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1 Introduction and outline 

The goal of Question Answering (QA) systems as described by [38] is to allow users to ask questions in natural 
language, using their own terminology, and receive a concise answer, possible with enough validating context. As 
stated in [82] the different kind of searches mode provides complementary affordances: “For example, keyword search 
and natural language querying offered easy routes in for users, but don’t support exploration of the semantic search 
space, whereas view based search and forms can help the user explore space, but become tedious to use in large spaces 
and impossible in heterogeneous ones”. 
 

The development of a semantic layer on top of web contents and services, the Semantic Web [10], has been 
recognized as the next step in the evolution of the World Wide Web as a distributed knowledge resource that brings to 
the Web the idea of having data formally defined and linked. The semantic web vision [10] is one in which rich, 
ontology-based semantic markup is widely available, enabling us to improve content by adding meta-information. This 
means that with structured or semi-structured documents, texts can be semantically marked-up and ontological support 
for term definition provided, both to enable sophisticated interoperability among agents, e.g., in the e-commerce area, 
and to support human web users in locating and making sense of information. Ontologies play a crucial role on the 
SW: they provide the conceptual infrastructure supporting semantic interoperability, addressing data heterogeneity [1] 
and opening up opportunities for automated information processing. However, because of the SW’s distributed nature, 
data will inevitably be associated with different ontologies and therefore ontologies themselves will introduce 
heterogeneity. Different ontologies may describe similar domains, but using different terminologies, while others may 
have overlapping domains: i.e. given two ontologies, the same entity can be given different names or simply be 
defined in different ways. As argued in [66] the two processes of building the require infrastructure to produce a large 
semantic web and the “smart” applications to exploit such a markup (or at least, demonstrator) have to go hand in 
hand. Until recently, only a limited amount of semantic data was available, therefore, as stated in [66] “the result of 
this strategy so far has been that, by and large, the early demonstrators produced in the past few years lack many of the 
key elements that will characterize “real” SW applications that will operate in an open, large-scale, distributed and 
heterogeneous environment. Consequently they are more akin to traditional knowledge-based systems”. However, as 
the SW is gaining momentum, there is now a reasonable amount of online distributed semantic data1.  

 
Language technologies and the Semantic Web can mutually benefit from each other [15]. The relevant literature for 

the research field of question answering (QA) over multiple ontologies, motivated by the emerging semantic web 
(SW) scenario, covers and combines many different areas. Therefore, first of all this chapter presents a general 
background to the research field of question answering systems, its aims, issues, history and typical architecture from 
natural language interfaces to databases, through an overview of the question answering track in the Text Retrieval 
Conference (TREC) and current approaches for open domain question answering, to semantic question answering 
using ontological information.  

 
However, when talking about semantic QA, the goal is to improve traditional methods by exploiting semantic data. 

These traditional methods involve not only typical QA techniques but also many other research areas, like semantic 

                                                           
1 (Lee & Goodwin, 2004) registered a 300% growth in 2004 alone and thus outpacing the growth of the web. The semantic search 

engine Swoogle (Ding et al, 2005) claims to index over 10,000 ontologies (March 07). Also, there is research work on the 
direction of integrating the widely adopted Folksonomies (tagging) with the formal semantics provided by the ontologies. 
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similarity measures, ontology selection, ranking and mapping algorithms, play an important role. Here we analyze all 
these inter-related areas from the point of view and dimensions of QA over semantic data, e.g. from traditional 
approaches that model semantic similarity by computing the semantic distance between definitions within a single 
ontology that is either a domain independent ontology or the result of the integration of existing ontologies, to 
determining semantic similarity among entities from different ontologies.  

2   The goals and dimensions of Semantic Question Answering Systems. 

In a roadmap document for QA [38, 18] five standards or criteria for QA systems were identified:  
 
1- Answers should be in real time, regardless of the complexity of the question, the size and multitude of the data 

sources or the ambiguity of the question. 
2- Imprecise, incorrect answers are worse than no answers. The system is expected to deal with contradictions. 

There will be no answer if this one is not in the knowledge sources. 
3- Usability, the knowledge of the system should satisfy the needs of the user 
4- Answers distributed across multiple sources that require fusion techniques that combine partial answers from 

different sources should be coherent  
5- The answer should be relevant within a specific context / task. Context can be used to clarify a question and 

resolve ambiguities. The system evaluation must be user-centered. 
 
The dimensions of QA systems are based on the different sources used to generate an answer:  
 
1. Natural Language interface to databases use structured data 
2. QA over semi-structured data (for instance health records, yellow pages)  
3. Open Question Answering (the focus of most current research) over free text, as in the case of the TREC 

collection or the Web.  
4. Over semantic data (ontologies). In addition, the source can be annotated images or even video.  
 
Another distinction between QA applications is whether they are domain-specific or domain-independent. 

Traditional, NLIDB are domain-specific while open question answering is domain-independent.  
 
Furthermore, current research in question answering focuses on factual question answering, where we can 

distinguish between “wh-queries” (who, what, how many, …) or  commands (name all …) requiring an element or list 
of elements as an answer or an affirmation / negation type of questions. As pointed out in [40] more difficult kind of 
questions include those which ask for opinion, like Why and How questions, which require understanding of causality 
or instrumental relations, What questions which provide little constrain in the answer type, or definition questions. In 
[65] QA systems are classified into five increasingly sophisticated types of questions: systems based on factoids, 
systems with reasoning mechanisms, systems that deal with temporal reasoning, systems that fuse answers from 
different sources, interactive (dialog) systems and systems capable of analogical reasoning.  

 
The traditional intrinsic problems that QA systems try to solve are mapping the user terminology into the 

terminology used by the sources by using similarity measures (which require to handle unknown vocabulary) without 
affecting portability. Moreover, independently of the type of query, any non trivial NL QA system has to deal with 
ambiguity.  Querying semantic information directly is still a novel research area, however the results from many 
popular research areas like ontology selection and ranking (how well they satisfy user queries), word sense 
disambiguation (“squash” can be a sport or a vegetable), co-reference of instances and ontology mapping (e.g., 
mapping the class “car” in one ontology to the “automobile” class in another) can be applied.  

 
Concerning the querying environment there are also problems which are intrinsic to the large and dynamic 

semantic environment. The complexity arises because of its “openness” in which multiple heterogeneous and 
distributed ontologies from the same or different domain may describe similar or overlapping topics with different 
terminologies. A study presented in [82] about the potential size of the SW reveals that the SW is currently growing at 
the same rate than the Web in the early 1990.  As stated on [82] “semantic search systems should be able to support 
both large-scale ontologies (with many classes and instances) and large scale repositories (with many annotations)”. 
An example of very large ontologies with real world instance data are the SWETO ontology [4] which contains around 

 3



800000 entities and 1600000 relationships, and very large RDFs like the conversion of the English Wikipedia into 
RDF2, which is a monthly updated dataset containing roughly 47 million triples. An extended discussion of these 
issues of open semantic environment is presented in [67]. 

 
Furthermore, as stated on  [82] iterative and exploratory search modes are important to the usability of all search 

systems, as well as the ability to provide justifications for an answer or suggest the presence of unrequested but related 
information or to propose alternate paths of exploration to the user. Usability is not covered in this review so for 
extended information see [82]. Also, as stated on [47] “An often proposed solution to help casual users is the use of 
natural language interfaces. Such tools, however, suffer from one of the biggest problems of natural language 
interfaces: ambiguities. Furthermore, the systems are hardly adaptable for new domains”. User’s can do a lot more, as 
they can usually disambiguate between a range of possible factoid questions and answers and / or navigate information 
clusters in an answer space. 
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Figure 1. The dimensions of semantic questions answering 

Challenges for the future: 
 
NL QA approaches have largely been focused on retrieving the answer from raw text, therefore much work on 

ontology-driven QA tends to focus on the use of ontologies to support query expansion in information retrieval [59] 
rather than exploiting semantic metadata. However, we believe that the availability of distributed semantic markup on 
a large scale opens the way to novel QA systems. The novelty of these systems with respect to traditional QA systems 
is that they can make use of such semantic information to make sense of the user query to provide precise answers to 
questions posed in NL, without assuming that the user has any prior information about the semantic resources. In 
particular, a knowledge based QA system can help with answering questions where multiple pieces of information 
need to be inferred and combined at run time, rather than simply having a pre-written paragraph of text retrieved [21]. 

 
In this review we focus on all the relevant research areas related to the QA dimensions stated on Fig. 1 in an attempt 

to bridge the gap between current QA systems and the future development of QA systems which can search 
heterogeneous semantic metadata on the challenging open semantic web scenario. Or in other words, to move 
beyond domain specific semantic QA (like traditional NLIDB over structured data) to domain independent open QA 
over structured semantic information. 

 

                                                           
2 http://labs.systemone.at/wikipedia3 
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 Ontologies can not solve all the NLP tasks, as they are very basic in the way they express quantifications and have 
limited capability to reason about temporal and spational issues. Although simple questions formed with “how-long” 
or “when”, like “when did the akt project start?” can be handled, ontologies cannot cope with expressions like “in the 
last year”. This is because the structure of temporal data is domain dependent; compare geological time scales to the 
periods of time in a knowledge base about research projects. There is a serious research challenge in determining how 
to handle temporal data and causality in a way which would be portable across ontologies. However, they are a 
powerful tool to provide semantics, and in particular, they can be used to be able to move beyond single facts to 
answers built from multiple sources. We predict that intelligent behaviour when questioning the semantic web, will be 
a side effect of the ability of such systems to handle and find interesting connections, on a very large scale metadata 
from heterogeneous sources, in a meaningful way. 

