all tested for classification.
Additionally, both stemming and removing stopwords are tried. The study shows that
all of these methods can be useful, but that there is great variability in their
performance even within this small collection.

1. Background and previous work
Heritage and cultural institutions are some of the many organizations that are beginning to use the Web
as a means of sharing digital artifacts such as stories (Mulholland, Collins, and Zdrahal, 2004). These
stories include items like folklore or first-person accounts that pertain to the period or place of interest
to the institution. One of the main functions of this kind of repository of stories is exploration and
discovery: users should be able to discover new information when exploring the story collection.
Providing computer support for these activities is not a trivial issue. In order to provide facilities for the
exploration of these digital resources, the resources must be processed and organized in some
meaningful way. This is where the greatest challenges for providing computer support lie and it is the
focus of this project.

There are several very basic methods of navigating an online story space, which are familiar to any
Web user. For instance, a list of story titles linked to the stories could be provided, perhaps with a
summary. A slightly more flexible option would be to provide a keyword search facility. Although
these methods do certainly allow users to find stories they might be interested in, they are too simple,
and do not exploit the fact that the story text holds a great deal of information. Story titles and even
summaries can sometimes be misleading, or simply not reveal all of the aspects of a story that a reader
might find interesting. Keyword searches are known to be problematic for a variety of reasons,
including that they often miss related documents or return irrelevant documents. If a user wants stories
about financial institutions, entering a word like ‘bank’ into a keyword search would also pull up
documents making reference to a river bank. It could also miss those about credit unions, or even
documents about banks which fail to use the word ‘bank’, for instance by referring only to ‘banking’.

These issues must be dealt with in order to obtain improved navigation through a collection of stories.
The documents should be annotated in some way. This may be as simple as using some method to
identify terms that are semantically similar, such as finding all words that are related to the idea of
financial institutions. Ideally, this annotation should allow the documents to be classified into various
meaningful categories. The method for navigating the story collection would therefore be to make
relevant connections between similar or related categories. The exact approach to this varies widely,
but generally a taxonomy or ontology is used to structure the categories. The view taken in this project
is that the stories can be regarded as being composed of different events that are each populated by
various objects (Mulholland, Collins, and Zdrahal, 2004). Here, an ontology is used to describe the
relationships between various events and objects. However, the best method to identify these events
and objects is not clear, and both event recognition and object recognition are areas worthy of further

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 4

study. The following section will introduce some of the previous work that has been done in this area
and discuss the various methods that can be used.

1.1. Annotating and classifying digital resources
There are two general classes of approaches to annotating and classifying digital resources: manual and
automatic. The basic technique for both requires associating each resource with a semantically
significant conceptual structure, which would in turn allow effective classification or searching. In the
manual case, a knowledgeable person familiar with the domain would carry out the association of
instances to certain classes, for example by generating basic heuristics or designing a complex
knowledge model. This is a time-consuming and therefore expensive process. The automatic approach
encompasses techniques that would be used to infer the semantics fully automatically. These might be
Latent Semantic Indexing (LSI) or any of several statistical or machine learning techniques.

Historically, the successes in this area have been obtained primarily through manual approaches.
Cheaper, automatic methods have been explored, but so far fail to achieve the quality results that
manual methods can offer. As a consequence, many current solutions are hybrid approaches which
strive to semi-automate the process, thus guaranteeing a certain level of quality while keeping the cost
down. Current systems naturally vary in complexity, with the simplest systems usually being fully
automatic, and the need for manual methods increasing as the complexity increases. This section will
describe three main types of approaches, divided as follows: approaches which are based completely on
the words in the text; approaches which are also based on the words but which allow for some
hierarchical information; and complex approaches which assume the text has a conceptual structure.

1.1.1. Fully term-based approaches
The simplest approaches are fully automatic and rely entirely on the words in the text, without
assuming any conceptual or other structure. Several researchers are working on the problem of text
classification by trying different statistical and machine learning techniques. Yang and Liu tested five
different approaches: neural nets, support vector machines (SVM), naïve Bayes, k-nearest neighbors
(kNN) and linear least-squares fit (LLSF) (Yang and Liu, 1999). They found that all of the methods
perform similarly when there are many positive training examples, but that naïve Bayes and neural nets
perform worse than the others when there are relatively few positive training examples. Apte, Damerau
and Weis have used boosting and decision trees to carry out a similar task (1998). In their study, all of
the methods were tested on a modified version of the Reuters-21578 collection, and the results are
slightly better than reported breakeven points for other methods used on the collection, indicating that
this is a method worth pursuing. Nigam, Lafferty and McCallum have used an approach based on
maximum entropy techniques for text categorization, finding that it outperformed naïve Bayes in most
cases (1999). This sample of studies shows that there is quite a bit of experimentation with such
techniques in text classification. It is also clear that these techniques have something to offer, even if
the best methods among them are not obvious.

1.1.2. Approaches assuming hierarchical term structure
The second type of approaches to automatic annotation and classification is slightly more complex. It
still focuses on the words in the text, but assumes that there is some sort of hierarchy of terms that the
words follow. In many search problems, generating a list of keywords that appear in the document can
be very informative. Feldman, Daga and Hirsh describe a system that analyzes keyword frequency
distributions across several documents in the Reuters-22172 text collection (1998). They used a variety
of methods for looking at keyword distributions, including a simple keyword hierarchy, and found that
these could aid the discovery of several useful relationships. Collins, Mulholland and Watt explored the
possibilities of using the concept of genre to support classification (2001). They used a corpus of
departmental news stories written by various members of the department, finding that the stories tended
to follow the inverted pyramid structure of traditional news stories, despite the fact that there was no
enforced standardized structure. Their system used keywords, but focused on the location of these
keywords in the document. Knowledge about the genre of the documents was therefore successfully
exploited to better classify them. These approaches can overcome many of the weaknesses of the
purely word-based approach. However, even more powerful knowledge modeling may be worthwhile.