 
Our interest lies on QA over semantic data. We define semantic metadata as RDF triples based on some semantic 

web compatible ontology. In the rest of the paper will be review the state-of-the-art systems and algorithms that covers 
the different dimensions on the semantic QA scenario with respect to the expected standards.  For this review, we just 
concentrate on factual questions from different sources.  

2.1. NLIDB: NATURAL LANGUAGE INTERFACES TO DATABASES 

This scenario is of course very similar to asking natural language queries to databases (NLIDB), which has long 
been an area of research in the artificial intelligence and database communities even if in the past decade it has 
somewhat gone out of fashion [6]. However, it is our view that the SW provides a new and potentially important 
context in which the results from this area can be applied. The use of natural language to access relational databases 
can be traced back to the late sixties and early seventies [6] 3. The first QA systems were developed in 1960s and they 
were basically NL interfaces to expert systems, tailored to specific domains, being the most famous ones BASEBALL, 
and LUNAR. Both systems were domain specific, the former answer questions about the US baseball league over the 
period of one year, the later answer question about the geological analysis of rocks returned by the Apollo missions. 
LUNAR was able to answer 90% of the questions in its domain when posed by untrained people.  In  [6] a detailed 
overview of the state of the art for these systems can be found. 

 
Most of the early NLIDBs systems were built having a particular database in mind, thus they could not be easily 

modified to be used with different databases or were difficult to port to different application domains (different 
grammars, hard-wired knowledge or mapping rules had to be developed). Configuration phases were tedious and 
required a long time. These earlier QA systems had a core hand-crafted database or knowledge system hand-written by 
the domain experts. 

 
Some of the early NLIDBs relied on pattern-matching techniques. In the example described by Androutsopoulos in  

[6], a rule says that if a user’s request contains the word “capital” followed by a country name, the system should print 
the capital which corresponds to the country name, so the same rule will handle “what is the capital of Italy?”, “print 
the capital of Italy”, “Could you please tell me the capital of Italy”. The shallowness of the pattern-matching would often 
lead to bad failures but it has also been unexpectedly effective techniques to for exploiting the Web as a data source. 

 
Other approaches are based on statistical or semantic similarity. For shorter answers, NLP-based systems have 

generally been better than statistical based ones, although the latter are surprisingly competitive. For example, FAQ 
Finder [19] is a natural language QA system that uses files of FAQs as its knowledge base; it also uses WordNet to 
improve its ability to match questions to answers, using two metrics: statistical similarity and semantic similarity. 
However, the statistical approach is unlikely to be useful to semantic QA because it is generally accepted that only 
long documents with large quantities of data have enough words for statistical comparisons to be considered 
meaningful [19]. Semantic similarity scores rely on finding connections through WordNet between the user’s question 
and the answer. The main problem here is the inability to cope with words that are not explicitly found in the KB.  

 
The next generation of NLIDBs used an intermediate representation language, which expressed the meaning of 

the user’s question in terms of high level concepts, independent of the database structure [6]. TEAM [57] is an 

                                                           
3 Example of such systems are: LUNAR, RENDEZVOUS, LADDER, CHAT-80, TEAM, ASK, JANUS, INTELLECT, BBn’s 

PARLANCE, IBM’s LANGUAGEACCESS, Q&A Symantec, NATURAL LANGUAGE/ DATATALKER, LOQUI, ENGLISH 
WIZARD, MASQUE 
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experimental, transportable NLIDB (front end portable) developed in 1987. The TEAM QA system consists of two 
major components: (1) for mapping NL expressions into formal representations; (2) for transforming these 
representations into statements from a database, making a separation of the linguistic process and the mapping process 
into the KB. To improve portability, TEAM requires “separation of domain-dependent knowledge (to be acquired for 
each new database) from the domain-independent parts of the system”. In TEAM the logical form constructed 
constitutes an unambiguous representation of the English query. 

 
The latest approach in generation of NLIDB systems based on formal semantics (1991) presented in [26] made a 

clear separation between the NL front ends, which have a very high degree of portability, and the back end. The front 
end provides a mapping between sentences of English and expressions of a formal semantic theory, and the back end 
maps these into expressions which are meaningful with respect to the domain in question. Adapting a developed 
system to a new application will only involve altering the domain specific back end.  

 
MASQUE/SQL [5] is a portable NL front-end to SQL databases (1993). The semi-automatic configuration 

procedure uses a built-in domain editor which helps the user to describe the entity types to which the database refers, 
using an is-a hierarchy, and then to declare the words expected to appear in the NL questions and to define their 
meaning in terms of a logic predicate that is linked to a database table/view. However, this still entities an intensive 
configuration procedure. 

  
More recent work in the area (2003) can be found in [71]. PRECISE [71] maps questions to the corresponding 

SQL query by identifying classes of questions that are easy to understand in a well defined sense: the paper defines a 
formal notion of semantically tractable questions. Questions are sets of attribute/value pairs and a relation token 
corresponds to either an attribute token or a value token. Each attribute in the database is associated with a wh-value 
(what, where, etc.). In PRECISE, a lexicon is used to find synonyms. However, in PRECISE the problem of finding a 
mapping from the tokenization to the database requires that all tokens must be distinct; questions with unknown 
words are not semantically tractable and cannot be handled. As a consequence, PRECISE will not answer a question 
that contains words absent from its lexicon. Using the example suggested in [71], the question “what are some of the 
neighborhoods of Chicago?” cannot be handled by PRECISE because the word “neighborhood” is unknown.  When 
tested on several hundred questions, 80% of them were semantically tractable questions which PRECISE answered 
correctly and the other 20% were not handled and a paraphrase was requested. 

 
Further discussion on advantages, disadvantages and challenges with respect to semantic QA: 
 
Since the development of the first rich in NL understanding QA system LUNAR (a syntax-based system where 

the parsed question is directly mapped to a database expression by the use of rules) there have been improvements in 
the availability of lexical knowledge bases, such as WordNet,  String Distance Metrics for Name-Matching Tasks like 
the open-source API from Carnegie Mellon University [22], and shallow, modular and robust NLP systems, like 
GATE [24]. Compare it with the latest work on NLIDB, semantic QA can benefit form the ontology semantics and 
generic thesaurus in a way that:  

 
(1) Later NLDBI systems use intermediate representations therefore although the front end is portable (as 

Copestake [23] states “the grammar is, to a large extent, general purpose, it can be used for other domains and for 
other applications”) the back end is dependent on the database, so normally longer configuration times are required. 
However, in the case of semantic QA systems, the processes, both the linguistic and the one that access to the 
knowledge bases, can potentially be not only ontology portable but ontology independent, where the configuration to 
change the domain would be almost zero. Optionally, on these semantic systems some manual configuration can be 
allowed to optimize performance (i.e. for very specific or precise domains). oreover, the user can be required to be 
involve in the disambiguation process (when the ontology semantics does not provide further way to disambiguate) 
and mechanisms to learn from the user interaction and its jargon (i.e. based on case base reasoning) can be 
implemented. 

 
(2) If a word is lexically very dissimilar to the word used by the user, and it does not appear in any manually or 

automatic created lexicon, instead of failing to provide an answer, in semantic QA the ontology can be used to study 
the ontology “neighborhood” of the other terms in the query, which may lead us to the value of the term or relation we 
are looking for. In many cases this would be all the information needed to interpret a query 
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Summarizing, as stated on [46] we can say that most existing NLis to databases that allow full NL input are in 
almost every case restricted to the domain queried by the database. As [46] states “the applications of NLIs to SW 
ontologies is not as common as expected, which is surprising given the semantic information that is enclosed in 
ontologies and could be exploited in query analysis and translation”. 

2.2. OPEN DOMAIN QUESTION ANSWERING 

We have already pointed out that research in NLIDB is currently a bit ‘dormant’, therefore it is not surprising that 
most current work on QA, which has been rekindled largely by the Text Retrieval Conference (see examples below), is 
somewhat different in nature from querying ontologies and knowledge bases. The Text Retrieval Conference (TREC) 
is sponsored by the American National Institute (NIST) and the Defense Advanced Research Projects Agency 
(DARPA). TREC “tracks” on open domain question answering were introduced in 1999 (TREC-8). The ARDA's 
Advanced Question and Answering for Intelligence funded AQUAINT program is a multi-project effort to improve 
the performance of QA systems over free large heterogeneous collections of structured and unstructured text or media. 
TREC tests are a warm-up for research on more ambitious forms of QA supported by the AQUAINT program. Given 
the large, uncontrolled text files and the very weak world knowledge available from WordNet and gazetteers and so 
on, these systems have performed extremely well, e.g. the LCC system [63] that uses a deeper linguistic analysis and 
iterative strategy obtained an score of 0.856 by answering correctly 415 questions of 500 in TREC-11 (2002).  

 
However, there are linguistic problems common in most kinds of NL understanding systems (for instance, all 

question understanding and processing systems are required to recognize equivalent questions, regarding idiomatic 
forms). Some of the shallow methods used keyword-based techniques to locate interesting sentences from the retrieved 
documents based on the presence of the answer type. Ranking is based on syntactic features such as word order or 
similarity to the query. Templates can be used to find answers that are just reformulations of the question. More 
sophisticated syntactic, semantic and contextual processing to construct an answer might include: named-entity 
recognition, relation extraction, coreference resolution, syntactic alternations, word sense disambiguation, logical 
inferences, temporal or spational reasoning and so on.  Furthermore, most of the systems classify the query based on 
the type of the answer expected: a name (i.e. person, organization), a quantity (monetary value, distance, length, 
size,..) or a date. Question’s classes are arranged hierarchically in taxonomies and different types of questions require 
different strategies. These systems often utilize world knowledge that can be found in high level ontologies such as 
WordNet, or the Suggested Upper Merged Ontology (SUMO) 

 
The current state-of-the-art open QA systems consist on modules which retrieve information from documents, parse 

sentences and filter small text fragments that contain strings of the same type as the expected answer, pinpoint 
question types, analyze semantics, reason, access external resources, extract and rank answers. 

  
Going more in detail, question answering applications for text typically involve two steps, as cited by Hirschman 

[40]: 1. “Identifying the semantic type of the entity sought by the question”; 2. “Determining additional constraints on 
the answer entity”. Constraints can include, for example, keywords (that may be expanded using synonyms or 
morphological variants) to be used in matching candidate answers; and syntactic or semantic relations between a 
candidate answer entity and other entities in the question. Various systems have, therefore built hierarchies of question 
types based on the types of answers sought [64, 80, 39,87]. 

 
For instance, in LASSO [64] a question type hierarchy was constructed from the analysis of the TREC-8 training 

data, in which a score of 55.5% for short answers and 64.5% for long answers was achieved. Given a question, it can 
find automatically (a) the type of question (what, why, who, how, where), (b) the type of answer (person, location..), 
(c) the question focus, defined as the “main information required by the interrogation” (very useful for “what” 
questions which say nothing about the information asked for by the question). Furthermore, it identifies the keywords 
from the question. Occasionally, some words of the question do not occur in the answer (for example, if the focus is 
“day of the week” it is very unlikely to appear in the answer). Therefore, it implements similar heuristics to the ones 
used by named entity recognizer systems for locating the possible answers. 

 
Named entity recognition and information extraction (IE) are powerful tools in question answering. One study 

showed that over 80% of questions asked for a named entity as a response [80]. In that work, Srihari and Li argue that:  
“(i) IE can provide solid support for QA; (ii) Low-level IE is often a necessary component in handling many 

types of questions; (iii) A robust natural language shallow parser provides a structural basis for handling 
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questions; (iv) High-level domain independent IE is expected to bring about a breakthrough in QA.”  
 

Where point (iv) refers to the extraction of multiple relationships between entities and general event information 
like WHO did WHAT. As described in [80], NE is necessary but not complete in answering questions because NE by 
nature only extracts isolated individual entities from text, therefore methods like “the nearest NE to the queried key 
words” are used.  

 
An efficient system should group together equivalent question types independently of how the query is 

formulated. Most of the open-domain QA systems classify questions according to their answer target. For example, in 
Wu et al.’s ILQUA system [86] these are categories like person, location, date, region or subcategories like lake, 
river.   

 
The best results of the TREC9 [25] competition were obtained by the FALCON system described in Harabaigiu et 

al. [37] where it generates a score of 58% for short answers and 76% for long answers. In FALCON the answer 
semantic categories are mapped into categories covered by a Named Entity Recognizer. When the question concept 
indicating the answer type is identified, it is mapped into an answer taxonomy. The top categories are connected to 
several word classes from WordNet. In an example presented in [37], FALCON identifies the expected answer type of 
the question “what do penguins eat?” as food because “it is the most widely used concept in the glosses of the 
subhierarchy of the noun synset {eating, feeding}”. All nouns (and lexical alterations), immediately related to the 
concept that determines the answer type, are considered among the keywords. Also, FALCON gives a cached answer 
if the similar question has already been asked before; a similarity measure is calculated to see if the given question is 
a reformulation of a previous one.  

 
Other NL search engines such as AskJeeves [7] and EasyAsk [28] exist, which provide NL question interfaces to 

the Web but retrieve documents, not answers. AskJeeves relies on human editors to match question templates with 
authoritative sites; systems such as START [44], REXTOR [45] and AnswerBus [89], whose goal is also to extract 
answers from text.  

 
Further discussion on advantages, disadvantages and challenges with respect to semantic QA: 

 
There are many similarities between open-domains systems and semantic question answering; both would need to 

attempt to find synonyms, plus their morphological variants, for the terms or keywords. Also in both cases, at times, 
the rules keep ambiguity unresolved and produce non-deterministic output for the asking point (for instance, “who” 
can be related to a “person” or to an “organization”). The main two differences between are:  

 
(1) Open domain QA classify queries based on hierarchies of question types based on types of answer sought. In 

semantic QA there is not need for building hierarchies, or heuristics to recognize named entities, as the semantic 
information needed is in the ontology. 

 
 (2) Semantic systems can greatly benefit from exploiting the ontological relationships in order to understand a 

query.  
 
(3) In semantic systems the classification on the query can be based on the kind of answer and semantic equivalent 

representation (relationships between the terms) of the question rather than only on the type of the answer expected 
(categories like person, location, date, region or subcategories like lake, river). Therefore, there is not need to build 
complex hierarchies of answers. In a semantic system, different queries, formed by “what is”, “who”, “where”, “tell 
me”, etc., may belong to the same category, e.g. “who works in the semantic web area?” is structurally similar to 
“which research areas are covered by semantic question answering?”, and both require as an answer a list of elements 
of the type of the ground term that occur in the relationship.  

 
(4) Some kinds of questions are harder than others when querying free text. The ontology simplifies the way to 

handle what-is queries, in which the type of the answer expected in unknown, because the possible answer types are 
constrained by the types of the possible relations in the ontology.  
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2.2.1. The use of triples on the literature 

The semantic web is represented by triples, so a system to target the Semantic Web should be able to handle and 
find the ontology triples that can answer a user query. Moreover, for semantic QA to be effective, most of the 
questions need to be translated into one or more ontology compliant triples. A triple is generally equivalent to a logical 
form (where the operator is the semantic relation, although is not strictly required). First of all, as pointed out by Katz 
et al. [44], although not all possible queries can be represented in the binary relational model, in practice these 
exceptions occur very infrequently. Secondly, RDF-based knowledge representation (KR) formalisms for the semantic 
web, such as RDF itself [73] or OWL [58] also subscribe to this binary relational model and express statements as 
<subject, predicate, object>. Hence, it makes sense for a query system targeted at the semantic web to adopt a triple-
based model that shares the same format as many millions of other triples on the Semantic Web. 

 
START come online in 1993 as the first QA system available on the Web. START focuses on questions about 

geography and the MIT infolab. START adopts a triple-base data model called “object-property-value”. Using an 
example presented in [44]: “what languages are spoken in Guernsey?”, for START the property is “languages” 
between the Object “Guernsey” and the value “French”. However, the NL is not always semantically sound, the 
question “Who invented the transistor?” yields two answers: the inventor of the transistor, but also a description about 
it. 

  
The system described in Litkowski et al. [50], called DIMAP, extracts “semantic relation triples” after the 

document is parsed and the parse tree is examined. The DIMAP triples are stored in a database in order to be used to 
answer the question. The semantic relation triple described consists of a discourse entity (SUBJ, OBJ, TIME, NUM, 
ADJMOD), a semantic relation that “characterizes the entity’s role in the sentence” and a governing word which is 
“the word in the sentence that the discourse entity stood in relation to”. The parsing process generated an average of 
9.8 triples per sentence. The same analysis was for each question, generating on average 3.3 triples per sentence, with 
one triple for each question containing an unbound variable, corresponding to the type of question. DIMAP-QA 
converts the document into triples. The discourse entities are the driving force in DIMAP triples, key elements (key 
nouns, key verbs, and any adjective or modifier noun) are determined for each question type. The system categorized 
questions in six types: time, location, who, what, size and number questions. 

 
 PiQASso [8] uses a “coarse-grained question taxonomy” consisting of person, organization, time, quantity and 

location as basic types plus 23 WordNet top-level noun categories. The answer type can combine categories. For 
example, in questions made with who, where the answer type is a person or an organization. Categories can often be 
determined directly from a wh-word: “who”, “when”, “where”. In other cases additional information is needed. For 
example with “how” questions the category is found from the adjective following “how” (“how many” or “how 
much”) for quantity, “how long” or “how old” for time, etc. The type of “what <noun>” question is normally the 
semantic type of the noun which is determined by WNSense, a tool for classifying word senses. Questions of the form 
“what <verb>” have the same answer type as the object of the verb. “What is” questions in PiQASso also rely on 
finding the semantic type of a query word. However, as the authors say “it is often not possible to just look up the 
semantic type of the word, because lack of context does not allow identifying (sic) the right sense”. Therefore, they 
accept entities of any type as answers to definition questions, provided they appear as the subject in an “is-a” sentence. 
If the answer type can be determined for a sentence it is submitted to the relation matching filter during this analysis, 
the parser tree is flattened into a set of triples and certain relations can be made explicit by adding links to the parser 
tree. For instance in [8] the example “man first walked on the moon in 1969” is presented, in which “1969” depends 
on “in”, which in turn depends on “moon”. Attardi et al. propose short circuiting the “in” by adding a direct link 
between “moon” and “1969” following a rule that says that “whenever two relevant nodes are linked through an 
irrelevant one, a link is added between them”.  