KELLY P. VINCENT

KMI-05-02 Page 5

1.1.3. Approaches assuming high-level conceptual structure
Finally, the third type of approaches assumes both that the data is more complex than simply the words
in the text, and that there is a conceptual structure associated with the data. This structure is most
commonly modeled with an ontology. Noy and McGuinness pinpoint five major benefits of using
ontologies: a common understanding of knowledge structure can be shared; domain knowledge can be
reused; domain assumptions can be made explicit; domain knowledge and operational knowledge can
be separated; and domain knowledge can be analyzed (2001). Although some standard ontologies
already exist, in domain-specific work it is still usually necessary to define the ontology. Traditionally
this has been done by hand, using human experts, who can usually produce a quality ontology if
sufficient time and money is invested. However, some progress has been made in automatically or
semi-automatically extracting ontologies from data. Maedche and Volz used keyword frequency counts
to create concepts, and then created an algorithm to carry out hierarchical clustering to actually
generate an ontology (2001). Once a usable ontology exists, it can then be used to help populate the
knowledge base. This again can be done manually or automatically.

Researchers have used a variety of different techniques to define and then populate an ontology.
Vargas-Vera and Celjuska had some success using machine learning and information extraction
techniques to identify events in stories, and then semi-automatically populate a specified ontology
(2003). Their system used heuristics, partial parsing, a dictionary induction tool and a sentence
analyzer tool to provide classification suggestions for a story to a human user. The user would then
confirm or reject the suggestions, allowing the ontology to be generated over several iterations. This
was found to work for the majority of events, but manual updates were required in cases where the
story has implied information which is not explicitly stated, or if none of the heuristics apply.

Anani et al. describe a system that generates biographies of artists after automatically extracting
knowledge from the Web and populating a knowledge base on artists (2003). It uses an ontology,
coupled with WordNet (Fellbaum, 1998) and GATE (Cunningham et al., 2002), to identify relevant
documents on the Web. It then processes these documents by dividing them into sentences and phrases,
finding grammatically related phrases and identifying named entities. The semantic information on
both anticipated and required relations between the entities was inferred from the ontology and
augmented by WordNet.

It is obvious that these approaches are the most complex, as they incorporate both an ontology and
statistical or machine learning techniques. They also tend to have several distinct phases, such as one
where the ontology is first constructed, then where it is populated to create the knowledge base, and
finally where the knowledge base is used in some way.

1.1.4. Summary
All of the systems described in this section are exploring techniques that could one day be
commonplace in various text classification systems. It is probable that these future systems will
resemble those described in the previous paragraphs, since these attempts to exploit multiple sources of
information have had some success. It will be interesting to see what further solutions text mining and
knowledge modeling will offer to document and story classification.

1.2. Data and noise reduction
One aspect that becomes very important when dealing with this type of data is its high dimensionality,
which can be both computationally very expensive and a source of noise. Statistics and machine
learning techniques have been used to deal with these problems. These techniques are effectively
clustering methods. The primary idea behind clustering in the text domain is the concept of grouping
similar words into semantically-related clusters, rather than leaving them as distinct words. The notion
is relatively simple, and there are several established clustering algorithms; it is deciding on a measure
of similarity that is generally the most difficult task. Soft clustering allows words to be placed in more
than one cluster, while hard clustering allows each word to be assigned to only one cluster. In natural
language processing tasks, soft clustering is often preferred, because it is recognized that language is
inherently ambiguous (Manning and Schütze, 2002). One very simple way to perform clustering is to
use stemming. Stemming is basically the process of stripping off the affixes from words, effectively
reducing words to their semantic class (Manning and Schütze, 2002). For instance, the words
‘laughing’, ‘laughs’ and ‘laugh’ would all reduce to the stem ‘laugh’. This can be useful, but the actual
process of stemming is not always simple, as there can be ambiguous words such as ‘lying’, whose
stem could be either ‘lie’ or ‘lay’.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 6

There are other, more powerful methods for dealing with high-dimensional data. Two of the most
commonly-used algorithms in information extraction currently are Latent Semantic Indexing (LSI) and
Principal Components Analysis (PCA). Both have been applied to problems relating to text mining.
The main idea behind LSI is a well-known information retrieval concept, co-occurrence, which exploits
the situation where words that occur in the same document do so at a greater rate than chance (Manning
and Schütze, 2002). LSI considers documents in a space of “latent” semantic dimensions, so the
clustering similarity measure is by definition semantic. These dimensions correspond with the axes of
greatest variation, so the first dimension explains the greatest variability, and the highest dimension
explains what is not explained after all of the other dimensions have been subtracted out (Manning and
Schütze, 2002). To actually perform the similarity judgment, LSI uses a common technique from
matrix theory, the Singular Value Decomposition (SVD) (Han and Kamber, 2001). The SVD
represents the frequency matrix in a lower dimension so that the distance between vectors is
minimized.

LSI has been successfully applied to the problem of text classification. When first proposing the
method, Deerwester et al. found that even in these early stages and despite some known weaknesses, it
outperformed or equaled the performance of simple term matching (1990). Zelikovitz and Hirsh have
proposed a method for using LSI to help in integrating background (unlabeled) text into a system
(2001). In their study, LSI and the use of the background text did helped to improve the accuracy of
classification during testing, showing that the level of noise in the data was reduced.

The second major approach, PCA, is closely related to LSI. It identifies the axes of the space to be
projected onto by finding the top n orthogonal vectors, and combining attributes of the data to fit this
space (Han and Kamber, 2001). The words will be clustered into n groups. Ke and Shaoping used an
algorithm which combined concept indexing and PCA, succeeding in reducing the dimensionality of
the data without losing accuracy (Ke and Shaoping, 2002). Clearly, dimension reduction is a technique
that should always be considered when working with textual data.

1.3. Text mining methods
The main goal of annotating and classifying documents is to allow efficient information retrieval and
extraction. Although ontologies are quite good for representing text, the expense required in
maintaining them and populating knowledge bases means that they are not usually sufficient on their
own. Consequently, numerous word-based text mining methods are being used to counter the cost and
even improve the success in this area. Several of the various statistical and machine learning methods
used for this type of task will be described in the next several paragraphs.

In text mining, the most basic ingredient in all of the statistical- or machine learning-based methods is
the words themselves, which make up the text (i.e. the raw data). When using such methods, the most
common way of representing a text is the bag of words approach, traditional in information retrieval.
This approach disregards word order, but allows words to be repeated so that frequency information is
maintained. The text is generally represented as a feature vector, with each possible word representing
a single dimension of the vector, which leads to very high-dimensional vectors. Techniques like PCA
and LSI can be used in these instances.

This type of representation often calls for normalization, or smoothing. When working with keywords
or words in general, one of the most important features of the set of words is the frequency of certain
words. If a word is not present in the set, then there is no knowledge available about that particular
word. If the word is truly unrelated, that may be a reasonable scenario, but in many cases it is a
misleading representation of the document. The same can be true of words that do appear, but with
very low frequencies. The basic approach to many smoothing algorithms is to discount the frequency
counts (or probabilities) of more-frequent words, and redistribute the remainder, so that even non-
present words will be given a non-zero frequency or probability. One very common way to normalize
for very frequent and not useful words is by weighting the word frequency counts. When there is a
collection of documents, one of the most popular methods is TFIDF (term frequency - inverse
document frequency) weighting (Manning and Schütze, 2002). This involves multiplying the frequency
value for a given word by the log of the quotient after dividing the total number of documents by the
number of documents containing the word (Manning and Schütze, 2002).

Although pre-processing tasks are certainly important, the most useful text mining methods are the
machine learning techniques. Some of the most basic methods include k nearest neighbor (kNN) and
regression. kNN involves measuring the Euclidean distance between a given item and comparing it to
each of the others. It assigns the same class to a given instance as the most frequently occurring class of

KELLY P. VINCENT

KMI-05-02 Page 7

the k items that have the smallest distance from the instance (Mitchell, 1997). It is possible to apply
distance weighting to this measure when k is greater than 1, to handle outliers. LLSF is a particular
approach to multivariate regression, which involves performing the linear least-squares fit on the
training data to establish a matrix representing the word-class regression coefficients (Yang and Liu,
1999). New items can then be classified by ranking and thresholding on the category weights.

Some of the more advanced methods include the naïve Bayes classifier, decision trees and neural nets.
Using the naïve Bayes classifier involves establishing a hypothesis based on the overall probability of
each class combined with the probability of each class given each term from the training data. This
hypothesis can then be used to classify new instances. The decision tree approach involves constructing
a tree with a divide-and-conquer method, and then utilizing it to identify classification rules, which are
then used to classify new instances (Han and Kamber, 2001). The tree is constructed by placing all of
the training data into a top node and branching nodes off this one. Information gain (an entropy-based
metric) is used to find an attribute to best separate the data in a given node into different nodes (Han
and Kamber, 2001). If a node contains items all of the same class, it is terminated and considered a
“leaf”.

Artificial neural networks are a general class of algorithms, with backpropagation and SOM commonly
used. The term “neural net” often refers to the backpropagation approach, whereas the other approaches
are referred to more specifically by name. Backpropagation involves constructing a network with one
input layer and any number of weighted output layers, where the last is the final output layer and all
others are considered hidden (Han and Kamber, 2001). The training items are provided to the network
one-by-one and the weights are adjusted (backwards, from the final output layer through to the first
hidden layer) to minimize the distance between the network’s predicted class for the item and the
item’s actual class. With SOM, the weights of the unit closest to a training example, and its nearest
neighbors in the network, are adjusted for each example, allowing a feature map to be constructed (Han
and Kamber, 2001). This method assumes that there is some topological structure to the data, which
can be iteratively discovered. SOM is effectively another clustering method, and can also be used for
dimension reduction.

It is clear that there are very many possible directions for any exploration of text classification.
Combining these methods with an ontology appears to offer the most promising solutions, but this
requires choosing the right combinations. Currently it seems that the best way to discover the best
approaches for particular data sets is by testing several of the methods. Clearly there is a need for a
great deal of further research in this area, as ultimately it would be ideal to be able to predict the best
method without having to test so many of them.

1.4. Project focus
The primary goal of this project was to find a viable approach to implement in a system that will assist
the human annotators of a set of stories, which will be implemented at a later date. However, an
important secondary goal of the project was to generalize these findings, to better understand some of
the text mining approaches that are being used in current systems. For both of these reasons, several
different text mining methods were explored. Although the particular domain in this case was that of a
heritage center's story collection, it is believed that the findings are general enough to apply to other
domains.