2.4. SEMANTIC QUESTION ANSWERING OVER ONTOLOGIES 

 
We have already mentioned that many systems simply use an ontology as a mechanism to support query expansion 

in information retrieval. In contrast with these systems, the systems reviewed here provide answers, derived from 
semantic annotations, to queries expressed in NL. We look into the understanding and query disambiguation process to 
map NL queries into ontological queries at syntactic and semantic level.  

 
AquaLog is one of the first’s ontology-based NL QA systems to query the semantic mark-up. The novelty of the 
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system with respect to traditional QA systems is that it relies on the knowledge encoded in the underlying ontology 
and its explicit semantics to disambiguate the meaning of the questions and provide answers, and as pointed on the 
first AquaLog conference publication [51] it provides a new ‘twist’ on the old issues of NLIDB. To bridge between the 
terminology used by the user and the concepts used by the underlying ontology.  In a first step, by using linguistic 
techniques based on GATE [24], the system classifies and breaks up the question into binary linguistic triples. Then, 
these terms are linked and mapped to ontology elements, generating ontology compliant triples from where the answer 
is derived.  At the syntactic level AquaLog identifies ontology mappings for all the terms and relations in the linguistic 
triple by considering the entity labels. It relies on simple, string-based comparison methods (e.g., edit distance 
metrics) and WordNet to look-up lexically related words (synonyms). At the semantic level, AquaLog’s interactive 
ontology based relation similarity service uses the ontology taxonomy and relationships (domain knowledge) to 
semantically disambiguate between two or more possible terms or relations in order to interpret a query, and to link the 
ontology triples between themselves to obtain the equivalent representation of the user query. When the ambiguity 
cannot be resolved by domain knowledge the user is asked to choose between the alternative readings. AquaLog is 
agnostic to the domain of the ontology that it exploits and it needs very little customization being almost ontology 
independent. While AquaLog is ontology portable, the user still needs to tell the system which ontology is going to be 
used. Furthermore, AquaLog includes a learning component, which ensures that the performance of the system 
improves over time, in response to the particular community jargon used by the end users.  

 
Some major limitations identified in AquaLog so far are due to linguistic and semantic coverage, lack of 

appropriate reasoning services or lack of enough mapping mechanism to interpret a query, and the constraints imposed 
by the ontology structures. For instance, AquaLog does not yet fully exploit quantifier scoping (“each”, “all”, “some”) 
and negative words (such as “not” and “never” or implicit negatives such as “only”, “except” and “other than”), and as 
AquaLog is used for stand-alone questions, it does not handle the linguistic phenomenon called anaphora, in which 
pronouns (e.g. “she”, “they”), and possessive determiners (e.g. “his”, “theirs”) are used to denote implicitly entities 
mentioned in an extended discourse. Also AquaLog is limited to queries that are not translated into more than two 
triples (for example in the question “which researchers have publications in KMi related to social aspects”, where the 
linguistic triples obtained are:  <researchers, have publications, KMi> <which is/are, related, social aspects>, the 
relation “have publications” refers to “publication: has author” in the ontology, therefore, we need not two but three 
triples to represent three relationships between the terms: <research, ?, publications> <publications, ?, KMi> 
<publications, related, social aspects>). AquaLog similarity services do not detect compound nouns (i.e. “French 
researchers” is in fact a compound noun as there is an implicit relation between “French” and “researchers”) and at the 
moment AquaLog cannot associate linguistic relations to non-atomic semantic relations. In other words, it cannot infer 
an answer if there is not a direct relation in the ontology between the two terms implied in the relationship, even if the 
answer is in the ontology. Also, the ontology design determines the questions which may be successfully answered. 
For example, when one of the terms in the query is not represented as an instance, relation or concept in the ontology 
but as a value of a relation (string). 

 
Orakel 4 [20] is a NL interface which translates wh-queries into F(rame)-logic and evaluates them with respect to a 

given knowledge base. The main feature is that it makes use of a compositional semantic construction approach thus 
being able to handle questions involving quantification, conjunction and negation in a classical way. In order to 
translate factual wh-queries5 it uses an underlying syntactic theory built on a variant of Lexicalized Tree Adjoining 
Grammar (LTAG), extended to include ontological information. The scope of ORAKEL is limited to the domain 
lexicon and the F-Logic KB. The parser makes use of two different lexicons: the general lexicon and the domain 
lexicon. The general or domain independent lexicon includes closed-class words such as determiners i.e. a, the, every, 
etc., as well as question pronouns, i.e., who, which, etc. and thus is domain independent. The domain lexicon varies 
from application to application and its generated partially automatically for each application out of the KB (the 
ontological lexicon is derived fully automatically from the domain ontology loaded in the system, it relies on the labels 
of the concepts and instances to generate appropriate grammar trees) and by a domain expert. The only lexicon 
component which has to be generated by the user is the domain-specific lexicon in which verbs, adjectives and 
relational nouns are mapped to corresponding relations specified in the domain ontology. The semantic representation 
of the words in the domain independent lexicon makes reference to domain independent categories as given for 
example by a foundational ontology such as DOLCE. This obviously assumes that the domain ontology is somehow 

                                                           
4 http://ontoware.org/projects/orakel/ 
5 Factual or factoid in this context means that answers are ground facts as typically found in KBs 
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aligned to the foundational categories provided by the foundational ontology. In other words, the user is only involved 
in the creation of the domain specific lexicon, which is actually the most important lexicon as it is the one containing 
the mapping of linguistic expressions to domain-specific predicates. The user has to instantiate subcategorization 
frames and maps these to domain-specific relations in the ontology. In regards to semantics, it uses a subcategorization 
information automatically acquired from a big corpus, a statistical parser, and theWordNet synsets (in the most 
frequent sense) that best generalize the selectional preferences at each argument in the subcategorization frame. 

 
Another semantic search engine, which understands the sense of the user query to retrieve multimedia resources 

from a knowledge base, is the “Librarian” found in [49]. First, the NL query is translated into an unambiguous logical 
form and then the query is mapped to an ontology to generate a semantic query and solve ambiguities. It relies on 
simple, string-based comparison methods (e.g., edit distance metrics) and a domain dictionary to look-up lexically 
related words (synonyms). General purpose dictionaries like WordNet are not appropriate for very specific domains. 
On the other hand, creating a dictionary is very expensive in terms of portability but the strong advantage of this is a 
very high performance (from 229 user queries 97% were correctly answered in the evaluation). The e-librarian does 
not return the answer to the user’s question, but it retrieves the most pertinent document(s) in which the user finds the 
answer to her/his question. 

 
As stated on [11] “the SW provides a stable scaffolding for machine-based processing but the casual user is 

typically overwhelmed by the formal logic of the Semantic Web”. To bridge the gap between the end user and the 
SW’s capabilities they created GINO a guided input natural language editor that allows user to edit and query 
ontologies in a quasi-NL English. It uses a small static grammar which dynamically extends with elements from the 
loaded ontologies and allows an easy adaptation to new ontologies. GINO provides a guided and controlled entry to 
overcome the habitability problem of NL systems. GINO relies on a static sentence structure grammar used to parse 
sentences which is dynamically extended based on the structure and vocabulary of the loaded ontologies. When the 
user enters a sentence, an incremental parser relies on the grammar to constantly check the user entry to (1) propose 
possible continuations to the sentence and (2) prevent entries that would not be grammatically interpretable.  GINO 
translates quasy English sentences into new triple sets or SPARQL statements. However, the major different between 
GINO and NLIs is that GINO does not use any predefined lexicon beyond the vocabulary that is defined in the static 
sentence structure grammar and provided by the loaded ontologies. Furthermore, the vocabulary is closed and limited, 
it does not try to semantically understand the entries or go beyond the vocabulary defined in the grammar and the 
ontologies. 

 
The approach in domain independent systems like AquaLog and QUERIX to allow NL queries and address 

ambiguities is asking the user for clarification whenever needed.  
 
In the paper by R. Basili [9], the possibility of building an ontology-based question answering system in the context 

of the semantic web is discussed. Their approach is being investigated in the context of EU project MOSES, with the 
“explicit objective of developing an ontology-based methodology to search, create, maintain and adapt semantically 
structured Web contents according to the vision of semantic web”. As part of this project, they plan to investigate 
whether and how an ontological approach could support QA across sites. They have introduced a classification of the 
questions that the system is expected to support and see the content of a question largely in terms of concepts and 
relations from the ontology. Basili et al. say that they will investigate how an ontological approach could support QA 
across a “federation” of sites within the same domain: “since each node has its own version of the domain ontology, 
the task of passing a question from node to node may be reduced to a mapping task between (similar) conceptual 
representations”. However, to support QA across ontologies they use the XeOML [70] mapping language to allow 
them to manually specify simple as well as complex mappings a priori between two ontologies describing the same 
domain. 

 
The knowledge-based approach described in [21] is to “augment on-line text with a knowledge-based question-

answering component, […] allowing the system to infer answers to users’ questions which are outside the scope of the 
prewritten text”. It assumes that the knowledge is stored in a knowledge base and structured as an ontology of the 
domain. Like many of the systems we have seen, it has a small collection of generic question types which it knows 
how to answer. Question types are associated with concepts in the KB. For a given concept, the question types which 
are applicable are those which are attached either to the concept itself or to any of its superclasses. A difference 
between this system and others we have seen is the importance it places on building a scenario, part assumed and part 
specified by the user via a dialogue in which the system prompts the user with forms and questions based on an answer 
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schema that relates back to the question type. The scenario provides a context in which the system can answer the 
query. The user input is thus considerably greater than we would wish to have in an open semantic scenario. 

 
Further discussion on advantages, disadvantages and challenges with respect to semantic QA: 

 
The aim is to provide a system which does not require users to learn specialized vocabulary, or to know the 

structure of the knowledge base, but as pointed out in [23], though they have to have some idea of the contents of the 
domain they may have some misconceptions. Therefore, to be realistic, some process of familiarization at least is 
normally required. Moreover, as indicated in [23], it is difficult to devise a sublanguage which is sufficiently 
expressive yet avoids ambiguity and seems reasonably natural. 

 
We see ontological semantic systems, like AquaLog, to be complementary to open domain QA systems. Open QA 

systems use the Web as the source of knowledge and provide answers in the form of selected paragraphs (where the 
answer actually lies) extracted from very large open-ended collections of unstructured text. The key limitation of an 
ontology-based system (as for closed-domain systems) is that it presumes the knowledge the system is using to answer 
the question is in a structured knowledge-base in a limited domain. However, ontological semantic systems exploit the 
power of ontologies as a model of knowledge and the availability of semantic markup offered by the SW to give 
precise, focused answers rather than retrieving possible documents or pre-written paragraphs of text. In particular, 
semantic markup facilitates queries where multiple pieces of information (that may come from different sources) need 
to be inferred and combined together. For instance, when we ask a query such as ”what are the homepages of 
researchers who have an interest in the Semantic Web?”, we get the precise answer. Behind the scenes, AquaLog is 
not only able to correctly understand the question but is also competent to disambiguate multiple matches of the term 
“researchers” on the SW and give back the correct answers by consulting the ontology and the available metadata. As 
Basili argues in [9] “open domain systems do not rely on specialized conceptual knowledge as they use a mixture of 
statistical techniques and shallow linguistic analysis. Ontological Question Answering Systems […] propose to attack 
the problem by means of an internal unambiguous knowledge representation”.  

 
Probably, the main benefits of an ontology-based QA system on the SW, when compared to other type of QA 

systems, is that it can use the domain knowledge provided by the ontology to cope with words apparently not found in 
the KB and to cope with ambiguity (mapping vocabulary or modifier attachment) in a way that made the system 
completely portable. For instance, the AquaLog disambiguation techniques are sufficiently general to be applied in 
different domains. In AquaLog, disambiguation is regarded as part of the translation process, if the ambiguity is not 
solved by domain knowledge, then the ambiguity is detected and the user is consulted before going ahead (to choose 
between alternative reading on terms, relations or modifier attachment).  

 
As stated on [11] the major drawbacks of these systems are the domain-dependency of intelligent NLI that tend to 

require long amounts of domain specific knowledge to perform both complex semantic interpretations and high 
performance, and also the habitability problem6. Both of them account for the fact that we are still far from the 
successful use of full NL interfaces to the SW. GINO tries to solve the habitability problem by using a guided and 
controlled NLI. 

 
However, we believe that the main limitation of the state-of-the-art semantic systems is that although portable 

(the system being agnostic to the domain of the underlying ontology) the scope of these systems are limited to the 
amount of knowledge encoded in one ontology (AquaLog, ORAKEL, GINO, e-librarian) or set of a priori defined 
ontologies in the same domain (Basili et al.). One way to overcome these limitations is to extend semantic systems in 
the direction of open question answering.  So, the lack of very complex reasoning is substituted by the ability to deal 
and find connections with large amounts of heterogeneous data. However, in multi-ontology SW scenario, neither to 
involve the user in the difficult task to provide a domain-specific grammar for the system like in ORAKEL, nor the use 
of guided and controlled interfaces like GINO, which generates a dynamic grammar rule for every class, property and 
instance and present pop-up boxes to the user to offer all the possible completions to the user’s query,  are feasible 
solutions in a multi-ontology scenario.  So, by using n-ontologies the habitability problem is partially reduced as the 
brittleness problem (it can only tell you what it already knows), which is typical of ontology driven systems, is also 
reduced. However, the usability of the system, so the user knows what subset on NL is possible to ask and the system 

                                                           
6 the habitability problem is the mismatch between the user’s expectations and the capabilities of the NL system [32 ester]. 
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can actively help them to refine or recommend the searches, remains an open issue.  
 

Therefore, the goal of the next generation of semantic systems should be to use all available ontologies on the SW 
to produce an answer to a query, where the system has to deal not only with the heterogeneity introduced by ontologies 
themselves but also, and in contrast to Basili approach, on the semantic web the systems can not assume that the 
relevant ontologies will refer to the same domain; they can have overlapping domains or may refer to different 
domains and even have very dissimilar structures. 

 
To solve questions in which the system must be able to carry out reasoning based on the information present in the 

ontology, like to answer “what are the most successful projects on the SW?”, the system needs ranking services that 
must be able to manipulate both general and ontology-dependent knowledge, as for instance, the criteria which make a 
project successful could be the number of citations or the amount funding.  Therefore, the first problem identified is 
how can we make these criteria as ontology independent as possible and available to any application that may need 
them. An example of deductive components with an axiomatic application domain theory to infer an answer can be 
found in [84], however, the approach presented there is not portable to other domains. The implementation of temporal 
structures, causality and answer questions that requires ranking services without scarifying portability are still open  
research issues out of the scope of this review.  

3 State-of-the-art on addressing the intrinsic problems for QA over the Semantic Web 

All the semantic systems built so far are domain specific and portable. However, it is often the case that queries can 
only be solved by composing information derived from multiple and autonomous information sources. To build a 
multi-ontology QA system portability is no longer enough and “openness” is required. Open domain semantic QA 
brings up new challenges that have to be solved in order to interpret a query by means of different ontologies, among 
others, the ability to consult and aggregate information derived from multiple heterogeneous semantic sources in real 
time, without making any assumptions about the ontological structure of the relevant information, plus the 
performance and scalability issues 

 
The big challenge arises from the combined issues of heterogeneity and scale seen in the real world semantic data, 

which requires the work on mapping, ranking techniques, etc, to be further advanced to balance search across multiple 
large ontologies with giving results in real time. First of all in a heterogeneous, open domain scenario it is not possible 
to determine in advance which ontologies will be relevant to a particular query or make assumptions to find relevant 
information a priori, so the areas of automatic ontology selection and ranking of the potentially relevant ontologies 
becomes relevant. Second, user terminology may be translated into semantically sound terminology distributed across 
ontologies (relevant information from different repositories is combined to generate a complete ontological translation 
for the user queries); in any strategy that focuses on information content, the most critical problem is that of different 
vocabularies used to describe similar information across domains [60]. Here results on mapping and Word Sense 
disambiguation techniques can be applied to avoid incoherent constructions (e.g. “conference chair has four legs”) so 
the concepts which are shared by assertions taken from different ontologies must have the same sense. Finally, as 
queries may have to be answered not by a single knowledge source but by consulting multiple sources identifying 
common objects is a requirement. Among other things, this requires the ability to recognize whether two instances 
coming from different sources may actually refer to the same individual or co-reference of instances. 

 
Furthermore, as stated in [66], when operating at scale on a large and distributed SW, it becomes much more 

difficult, if not impossible, ensuring strict data quality. The strength of the SW will be more a by-product of its size 
than its absolute quality (light weigh approach to ensure data quality). In [66], the authors predict a continuous 
tendency to move towards applications that utilize existing semantic data rather than having to generate their own. 
Because these data will be heterogeneous, the complexity of the tools will be a function of their ability to make sense 
of such heterogeneity.  

 
In this section of the review we will go in detail through these related research areas that are relevant to the various 

issues of resource selection, heterogeneous vocabularies and combination of knowledge from different sources, 
highlighting their advantages and limitations under the perspective of semantic QA.  
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3.1. QUERYING GLOBAL INFORMATION SYSTEMS AND SEMANTIC SEARCH 

Most of current state-of-the-art do not target the need of integrating information from multiple documents or 
sources. Here, we look at the solutions proposed in the literature to address semantic heterogeneity in information 
systems. 

 
The Semantic Knowledge Articulation Tool (SKAT) [62] uses a first order logic notation to specify declarative 

matching rules between ontology terms. SKAT initially attempts to match nodes in the two graphs based on their 
labels and their structural similarity. The idea of presenting a conceptually unified view of the information space to the 
user, the world-view, is studied in [48]. The user can pose declarative queries in terms of the objects and the relations 
in the world-view. Given a query to the world-view, the query processor in the global information system poses 
subqueries to the external sources that contain the information relevant to answer a query. In order to do that, the 
semantics of the contents of the external sites is related to the world-view through the use of a description language. 
These solutions have an intrinsic limitation to be applied to the open-world domain introduced by the SW scenario, 
where the distributed sources are constantly growing. And therefore, it is not possible to apply any closed-domain 
solution for environments with well-defined boundaries, like corporate intranets, in which the problem can be 
addressed by the specification of shared models like mapping rules, global ontologies/vocabularies, and definitions of 
conversion libraries or functions between semantic data/values, among others. The manual effort needed to maintain 
any kind of centralized/global shared approach for semantic mapping in the SW is not only very costly, in terms of 
maintaining the mappings for such a highly dynamic environment that evolves quickly, but also has the added 
difficulty of “negotiating” a shared model that suits the needs of all the parties involved [13].  