2. Experimental data
The dataset was composed of 64 documents or stories relating to Bletchley Park, which were written by
tour guides working at the Bletchley Park Heritage Centre. Bletchley Park was Britain’s codebreaking
center during World War II, known as ‘Station X’ during the war. It is also well known for the people
who worked there, like Alan Turing, and for the fact that the first programmable computer was
conceptualized there (Bletchley Park – Station X). The tour guides working there are interested in
various topics related to Bletchley Park, and often do independent research. In order to share their
findings with the other guides, they enter “stories” on their Guides’ Web site. The Guides’ site is not
publicly viewable, but a couple of screen shots are included below, in Figures 2.1 and 2.2. Their
research often involves interviewing people who lived or worked at or near Bletchley Park around the
time of the war, and consequently the majority of the stories entered are interviews. There is no
enforced structure on the stories, and occasionally other personal accounts or news items are shared,
however, only the interviews were used in this project. The stories were stored in several formats,
including raw text and HTML.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 8

Figure 2.1. The Front Page of the Guides’ Site

KELLY P. VINCENT

KMI-05-02 Page 9

Figure 2.2. A Story Example from the Guides’ Site

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 10

Each of the stories had between one and five event types associated with it, corresponding with events
occurring within the story. There were thirteen different event types in total, which are shown in Table
2.1. The distribution of the events in the stories was quite varied. The most frequent event type,
“Bletchley Park Life Experience”, was found in 52 of the 64 stories in the database. The others are
much less numerous, with the next most frequent appearing in 20 stories. Five event types were found
in only one or two stories. Figure 2.3 shows the number of documents assigned to each event type.

 Event Type
1 Attribute-Assignment
2 Battle
3 Birth
4 Bletchley Park Life Experience
5 Conceptual Creation
6 Dissolution
7 Experiment
8 Interview
9 Meeting

10 Modification
11 Move
12 Production
13 War Life Experience

Table 2.1. Event Types

Figure 2.3. Number of Documents Assigned to Each Event Type

KELLY P. VINCENT

KMI-05-02 Page 11

The figure reveals that there are possibly three distinct bands in terms of document frequency in the
database, corresponding to event types with high frequency, medium frequency, and low frequency.
The high and medium frequency event types probably would be handled reasonably well by the
machine learning methods. It was expected that those of low frequency would probably not have
sufficient training examples, and consequently the methods would not do well for these. However, the
threshold between low and medium was not clear.

3. Method
The intention of this project was to try several different methods, in combination with each other, to
discover the best approach for later implementation of a semi-automated annotation and classification
system. In order to facilitate the testing of many different algorithms in such a short time as allowed for
this project, the Weka machine learning toolkit was used (Witten and Frank, 2000). Much of the data
preparation was done using Perl or Python, but all of the classifier tests were done using the Weka
Explorer interface. This interface allows for easy set up of experiments with multiple files.

3.1. Preparing the data sets
Because the term frequency matrices were expected to be quite large, it was assumed that dimension
reduction techniques should be used. LSI and PCA were selected and were to be implemented in
Matlab. However, due to problems with memory limitations, it proved impossible to implement PCA,
and LSI was only implemented for 75% of the data sets. Ultimately, the largest matrix in this data set
was 64 x 5757, and the smallest 64 x 4265. Although these are large matrices, it is believed that it
would be possible to implement both LSI and PCA on a machine with more memory. After dimension
reduction, decision trees, k nearest neighbor (kNN) and neural nets (backpropagation) were to be used
for classification of event type. If there was sufficient time, other methods would be tried. Ultimately,
several decision trees, kNN and naïve Bayes were implemented, but backpropagation proved too time-
consuming for this limited project time frame.

These methods were to be tested on a total of 21 different data sets. There were twelve sets of “Raw”
data, and nine of “LSI” data. The twelve Raw sets were composed as follows: the term frequency (TF),
term frequency-inverse document frequency (TFIDF), and normalized version of the TFIDF matrices
would each be generated for four different sets of terms (the full set of original terms, the stemmed
terms, the stoplisted terms, and the stemmed and stoplisted terms). LSI was then carried out on these,
but failed on the full terms, as the full term matrix was too large and the function output a matrix with
error values. Consequently, there were only nine LSI data sets. Regardless, it was possible to compare
the performance of methods on quite a few different dimensions.

All of the experiments required data in the form of term frequency matrices. A script already existed
for generating three versions of them: TF, TFIDF, and normalized TFIDF. The original version of this
script generated these matrices for the stemmed and stoplisted version of the terms. This script was
modified in order to generate four different versions of each type of matrix: one with the full set of
original terms as-is, another with the terms stemmed, another with the terms stoplisted, and a final one
with the terms both stemmed and stoplisted. In all cases, the stemming was carried out using the Porter
stemmer (Porter, 1980), and the stoplist used was from the DVL/Verity Stop Word List (Defense Tech.
Inf. Ctr., 2000). These were used to generate the matrices for all of the base test sets.

Once the term frequency matrices had been generated, it was possible to run LSI on each of them. Both
LSI and PCA were first tried in Matlab, but proved impossible to implement in this way, as there was
not enough memory on the PC that was being used for this project. In the case of LSI, the problem was
with transposing the matrix V, a necessary step in reconstructing the simplified matrix. With PCA,
there was not enough memory to produce the singular value decomposition of the covariance matrix.
Ultimately, LSI was implemented in Perl using the PDL (Perl Data Language) (Schwebel et al., 2004).
However, the full term matrix was still too big, and it was not possible to generate LSI versions of it.
This same approach was tried with PCA, but the covariance matrix still proved problematic, and
working with the matrix shut down the Perl interpreter. Consequently, the only data reduction used in
this study was LSI. However, LSI was used on the majority of the data sets, and generated files in
identical format to the term frequency matrix files.

Before any tests could actually be carried out, several more tasks had to be done for each data file.
First, the files had to be converted to Weka’s required format, ARFF. A script was written to do this.
Then each document had to be labeled with its correct event type(s). A list of the documents and their

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 12

associated types was provided by another researcher, and a script was written that appended this
information in the relevant files. Because multiple event types were allowed for each story, it would be
necessary to learn and test for each event type individually, rather than simply learning or choosing one
event type for a given story. This meant that several “binary” files had to be created for each data file.
Specifically, there were 13 files for each data file, each corresponding to one event type, with the event
class labeled for each document as either True (the document has that event type) or False (the
document does not have that event type). Then, certain types of tests (specifically ID3) require nominal
data, so it was also necessary create additional files with the numerical feature vector values to binary
(nominal) values, which corresponded to zero (False) or greater than zero (True).

3.2. Testing several classifiers
Tests were carried out on several different classifiers, including k nearest neighbor, decision trees, and
naïve Bayes. In all cases, 10-fold cross-validation was the primary test method, and ten runs were
carried out. The data files used for all of these tests were the same between tests, with the exception of
the ID3 decision tree. ID3 requires nominal values only, so converted files (as described above) were
used.

The first step in running the actual experiments was to set up each experiment in Weka’s Experimenter
interface. This involved creating a new “experiment” file for the particular combination of the
following: machine learning algorithm (kNN for each k, ID3, C4.5, RandomTree, or Naïve Bayes);
data type (Raw or LSI); TF matrix type (TF, TFIDF, or Normalized TFIDF); and term set type (Full
terms, Stemmed, Stoplisted, or Stemmed and Stoplisted). These were given informative names so they
were distinguishable by filename. Then, for each experiment, an output file with a name corresponding
to the experiment filename was specified. The next step was to add the appropriate data files to the
experiment setup. For all of the initial experiments, this involved adding 13 files, one for each event
type of the corresponding data set (data type, TF matrix type, and term set type). Once the files were
appropriately named and the data files added to the experiment file, the actual machine learning
methods could be added and specified.

Most of the machine learning methods had parameters that had to be specified. Four kNN tests were set
up first. These were chosen in an attempt to isolate the most appropriate value for k. Four initial values
of k were tested: 1, 2, 3, and 5. In these cases, no distance weighting was employed. Three decision tree
algorithms were tried: ID3, C4.5, and Weka’s “Random Tree”. There were no settings that had to be
handled for ID3. However, Weka’s C4.5 algorithm, J48, required several parameters to be set. For the
initial runs, the following values were used: pruning confidence factor = 0.25; minimum number of
instances per leaf = 2; C4.5 error pruning = on; unpruned tree = true. The third decision tree to be tried
was the RandomTree, which constructs an unpruned tree with n randomly selected attributes at each
node in the tree. By default, there is 1 attribute at each node, and the minimum total weight of the
instances in a leaf is 1.0. Finally, the naïve Bayes classifier was tested. By default, this classifier uses a
normal distribution for estimating numeric values, and this was unchanged.

Running the experiments was then as simple as clicking the Run button in the interface. However, these
were CPU-demanding processes, and it took several days to run approximately 150 experiments. After
all of the experiments had been run, a results script was written to help accumulate all of the data into a
readable format. This script took the mean of the 10 runs of each approach, to produce a single vector
representing the particular approach.

The best approaches were initially identified by the highest F-measures and percent correct, and the
lowest number of false negatives and number of false positives. There were seven event types for
which reasonable results were obtained, corresponding to those appearing in six or more documents.
The F-measure is a combination of the recall and precision metrics, and is generally regarded as the
best measure of the success of this type of task. The three measures are calculated as follows, where
‘tp’ is the number of true positives, ‘fp’ the number of false positives, and ‘fn’ the number of false
negatives:

KELLY P. VINCENT

KMI-05-02 Page 13

However, for this particular task, it was considered desirable to explicitly consider the percent correct
(the accuracy) and change the emphasis on the false negatives and positives. False positives were
regarded as less important than the other three measures, because in the particular application that will
be implemented, it is more important for the system to not fail to suggest the correct class than it is to
minimize the number of incorrect classes it suggests. The number of false negatives clearly should not
be too high, or the system is missing the correct assignment. Accuracy itself is not particularly useful as
a metric, but it can be useful in comparing two algorithms that otherwise perform similarly.
Consequently, another metric, “Algorithm Score”, was devised. This metric was calculated as follows:

This value will always be between 0 and 0.75, and lower than the F-measure. It should be clear from
the formula that the F-measure was emphasized and the number of false positives deemphasized. The
F-measure was regarded as the most important measure, so was emphasized. Accuracy and the
proportion of false negatives were somewhat important, and were explicitly considered with this
formula.

The algorithm score was then used to rank the top five approaches for each of the seven best event
types. Then each of these approaches were run several more times, with various parameters of the
methods being changed. This fine-tuning was intended to see if any improvements could be made on
the best approaches. Ten runs were again carried out on each, and the mean of these taken. Table 3.1
outlines the changes that were made in each case.

Method Changes
Distance weight = 1 / distance kNN
Distance weight = 1 - distance

ID3 None possible
Minimum number of instances per leaf = 1

Confidence factor = 0.5
Confidence factor = 0.75
Confidence factor = 2.0

C4.5

Use Laplace pruning = True
Attributes in each node = 2,

Minimum weight of instances in node = 1,
Seed for random number generator = 1

Attributes = 3, Minimum weight = 1, Seed = 1
Attributes = 1, Minimum weight = 1.5, Seed = 1
Attributes = 1, Minimum weight = 2, Seed = 1
Attributes = 1, Minimum weight = 1, Seed = 2
Attributes = 1, Minimum weight = 1, Seed = 3

Attributes = 2, Minimum weight = 1.5, Seed = 3

RandomTree

Attributes = 1, Minimum weight = 0.5, Seed = 1
Naïve Bayes Use kernel estimator

Table 3.1. Changes made for each machine learning approach

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 14

4. Results and discussion
This section displays a summary of the major results of the experiments, and discusses their
implications. The first part of this section deals with the results for each event type, used in determining
the best approach for implementation in the future semi-automatic annotation system. The second part
of the section deals with the more generalizable findings.