 
In Query Processing in Global Information Systems [60] user queries are rewritten by using inter-ontology 

relationships to obtain semantic translations across ontologies. There are two restrictions: firstly the user must 
subscribe to the terminology and model captured by a chosen ontology. Secondly, the solution to the vocabulary 
problem is obtained through the declarative representation of synonym relationships relating ontology terms. The 
disadvantages are: 1) synonym relationship mappings must be maintained between terms in the user ontology and the 
underlying repositories. 2) Every time there is a change in the structure of underlying repositories the mappings of the 
component ontology must be changed. 3) Such synonym relationships should be defined when a new ontology is 
added to the system (its centralized nature may affect the efficiency of the system). Therefore, to force systems to 
commit to a single ontology is costly if not impractical The advantage is that different partial answers can be easily 
correlated since all of them are expressed in the language of the user ontology.  

 
CUPID [55] analyzes the factors that affect effectiveness of algorithms for automatic semantic reconciliations; 

however, this is a complementary goal to ours: our system matches terms and relations in an user’s query with 
distributed ontologies while they match data repositories and ontologies. In GLUE [27] the probability of matching 
two concepts is studied by analyzing the available ontologies using relaxation labeling methods; however, this 
approach is not very adaptable because it analyzes all the ontology concepts. Finally, in a QA-driven scenario there is 
no need for obtaining mappings for each pair of concepts belonging to different ontologies, in which the level of effort 
is at least linear in the number of matches to be performed [55].  

 
Semantic web searches face the same problems as open domain systems in regards to dealing with heterogeneous 

data sources on the Semantic Web. Guha et al. [72] argue that “in the Semantic Web it is impossible to control what 
kind of data is available about any given object [..] Here, there is a need to balance the variation in the data 
availability by making sure that at a minimum, certain properties are available for all objects. In particular data about 
the kind of object and how is referred to, i.e., rdf:type and rdfs:label”. In the TAP system [72] search is augmented 
with data from the SW. To determine the concept denoted by the search query the first step is to map the search term 
to one or more nodes of the SW (this might return no candidate denotations, a single match or multiple matches). A 
term is searched by using its rdfs:label or one of the other properties indexed by the search interface. In ambiguous 
cases it chooses based on the popularity of the term (frequency of occurrence in a text corpus, the user profile, the 
search context) or by letting the user pick the right denotation. The node which is the selected denotation of the search 
term provides a starting point. Triples in the vicinity of each of these nodes are collected. As [72] argues: 

 
“the intuition behind this approach is that proximity in the graph reflects mutual relevance between nodes. This 
approach has the advantage of not requiring any hand-coding but has the disadvantage of being very sensitive to 
the representational choices made by the source on the SW [...]. A different approach is to manually specify for 
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each class object of interest, the set of properties that should be gathered. A hybrid approach has most of the 
benefits of both approaches”.  

 
Therefore, in a portable ontology-based system for the open SW scenario we can not expect complex reasoning 

over very expressive ontologies, because this requires detailed knowledge of ontology structure. A similar philosophy 
was applied to the design of the query interface used in the TAP framework for semantic searches [72]. This query 
interface, called GetData, was created to provide a lighter weight interface (in contrast to very expressive query 
languages that require lots of computational resources to process, such as the query languages SeRQL developed for 
Sesame RDF platform and SPARQL for OWL). Guha et al. argue that “The lighter weight query language could be 
used for querying on the open, uncontrolled Web in contexts where the site might not have much control over who is 
issuing the queries, whereas a more complete query language interface is targeted at the comparatively better behaved 
and more predictable area behind the firewall” [72]. GetData provides a simple interface to data presented as directed 
labeled graphs, which does not assume prior knowledge of the ontological structure of the data. 

 
Semantic Web applications.  In 2004 the annual Semantic Web Challenge was launched, whose first winner was 

CS Aktive Space [78]. This application gathers and combines a wide range of heterogeneous and distributed Computer 
Science resources to build an interactive portal. The top two ranked entries of 2005 challenges, Flink [61] and 
Museum Finland [41] are similar to CS Aktive Space as they combine heterogeneous and distributed resources to 
derive and visualize social networks and to expose cultural information gathered from several museums respectively. 
However, there is not semantic heterogeneity and “openness” here: these tools simply extract information to populate a 
single, pre-defined ontology. For instance, CS Aktive Space is close with respect to the semantic data they use, it can 
not take into account RDF data available from a particular web site in response to an user request. CS Aktive Space 
can only use the data that the system developers have scraped from the various relevant sites and re-described in terms 
of the AKT reference ontology7. A partial exception to this rule is Flink, which makes use of some existing semantic 
data, by aggregation of online FOAF files.  

 
As argued in [66], obviously, the major challenge faced by these early applications and tools was the lack of 

online semantic information. Therefore, in order to demonstrate their methods, they had to produce their own semantic 
metadata, before being able of utilizing them. As a result, either the focus is on a single, well defined domain (Flink, 
CS Aktive Space, MuseumFinland), or the tool is domain independent, but only one ontology can be active at the time 
(Magpie8, AquaLog). Taking a step back it is easy to see that all these applications follow the paradigm of smart 
database / knowledge base centered applications rather than truly explore the dynamic heterogeneous nature of the 
SW, embracing the SW paradigm. Although they set out to integrate distributed and heterogeneous resources, these 
resources end up centralized in a semantic repository aligned under a single ontology [66]. 

 

3.2. ONTOLOGY AND SCHEMA BASED MATCHERS  

The importance of mapping for the SW has been widely recognized [79] and a wide range of techniques and tools 
have already been developed.  An analysis of the state of the art in mapping systems is presented in [79].  Basically, 
current approaches to ontology mapping combine a range of: 

• Lexical or terminological: non semantic techniques that exploit string similarity between meaningful labels. 

• Structural: relies on the structure of the mapped ontologies 

• Instance-based: mapping concepts on the basic of shared instances 

• Background knowledge: use of external sources as an oracle (WordNet, high level or domain dependant 
ontologies) to find mappings typically missing by previous approaches. 

 
The majority of approaches use a combination of lexical and structural methods, where lexical overlap is used to 

produce an initial mapping that is subsequently improved by the structure of the source and the target. For instance, 
Falcon-AO [68] outperformed all other ontology matchers in the 2005 Ontology Alignment Context OAC [29]. 

                                                           
7 http://www.aktors.org/akt/ 
8 Magpie (Dzbor et al., 2003) tool, in absence of available semantic markup, this tool automatically generates a semantic layer, by 

mapping items on the current web page to an ontology, by means of Named Entity Recognition technology.  
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Falcon-OA regards ontologies as graph-like structures to produce mappings by using both linguistic and structural 
similarity. In many cases string and structural similarities can imply meaningful mappings but also as observed to 
some extend in the OAC 05, traditional methods fail when there is little overlap between the labels of the ontology 
entities, or when the ontologies have weak or dissimilar structures, i.e. “academics” and “researchers” have the same 
meaning in a scientific scenario but they are syntactically very different.  

 
As stated in [76], the constituents of mapping can only be given meaning in the context of their own ontology, 

therefore, a semantic mapping between two ontologies could only be interpreted in a larger domain to the ones of these 
ontologies (chicken is related to food in a domain about food but not in a domain about living beings). Therefore, in 
order to achieve semantic mapping predefined sources like WordNet and reference domain ontologies have been used 
as an oracle for background knowledge as in SMatch[32]. SMatch for example, translates ontology labels into logical 
formula between their constituents and maps those in corresponding WN sense, where a SAT solver is then used to 
derive semantic mappings. Other few approaches [3, 81] have considered the use of external background knowledge 
and rely on a reference domain ontology as a way to obtain semantic mappings between syntactically dissimilar 
ontologies. In [3] terms from two vocabularies are first mapped to so called anchor terms in the DICE ontology used as 
background knowledge, and then their mapping is deduced based on the semantic relation of the anchor terms.  

 
However, as stated on [76] obtaining the right background knowledge is problematic, because they rely on 

axiomatized domain ontologies [3] that unfortunately do not exist in all domains or they are unlikely to cover all 
intended mappings between the input ontologies, or it is not possible to select the relevant ontology in advance but in 
real time (like in a SW scenario).  In [83] online textual resources (i.e. google) are used as a source of background 
knowledge, so there is not need for a manual and domain dependent ontology selection task prior to mapping, but the 
drawback is that the required knowledge extraction techniques lead to considerable noise and human validation is 
needed.  

 
A more suitable and promising approach in the SW scenario to overcome the limitation of syntactic approaches and 

obtain semantic relation even between dissimilar ontologies is presented in [76], where ontology mapping can actually 
exploit the heterogeneity of the Semantic Web while trying to cope with it, and use it as background knowledge 
sources. Using the semantic data as sources of background knowledge is likely to be less noisy that the one derived 
from textual sources and therefore lead to the discovery of better mappings. This approach requires two candidate 
words or mappings as input, then Swoogle is used to find ontologies containing concepts with the same names as the 
candidate concepts and to derive mapping from their relationship between them or the terms in their neighborhood in 
the selected ontologies or distributed over several ontologies (cross-ontology mapping) when there is not a single 
ontology that relates them together (recursive task). However, the limitation of this approach is that the terms have to 
be found as classes (or properties) in the pool of ontologies in the first place by using string exact matching techniques, 
second is the so called knowledge sparseness phenomenon: some domains are well covered by existing ontologies 
(e.g. academic research and medicine), while others are not covered at all; and third it does not consider the meaning 
of the mappings in the different ontologies but because we are dealing with ontologies this feature can be easily added 
by introducing semantic similarity measures (like the ones presented in Section 3.3).  

 
However, the predominant view of mapping is that it will be performed at “design time”, e.g. when deciding on 

mapping rules between a set of ontologies [13]. This was a plausible assumption because, until recently, only a limited 
amount of semantic data was available; therefore, there was little need for run time integration. Indeed, one of the 
main characteristics of SW based applications built so far is that they tackle the data heterogeneity problem in the 
context of a given domain or application by integrating a few, a-priori determined sources [41, 61]. Hence, we are now 
slowly reaching a key point in the history of this very young discipline, where we can start moving away from the 
early applications characterized by limited degree of scale and heterogeneity and start developing the kind of 
applications, which will define the SW of the future. Obviously, this new scenario brings novel challenges for 
ontology mapping techniques. 
 
Challenges and requirements for mapping in the Context of Semantic Web tools: 
 

The problem of ontology schema mapping has been investigated by many research groups which have proposed a 
large variety of approaches [79, 72]. While all this research has produced increasingly complex algorithms, the setting 
in which the mapping problem was tackled was almost always the same: given two ontologies, find all the possible 
mappings between their entities attaching a confidence level to the mappings that are returned. One of the challenges 
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in the field of ontology mapping now is not so much perfecting these algorithms, but rather trying to adapt them to 
novel scenarios, which require SW applications to automatically select and integrate semantic data available online. 

 
Obviously, mapping techniques are crucial in achieving this goal. However, the setting in which the mapping would 

take place is quite different from the “traditional” ontology mapping scenario, rather than being performed during the 
development of the application it now needs to be performed at “run time”. These new scenarios impose a number of 
requirements: 

 
1) More ontologies – when integrating data from online ontologies it is often necessary to map between several 
online ontologies. This is very unlike the traditional scenario where only two ontologies were mapped at a time.  
2) Increased heterogeneity – traditional mapping techniques often assume that the ontologies to be matched will be 
similar in structure, describe more or less the same topic domain. For example, S-Match [32] is targeted towards 
matching classification hierarchies. Or, due to its structure based techniques, Anchor-PROMPT [69] works best if the 
matched ontologies have structures of similar complexity. Such similarity assumptions fail on the SW: we cannot 
predict whether relevant information will be provided by a simple FOAF file or by WordNet, or top level ontologies, 
or combined from these different sources. Mapping techniques should function without any pre-formulated 
assumptions about the ontological structure. 
3) Time Performance is important - As already pointed out in [54], the majority of mapping approaches focus on 
the effectiveness (i.e., quality) of the mapping rather than on its efficiency (i.e., speed). This is a major challenge that 
needs to be solved in the context of run-time mappings where the speed of the response is a crucial factor. The above 
mentioned paper also shows that some minor modifications of the mapping strategy can highly improve response time 
and have only a marginal negative effect on the quality of the mappings. Unfortunately the work presented in [54] is 
rather unique in the context of mapping research, although we think that such research is crucial for making mapping 
techniques usable during run-time. 
4) Consider relation and instance mappings – much of the work in ontology mapping has focused on matching the 
concepts in two schemas, while other ontology entities, such as relations and instances, have largely been ignored so 
far (although relations and instances are taken into account as evidence to support the matching process in some 
approaches). However, SW tools are often used to find out information about specific entities (traditionally modeled as 
ontology instances), as well as the relations between entities. Therefore, we think that mapping techniques should be 
developed to efficiently map also between these kinds of entities.  
5) Cross-ontology mapping filtering - several approaches adopt the model of first generating all possible mappings 
and then filtering the relevant ones. However, in these approaches mappings are typically created between two 
ontologies describing the same domain. When performing mappings on the SW, we are also likely to discover several 
mappings but this time the mapping candidates might be drawn from different ontologies. Therefore we need to be 
able to reason about ontologies which may only have very few concepts in common.  As discussed later in this paper, 
this requires mechanisms to assess whether or not such ‘sparse concepts’ are related.   
6) Produce Semantic output – with the exception of S-Match, most mapping algorithms simply determine a 
similarity coefficient between the concepts that are mapped. Such coefficients are not very useful if the mappings have 
to be automatically used by a tool. In the scenario of SW tools, to support automatic processing of the mapping results, 
it would be more useful to return the semantic relations between the mapped entities (equivalent, more 
generic/specific) rather than just a number. Because schemas do not provide explicit semantics for their data, light 
weight ontologies are preferred to catalogs or classifications. Mappings should be performed based on the meaning. A 
critical problem is to distinguish between different vocabularies used by different ontologies to describe similar 
information across domains and similarly spelled classes that may not have precisely matched meanings. 

3.2. ONTOLOGY SELECTION AND RANKING 

Currently, there is now a reasonable amount of online semantic data, to such an extent that the need has arisen for a 
semantic search engine, such as Swoogle [88] and different RDF ontology storage technologies suitable for processing 
SW information [36], e.g. 3store and Sesame servers. 

 
For the Semantic Web applications to take advantage of the vast amount of the heterogeneous semantic data 

available by the growth of the SW and get free of the burden of engineering their own semantic data, they need to 
concentrate on meaningfully finding the relevant ontologies and semantic markup. Robust mechanisms for selecting 
ontologies are crucial to support knowledge reuse in this large scale open environment. Some of the requirements 
imposed by the context of automatic knowledge reuse, like coverage even if returning ontology combinations is 
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needed, performance, dealing with instances and relations as well as classes, and modularization, have been 
highlighted on [77] 

 
OntoSelect [16] ontology selection algorithms, among others, relies on the “connectedness” criteria since they look 

at how well an ontology is connected to other ontologies, through the ontologies imported as semantic link between 
ontologies, in order to determine is popularity. It also uses structure metrics to measure the number of properties 
relative to the number of classes in the ontology. The rationale behind is that “more advanced ontologies have a large 
number of properties”. It also applies some coverage criteria. 

 
AktiveRank [2], currently the most advanced algorithm following the study in [77], uses a set of ontology structure 

based metrics like compacteness, density or richness of knowledge structure, and the coverage of an ontology given 
the search terms , as a measure in the ontology ranking approach. To broaden the search space, AktiveRank, uses a 
fuzzy match between terms and concept names (i.e. “project” is mapped to “projectile”) but makes no provision to 
filter out obviously irrelevant hits. Moreover, AktiveRank needs 2 minutes to evaluate each ontology.  

 
Most of ontology search systems only look for classes or instances that have labels matching a search term either 

exactly or partially [2] without looking for synonymy information, therefore, there is a need to maximize recall to find 
similar ontological terms with dissimilar labels. Moreover, the approaches for ontology selection fail to consider the 
meaning of the concepts given by their positions in the ontology hierarchy (e.g. Queen/Royal, Queen/Bee). Also, most 
approaches (except OntoSelect) focus only in concepts and ignore the existence of relations between concepts, which 
can potentially provide valuable information to narrow down the right ontologies. 

 
Furthermore, Swoogle by far the most advance ontology search available today, it still rather limited for exploiting 

online ontologies dynamically at run time. Swoogle claims to adopt a Web view on the Semantic Web by using a 
modified version of the PageRank popularity algorithm, and by large ignores the semantic particularities of the data 
that it indexes, and therefore it only measures the quality of its ontologies in terms of their popularity and its querying 
facilities are limited to keyword based search. Swoogle can not find ontologies which relevant concepts are 
syntactically dissimilar and its fuzzy search functionality is rather brittle and generates invalid hits (e.g. “update” when 
searching for “date”). Moreover, Swoogle does not provide the needed capabilities to look beyond  a syntactic analysis 
to perform a semantic analysis to check the soundness of the previously identified mappings in real time. Swoogle 
does not provide reasoning capabilities and inheritance that current ontology repositories (like sesame or 3store) 
provide and that are required to perform a semantic analysis (e.g. finding the relations between two instances), or like 
BRAHMS [43] a RDF storage system adequate for efficiently discover of semantic associations in ontologies by 
searching for relationships, variable in length and with unspecified directionality, paths in reasonable time. 

3.3.  SEMANTIC MEASURES AND WORD SENSE DISAMBIGUATION 

Because similarly spelled words (labels) may have not precisely matched meanings. Relationships between word 
senses, not words, are needed. Word sense disambiguation (WSD), is measured through the notion of similarity. Many 
reasonable similarity measures and strategies exist in the literature for WSD (see [42] for a state of the art). 

 
Note that similarity is a more specialized notion than association or relatedness. Similar entities are semantically 

related by virtue of their similarity (bank-trust company). Dissimilar entities may also be semantically related by 
lexical relationships such as meronym (car-wheel) and antonymy (hot-cold), or just by any kind of functional 
relationship or frequent association (pencil-paper, penguin-Antarctica) [14]. Taking the example in [74] doctors are 
minimally similar to medicines and hospitals, since these things are all instances of “something having concrete 
existence, living or nonliving” (although they may be highly associated), but they are much more similar to lawyers, 
since both are kinds of professional people, and even more similar to nurses, since both are professional people within 
the health professions. 