There was great variability in the performance of the machine learning methods in classifying the
different event types. Figure 4.1 and Figure 4.2 show the spread of the mean algorithm score for each
method and data set combination, by event type and number of documents with a given document type,
respectively. Figure 4.1 makes it clear that the approaches had varying degrees of success in identifying
the different event types. The event type that had the most success was Bletchley Park Life Experience,
with several values approaching 0.60, and a median value well over 0.40. The only values around zero
for this event were outliers. Several other events had some success, but all of the remaining ones had a
lower quartile which reached zero, indicating that at least some of the approaches did not do well at all.
However, four other event types had non-zero medians, and upper quartiles or outliers that reached
0.30 or higher. These were Attribute Assignment, Interview, Meeting and War-Life Experience.
Finally, the Birth and Production event types had zero median scores, but had outliers that did
relatively well.

Figure 4.1. Boxplot of Algorithm Score values for all algorithm and data set combinations, by
event type

KELLY P. VINCENT

KMI-05-02 Page 15

Figure 4.2. Boxplot of Algorithm Score values for all algorithm and data set combinations, by
count of documents for event type

These findings are more sensible in the context of Figure 4.2, which shows that the performance of the
methods overall improves as the number of documents associated with the event increases. This makes
sense, as the various methods are supplied with more training data in order to learn the patterns to look
for during classification. This figure also provides some support for the idea of three bands in
document counts. It is fairly clear that having 52 documents is probably much better than only 20, or
less. Although there is greater variability, the median algorithm score for this count is much higher than
any of the other counts. It appears that the threshold between high frequency and medium frequency
falls somewhere between 20 and 52. The chart clearly shows that having only 1, 2 or 3 documents is
insufficient, and these fall in the low frequency category. The medium band itself appears to cover
counts down to six or less, with the threshold being between 3 and 6.

4.1. The best approaches for particular events
Although Figure 4.1 does not provide any information about which approaches are best for each event
type, it does make it clear that some of the event types will need to be dealt with in an entirely different
manner. The events Battle, Conceptual Creation, Dissolution, Experiment, Modification, and Move are
all found in 3 or fewer stories, and have mean algorithm scores that are all clustered around 0.
However, the remaining 7 event types appear to have enough successful approaches that it would be
worthwhile to look more closely at them. These will each be inspected individually. However, in each
case, the best values were obtained by inspecting and ranking the algorithm scores of all approaches
used. Table 4.1 shows a summary of the best approach for each event type.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 16

Event Type Machine Learning
Method Data Set

Attribute-Assignment KNN, k = 1 LSI, stemmed normalized TFIDF
Birth KNN, k = 2 LSI, stemmed TF

Bletchley Park Life
Experience KNN, k = 3 Raw, stemmed and stoplisted TF, TFIDF

or normalized TFIDF
Interview C4.5 LSI, stoplisted TFIDF
Meeting RandomTree Raw, full terms TF

Production C4.5 LSI, stemmed TFIDF
War Life Experience Naïve Bayes LSI, stemmed TF

Table 4.1. The Best Approach for Each Event Type

4.1.1. Attribute Assignment
Figure 4.3 shows the algorithm scores for the best 15 combinations for the Attribute Assignment event
type. The figure makes it clear that the best two machine learning algorithms for this particular event
type were kNN and naïve Bayes. It appears that for the kNN method, the LSI data is superior to the raw
data. However, for the naïve Bayes case, both the raw and LSI data sets can perform well. For the kNN
method, it appears that stemming and using a stoplist are both useful, individually and together. For the
naïve Bayes classifier, five of the seven instances in the top 15 use a stoplist, although the two other
instances (both using the full term set) outperform these. The type of term set does not appear to be
very important in this case, as all three types appear four to six times. Although several did well, the
best combination for the Attribute Assignment event appears to be kNN with k = 1, using the LSI
version of the normalized TFIDF representation of the stemmed terms. The mean algorithm score for
this combination was 0.38. Attempts at improving this score by changing the algorithm parameters
failed, so the default settings are sufficient.

Figure 4.3. Top 15 Algorithm Scores for Attribute Assignment

4.1.2. Birth
The algorithm scores for the top 15 combinations for the Birth event type can be seen in Figure 4.4.
Like for Attribute Assignment, naïve Bayes and kNN dominate. The naïve Bayes results are
particularly interesting, because they show that the type of term frequency matrix is irrelevant in this
case, as is the choice of term set modification. Although the full term set does well, it is not as

KELLY P. VINCENT

KMI-05-02 Page 17

successful as stemming, using a stoplist, and doing both, which all perform equally well. This is a clear
instance where removing some of the data actually improves performance, showing that both stemming
and stoplisting remove data which amounts to noise for this event type. However, despite the fact that
naïve Bayes does very well, the best combination again involves the kNN algorithm. In this case, k = 2,
the data is again stemmed, and the LSI version of the TF matrix is used. Like for Attribute Assignment,
the results could not be improved by tweaking the algorithm parameters.

Figure 4.4. Top 15 Algorithm Scores for Birth

4.1.3. Bletchley Park Life Experience
Like both previous event types, the two best algorithms for Bletchley Park Life Experience are naïve
Bayes and kNN. The top results can be seen in Figure 4.5. However, in this case, kNN with k = 3
clearly outperforms naïve Bayes. The algorithm scores for this method for the corresponding term sets
are the same, regardless of the term frequency representation used. Stemming and stoplisting are both
good, but doing both is better. Interestingly, these all do much better than the full terms, which actually
has one of the lowest scores among all of the methods. This is further evidence that stemming and
stoplisting benefit the procedure by removing noisy data. For the naïve Bayes approach, the full terms
do still produce good results, as do the stoplisted terms. What is noise to the kNN approach appears to
be better handled by naïve Bayes, but then to bring down the overall performance. But again, the term
frequency matrix used does not appear to affect the results. Ultimately, the best method is to use kNN
with k = 3 on the raw, stemmed and stoplisted data. Any term frequency matrix could be used. In this
case, the algorithm score is 0.53. Again, this score could not be improved with any algorithm parameter
adjustments.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 18

Figure 4.5. Top 15 Algorithm Scores for Bletchley Park Life Experience

4.1.4. Interview
The top algorithm scores for the Interview event type can be seen in Figure 4.6. This is the first event
type for which decision trees produced some of the best results, and in fact the top two were generated
by them. Specifically, the top score of 0.42 was produced by the C4.5 algorithm, on the LSI version of
the stoplisted TFIDF data. C4.5 and ID3 produced several other good scores, in all but one case using a
stoplist. In fact, using a stoplist appears to be particularly beneficial for this event type, as only one of
the top 15 algorithms does not use one. Besides decision trees, the other dominant algorithm in this
group is kNN. This algorithm does well with k = 1, 2, and 3, and in all cases the LSI version of the data
is used. Finally, although attempts were made to better the score of 0.42, this proved impossible.

Figure 4.6. Top 15 Algorithm Scores for Interview

KELLY P. VINCENT

KMI-05-02 Page 19

4.1.5. Meeting
The results for the event type Meeting are interesting because there does not appear to be any particular
pattern. They can be seen in 4.7. Every algorithm is represented, and kNN appears with two different
values of k. Overall, stemming and stoplisting appear to be beneficial, but the best algorithm uses the
full terms. Similarly, more than half of the term frequency representations use the normalized form, but
the best combination uses the TF representation. However, the most interesting fact about these results
is that four of the top six algorithm scores were produced by the Random Tree algorithm, including the
overall best one. This is surprising, since the algorithm selects attributes randomly. It would be
expected that the other techniques, which have some methodical approach to handling the text, would
do better. However, a possible explanation is that there are some inconsistencies in the data which
amount to noise. A story might be mislabeled, or perhaps there is great variety in the content of the
stories. There are twenty stories with this event type, so it does not appear to be an issue of insufficient
training instances. The likelihood of randomly selected terms being present across more than a handful
of stories seems like it should be low. But if the stories vary widely, it could be that there are only
accidental commonalities. Consequently, the Random Tree approach does still seem to be reasonable.
The specific data set on which it produces the best algorithm score is the raw TF matrix with full terms.
Adjustments made to the algorithm settings did not yield improved performance.

Figure 4.7. Top 15 Algorithm Scores for Meeting

4.1.6. Production
There are several interesting patterns which can be seen from the data for the Production event type,
displayed in Figure 4.8. In this case, it appears that decision trees do very well, producing the top eight
algorithm scores. This is primarily through ID3 and C4.5, although Random Tree is also represented in
the top 15. For the decision trees, stemming seems to be very useful for LSI data, while the full terms
seem better for the raw data. However, the decision trees using the stemmed data do significantly better
than all of the other approaches. For the non-decision tree approaches, naïve Bayes and kNN with k =
2, the best data sets appear to be the raw version of the stoplisted data, although the term frequency
matrix again does not matter.

Ultimately, the best method was C4.5 on the LSI version of the TFIDF representation of the stemmed
terms. The score obtained by this approach was 0.48. However, changing the algorithm parameters did
finally yield an improvement in this case. The algorithm score rose to 0.51 when the minimum number
of instances per leaf was changed from 2 to 1.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 20

Figure 4.8. Top 15 Algorithm Scores for Production

4.1.7. War Life Experience
The results for the War Life Experience event type show that while the C4.5 algorithm dominates in the
top 15, the single best algorithm is naïve Bayes. The chart can be seen in Figure 4.9. The C4.5
algorithm worked best on the raw data, with the best results being obtained for the stoplisted data, and
performed consistently across the three term frequency matrices. The C4.5 algorithm is less successful
on the LSI version of the data, so it is interesting that the best algorithm is naïve Bayes performed on
the LSI TF matrix of the stemmed data. However, one consistent point across the top 15 is that both
stemming and using a stoplist are beneficial.

Figure 4.9. Top 15 Algorithm Scores for War Life Experience

KELLY P. VINCENT

KMI-05-02 Page 21

4.2. Generalizing
It is difficult to draw general conclusions based on these tests, because there were many variables, and
the results varied widely across all factors. There were too many conditions to allow inferential
statistics to be used effectively, so the judgments are slightly subjective.

Despite this, there are a few trends that appear to be present across the data. The first interesting point
is that it seems that the term frequency matrix choice has little consistent impact on the algorithm score.
In each of the charts showing the top 15 algorithms, it was clear that there was not a dominant matrix
type. It was often the case that there were identical scores across the different matrix types, such as in
Figures 4.7 and 4.9. Similarly, it is not possible to say whether the raw or LSI data was better, as it
varied among the event types. The same is true for the term set, although it does appear that the
stemmed or stoplisted versions may have performed slightly better. There were, however, some notable
exceptions to this, such as in Figure 4.7. One tendency that did seem to be present was for stemming to
be more successful in conjunction with the LSI version of the data, rather than the raw data, which
often seemed to benefit more from having stopwords removed.