 
Although there have been numerous proposals for semantic distance, similarity and relatedness measures, the 

majority of these have been based on the following underlying approaches (in [12] a library of similarity measures to 
use in ontologies are compared with a “gold standard” established by surveying 84 human subjects in two ontologies): 

 
• Ontology-based: the common ancestor based specification (depth) seems to better reflect the common sense 

understanding the closeness of two objects in a taxonomy. 
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• Information theory based: measures similarity in an ontology (i.e. WN) in terms of information theoretic 

entropy measures, e.g. the information of a class is the probability of encountering a class use (or its instances 
or its descendants).  

 
• Vector space and string based: The typically used similarity measures for vectors are the cosine measure, the 

extended Jaccard measure and the overlap measure. These methods assume that all vectors have been ordered 
the same way and scaled to the same length (i.e by adding zeros to properties-values not including in the 
vector). To calculate similarity between strings and tackle minor morphological variations there is a number of 
string distance metrics proposed by different communities (e.g., edit or Levenshtein  distance metrics) [14].  

 
The most intuitive similarity measure between concepts in an ontology is their distance within the ontology 

following the number of IS_A relations between them. So, that the shorter the path between two terms [74] the more 
similar they are. However, a widely acknowledged problem is that the approach typically “relies on the notion that 
links in the taxonomy represent uniform distances”, but typically this is not true and there is a wide variability in the 
“distance” covered by a single taxonomic link [14]. Resnik [74] established that one criterion of similarity between 
two concepts is the extent to which they share information in common, which, in an IS-A taxonomy, can be 
determined by inspecting the relative position of the most-specific concept (lso) that subsumes them both. The number 
of links (depth) is still important to distinguish between any two pairs of concepts having the same lso. One of the 
variations of this edge-counting method is the conceptual similarity introduced by Wu & Palmer [85]: 

 
Similarity (C1, C2) = (2 x N)  /  (N1 + N2 + 2 x N) 

 
Where Ni = length of the path from Ci to C; N= length of path from C to root; C = lso (C1, C2) 
 
Researchers in the NLP domain have proposed measuring both similarity and relatedness between two concepts by 

commonly using WordNet as the reference ontology. The current version of WordNet provides a priori lexical and 
domain knowledge. As Ide and Veronis state [42], WordNet is the most used lexical resource at present for 
disambiguation in English. Most of the research methods in the literature are limited to WordNet [14]. Nouns, verbs, 
adjectives, and adverbs are each organized into networks of synonyms sets (synsets). Each synset has a gloss to define 
it. There are nine types of semantic relations defined on the noun subnetwork: hyponymy (IS-A) relation, and its 
inverse hypernymy; six meronymic (PART-OF) relations – COMPONENT-OF, MEMBER-OF, SUBSTANCE-OF 
and their inverses; and the COMPLEMENT-OF relation. the fine-grainedness of WordNet sense distinctions, e.g. in 
this case city#1 and city#2, is a frequently cited problem. Other high level ontologies can be also useful, like the 
SUMO upper level ontology that has been extended with the mappings to the WordNet lexicon [74]. 

 
Information theoretic measures while outperforming Resnik’s similarity algorithm slightly they do still require a 

probabilistic model of the application domain. This limitation makes it problematic for smaller ontologies [12] 
 
   Most approaches assume that words that appear together in a sentence can be disambiguated by assigning to them 

the senses that are most closely related to their neighboring words [30]. In Hierarchy distance based matchers [31] the 
relatedness between words is measured by the distance between two concepts/senses in a given input hierarchy.  In 
particular, similarity between words is measured by looking at the shortest path between two given concepts/senses in 
the WordNet “IS-A” taxonomy of concepts. For instance, the algorithm described in [56] to make explicit the 
semantics hidden in schema models: Let L be a generic label for a concept and L1 either an ancestor label or a 
descendant label of L and let s* and s1* be respectively the sets of WordNet senses of a word in L and a word in L1. If 
one of the senses belonging to s* is either a synonym, hypernym, holonym, hyponym or a meronym of one of the 
senses belonging to s1*, these two senses are retained and all the other senses are discarded. As an example, imagine 
Apple (which can denote either a fruit or a tree) and Food as its ancestor; since there is a hyponymy relation between 
apple#1 (denoting a fruit) and food#1, we retain apple#1 and discard apple#2 (denoting a tree). 

 
Pendersen and his colleagues [30] have made available a Perl implementation of six WordNet measures evaluated 

in [14] plus their own sense disambiguation algorithm based on glosses [30] to assign a meaning to every content word 
in a text. Basically, these measures look for a path connecting a synset associated with each word, e.g. in Hirst and St-
Onge measure the intuition behind is “the longer the path and the more changes of direction (upward for hypernym 
and meronym; downward for hyponymy and holonymy and horizontal for antonymy) the lower the weight”. In [30] 

 19



extended semantic gloss matchers measure semantic relatedness between concepts (and its ancestors/descendants 
according to the is-a WordNet hierarchy) that is based on the number of shared words in their definitions (glosses). 

 
However, sense disambiguation techniques based on text are not mature enough because there are useful 

computational methods in the literature only for quantifying semantic distances for non-ad hoc relationships. 
However, relatedness includes not just the WordNet relationships but also associative and ad hoc relationships. These 
can include just about any kind of functional relation or frequent association in the world (i,e bed-sleep), sometimes 
constructed in the context, and cannot always be determined purely from a priori lexical resources such as WordNet. 
 

Moreover, WordNet is (1) very limited on the coverage of compound terms frequently used in ontologies (e.g. 
“municipal-unit” instead of “municipality”), so if the keyword is not found then the semantic similarity or relatedness 
cannot be computed, and (2) rather static, e.g. developer as the intended sense of software developer, or apple as a 
computer do not appear in WordNet 3.0.  

 
A novel approach introduced by [33] consists in using not only WordNet but also the whole SW as background 

knowledge, so that different ontologies represent different views of the world and therefore different senses. The 
authors propose a multi ontology based method to disambiguate the senses of keywords used in a search engine (e.g., 
in (astronomy, star, planet), “star” is used in its sense of celestian body) while traditionally methods would have relied 
on WordNet alone to collect possible sense for the keywords, now they can exploit all online ontologies to gather a 
much larger set of senses. 

 
Furthermore, tree or graph-based similarities are not addressed here because they are computationally very 

expensive and therefore not applicable for run time scenarios. 
 
To summarize, in multiple information systems environments, with their own models and ontologies, the general 

approach to data integration has been to map the local terms of distinct ontologies onto a single shared ontology.  
Then, semantic similarity is determined as a function of the path distance between terms in the hierarchy of the 
underlying single ontology. Further work is needed to extrapolate these techniques for cross-ontology comparisons 
(i.e. to calculate similarity in QA scenarios where the candidate concepts belong from different ontologies), which 
require to deal with one of the major problems of the SW: the mapping between ontologies of different origin without 
constructing a priori a shared ontology.  An exception is the work presented on [75] which propose a weak form of 
integration establishing links among ontologies while keeping each ontology autonomous. The authors emphasize the 
importance of properties and attributes as distinguished features of entity classes. For example, a “hospital” and 
“apartment building” have a common superclass “building”, however this information falls short when trying to 
differentiate between both classes, since the is-a relation does not indicate the important difference in terms of entities’ 
functionality or features. They classify features into functions, parts and attributes. However, the drawback is the 
mismatches associated with the classification of features in different ontologies 

3.4. CO-REFERENCE OF INSTANCES. 

Identifying whether two instances from semantically equivalent concepts are the same is not an easy task. Instances 
may not have the same name, and information about the same instance can have different purposes, e.g. the description 
of a car for sale or for an environmental study. We can use the OWL mechanism which identifies the attributes that 
provide sufficient evidence that two instances are the same. However, further mechanisms need to be adopted, e.g., use 
of joint probability approaches similar to GLUE[27] over the instance full name (from the taxonomy root) and its 
textual content (word frequency over attributes and  values). 

 
For the instance fusion task, the SW community has adopted the distance measurement approaches in the database 

community in which the distance between records was calculates as a weighted average of distances over attributes. 
The main distinctive feature of the SW as opposed to the database domain is the issue of incompleteness [34]. 

 
In [17] Wikipedia is used to find similar or alternative names, synonyms, misspellings, abbreviations and acronyms 

in the case of queries about  name entities and solve ambiguities between multiple name entities that can be denoted by 
the same proper  name (e.g. the disambiguation page for the name John Williams lists 22 associated entities). Also, 
Wikipedia captures references that are distinct to senses, like Morning_star as a potential referent for Venus. Also, 
every article in Wikipedia is required to have at least one category and one or more topics. However, in practice there 
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may be contexts where entities, like John Williams, refers to an non popular entity and therefore is not covered in 
Wikipedia. 

 
To merge profile information, Flink [61] makes use of the rule language for carrying out Identity reasoning 

(smushing) to determine if different instances (in this case individuals) across multiple information sources refer to the 
same individual. The methods for smushing are based on name matching or the similarity of names as strings 
(differences in the last names are disallowed) and object identification based on the inverse functional properties 
(IFPs) of FOAF. For example, if the instances A and B have the same value for the foaf:mbox property, the match is 
recorded using the A owl:sameAs B property. 
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