There were also a few notable points regarding the machine learning methods themselves. First, all of
the methods tested did well at least some of the time. One trend that appears to be present across the
data is that when kNN is successful, it seemed usually to be with the LSI version of the data. Another
aspect of kNN relates to the value of k. The only event type for which k = 5 produced one of the top
algorithm scores was Bletchley Park Life Experience. This is not surprising, since it is the type with the
most stories. The other cases where kNN was successful, k was 1 or 2. Setting it higher than that for
events with few stories creates a risk of missing important aspects of the data. For instance, while kNN
with k = 2 was the best algorithm for the Birth event type, the algorithm score was 0 for it on all data
sets when kNN was used with k = 3 and 5.

4.3. Future Work
There are several areas of this research that deserve further study. The most obvious work that should
be carried out next is to complete some of the original plan: first, the memory problems with carrying
out PCA and for LSI with the full terms should be solved, and these should be implemented. The
experiments should be carried out for these versions of the data, and compared to the original findings.
The experiments carried out during this project should be done again, using more than 10 runs. Based
on findings in this project, it appears to be worthwhile to abandon the term frequency dimension, so
that more in depth statistical analysis can be carried out on the results of these experiments. The TF
matrix should most likely be selected for these experiments, to maintain the purest form of the data.
These combinations should yield more information which can help to determine the best approaches to
take in this test classification task.

5. Acknowledgement
This research was conducted within the European Union Information Society and Technology funded
CIPHER project, IST-2001-32559. I would like to thank the Bletchley Park Trust and tour guides for
their continued involvement with this work, and the Knowledge Media Institute for giving me the
chance to participate in their intern program.

References
H. Alani, S. Kim, D. Millard, M. Weal, W. Hall, P. Lewis, and N. Shadbolt. Automatic Ontology-

Based Knowledge Extraction from Web Documents, IEEE Intelligent Systems 18 (2003), no. 1:
14-21.

C. Apte, F. Damerau and S. Weiss. Text Mining with Decision Rules and Decision Trees. In
Proceedings Conference on Automated Learning and Discovery, Carnegie-Mellon University,
June (1998).

Bletchley Park - Station X. http://www.bletchleypark.org.uk/.

CIPHER: Communities of Interest Promoting Heritage of European Regions.
http://cipherweb.open.ac.uk/.

TEXT MINING METHODS FOR EVENT RECOGNITION IN STORIES

KMI-05-02 Page 22

T. Collins, P. Mullholland and S. Watt. Using genre to support active participation in learning
communities. In Proceedings of the First European Conference on Computer-Supported
Collaborative Learning, Maastricht, The Netherlands (2001), 324-331.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. In Proc. 40th Anniversary
Meeting Assoc. for Computational Linguistics (ACL 2002). Assoc. for Computational Linguistics,
East Stroudsburg, PA, (2002).

Defense Technical Information Center. DVL/Verity Stop Word List. http://dvl.dtic.mil/stop_list.html.
(2000).

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing By Latent
Semantic Analysis. Journal of the American Society for Information Science, 41 (1990): 391-407.

R. Feldman, I. Dagan and H. Hirsh. Mining Text Using Keyword Distributions. Journal of Intelligent
Information Systems, 10 (1998), no. 3: 281-300.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. London: Academic Press (2001).

H. Ke and M. Shaoping. Text categorization based on concept indexing and principal component
analysis. In Proceedings. IEEE Region 10 Conference on Computers, Communications, Control
and Power Engineering (TENCON ‘02), 1 (2002): 28-31.

A. Maedche and R. Volz. The Text-To-Onto Ontology Extraction & Maintenance System. In
Workshop on Integrating Data Mining and Knowledge Management co-located with the 1st
International Conference on Data Mining, San Jose, California, USA, November (2001).

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. London: MIT
Press, 2002.

T. M. Mitchell. 1997. Machine Learning. London: McGraw Hill.

P. Mulholland, T. Collins and Z. Zdrahal. Story Fountain: Intelligent support for story research and
exploration. In Proceedings of the ACM Conference on Intelligent User Interfaces (IUI‘2004).
Madeira, Portugal. January (2004).

K. Nigam, J. Lafferty and A. McCallum. Using Maximum Entropy for Text Classification. In IJCAI-99
Workshop on Machine Learning for Information Filtering. (1999), 61-67.

N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating Your First
Ontology. Technical report SMI-2001-0880, Stanford Medical Informatics (2001).

M. F. Porter. 1980. An algorithm for suffix stripping, Program, 14 (1980), no. 3: 130-137.
[Code available on the Web at http://www.tartarus.org/~martin/PorterStemmer/.]

R. Schwebel et al. 2004. PDL - PDL - The Perl Data Language. http://pdl.perl.org/.

M. Vargas-Vega and D. Celjuska. Ontology-driven Event Recognition on Stories. Technical report
KMI-TR-135, Knowledge Media Institute, Milton Keynes, England (2003).

I. H. Witten and E. Frank. Data Mining: Practical machine learning tools with Java implementations.
Morgan Kaufmann, San Francisco (2000). [Software available on the Web at
http://www.cs.waikato.ac.nz/~ml/weka/].

C. Fellbaum, ed. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA (1998).
[Information available on the Web at http://www.cogsci.princeton.edu/~wn/.]

Y. Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR‘99). (1999), 42-49.

S. Zelikovitz and H. Hirsh. Using LSI for Text Classification in the Presence of Background Text. In
Proceedings of the tenth international conference on Information and knowledge management.
Atlanta, Georgia (2001), 113-118.

