
Extracting URI Patterns from SPARQL

Endpoints

Mathieu d’Aquin1 Alessandro Adamou1 Enrico Daga1

Nicolas Jay2

1.Knowledge Media Institute,
The Open University,
Milton Keynes, UK

{mathieu.daquin, alessandro.adamou, enrico.daga}@open.ac.uk
2. Université de Lorraine,

LORIA, UMR 7503,
Vandœvre-lès-Nancy, F-54506, France

nicolas.jay@loria.fr

April 10, 2014

Abstract

Understanding the structure of identifiers in a particular dataset is
critical for users/applications that want to use such a dataset, and connect
to it. This is especially true in Linked Data where, while benefiting from
having the structure of URIs, identifiers are also designed according to
specific conventions, which are rarely made explicit and documented. In
this paper, we present an automatic method to extract such URI patterns
which is based on adapting formal concept analysis techniques to the
mining of string patterns. The result is a tool that can generate, in a few
minutes, the documentation of the URI patterns employed in a SPARQL
endpoint by the instances of each class in the corresponding datasets.
We evaluate the approach through demonstrating its performance and
efficiency on several endpoints of various origins.

1

1 Introduction

Identifiers are fundamental to any kind of data. Constructing the strings that
compose identifiers often follows conventions that have some significance with
respect to the content and use of the data. Linked Data use URIs as a struc-
tured mechanism to build globally resolvable IDs [1]. However, even using this
global convention, patterns in the design of URIs may appear, which are specific
to a given dataset. For example, the namespace of some entities may reflect their
type (e.g., in data.open.ac.uk, a URI of the form http://data.open.ac.uk/course/

followed by a code identifies an entity of type aiiso:Module). More sophisti-
cated situations also appear, where significant parts of the ID appear within the
name of entities, or the namespaces are also constructed to reflect some aspect
of the data (again in data.open.ac.uk, URIs of floors of a building include in
their namespaces a code representing the building itself – e.g. http://data.

open.ac.uk/location/building/r04birb/floor/02 is the URI of the second
floor of the building R04BIRB).

Such patterns are very important to applications and users wanting to use
or link to these entities. They document the way to construct their IDs, which
in the case of URIs are also access points and link anchors. However, while they
are the result of a conscious design process, they are rarely made explicit or
documented.

In this paper, we present a method to automatically extract the most signif-
icant URI patterns attached to instances of certain classes in specific datasets
(accessed through SPARQL 1.1 endpoints). This is a complicated task since,
as shown in the previous example: (1) The significant parts of a URI do not
necessarily follow the URI’s structure (domain, namespace, fragment, etc.); (2)
Just comparing the strings of all URIs to find the common part would result
in both a computationally unfeasible approach, and unexploitable results; (3)
The significance of patterns should be assessed through their relationship with
others (e.g. how they jointly cover the data, which one is ‘more general’ than
others, etc.)

We therefore propose an approach inspired by and adapted from formal
concept analysis (FCA, [12]) to build hierarchies (or lattices) of simplified regular
expressions (strings with wildcard characters) that form sample sets of URI
strings. The advantage of relying on FCA is, first, that we can adapt incremental
lattice construction algorithms, thus making the search for pattern more efficient
and, second, that the results of these algorithms are structured in a hierachy of
concepts, on which we can apply measures to assess the significance of a pattern,
in relationship to other extracted patterns.

After discussing related work, we describe this approach and its implemen-
tation as an automatic URI Pattern Documentation tool. We evaluated this
approach and the tool through measuring performance on a variety of datasets
from various origins.

2

http://data.open.ac.uk/location/building/r04birb/floor/02
http://data.open.ac.uk/location/building/r04birb/floor/02

2 Related Work

The general problem of the meaning and usage of identifiers in data has been
broadly explored [4]. In the Semantic Web and Linked Data communities there
have been constant efforts towards the definition of good practices, recipes and
recommendations regarding the structure of URIs. This resulted in recommen-
dations such as [1], technical reports, discussions in blogs and mailing lists,
but rarely in clear specifications of the way URIs are built in specific datasets.
A recent study [7] promotes, amongst other things, best-practices relating to
the naming of resources: besides applying core Linked Data principles, such as
being dereferenceable HTTP URIs, they should also be short, easy to remem-
ber and stable over time. Similarly, best practice documentation initiatives in
publishing linked data (such as [3]) make clear statements about URI patterns,
e.g., promoting the usage of paths that reflect the hierarchical relation between
entities or the belonging of an entity to a collection.

Recent research also proposed to embed formal data within URIs for specific
applications, for example in linked sensor data [8]. Also, aside from Semantic
Web practices, it is worth mentioning specifications such as [11], which proposes
to standardise URI fragments in order to facilitate information discovery in web-
sites, and [6] that defines the concept of ‘URI template’ formally as “a compact
sequence of characters for describing a range of Uniform Resource Identifiers
through variable expansion”.

The documentation for RDF/OWL vocabularies is a common practice and
examples of automatic approaches exist (e.g., OWLDoc1). However, the doc-
umentation of instances in the data, and specifically of their URI patterns, is
uncommon. The VoID vocabulary provides specific properties to inform users
about the features of a Linked Data endpoint, including also the structure of
URIs for entity lookup (void:uriSpace, void:uriRegexPattern). Similarly,
implementations of the Linked Data API (e.g., Elda2 and Puelia3) are used to
generate specific URI templates which can then be documented as part of the
publication of the data, but they do not support the automatic discovery of
such templates in the underlying RDF data.

3 An FCA-based approach to extracting URI
patterns from SPARQL endpoints

In this section, we describe our approach to the extraction of URI patterns from
SPARQL endpoints. We describe how we adapt techniques from FCA to extract
hierarchies (lattices) of common patterns (strings with wildcards) from as set
strings, and how we prune this hierarchy to keep only the most significant pat-
terns, which we expect to be in small numbers. As explained in Section 4, these
two steps will be performed on samples of URIs that are randomly selected from

1OWLDoc, http://www.co-ode.org/downloads/owldoc/
2Elda, https://code.google.com/p/elda/
3Puelia, https://code.google.com/p/puelia-php/

3

http://www.co-ode.org/downloads/owldoc/
https://code.google.com/p/elda/
https://code.google.com/p/puelia-php/

the SPARQL endpoint at hand. It is noteworthy, however, that this approach
could be employed on other types of identifiers than just URIs.

We first give a quick introduction to relevant FCA-related notions.

3.1 Overview of basic FCA notions

FCA [12] is a formal, generic framework, generally associated with the fields of
data mining and knowledge discovery. In broad terms, it is concerned with iden-
tifying from raw data patterns of objects characteristics that form formal con-
cepts. Such concepts are characterised both by their intent (a set of attributes),
and their extent (the set of objects in the data that share these attributes).

More formally, FCA relies on the notion of a formal context, which represents
the raw data. A formal context C = (G,M, I) is made of a set of objects G,
a set of attributes M and a binary relation I ⊆ G ×M . In simpler terms, a
formal context is a binary matrix where the rows represent objects, and columns
represent attributes of these objects. Given O a set of objects of G, we note O′

the set of attributes of M which are shared by all the objects of O. In the same
way, given A ⊆ M , A′ ⊆ G is the set of objects that share all the attributes
in A. The double application of (.)′ is said to represent the closure of a set of
objects or attributes. In other terms, O′′ and A′′ are said to be closed.

A formal concept of a context C = (G,M, I) is characterised by a pair (O,A),
where O ⊆ G and A ⊆ M . O is called the extent and represents the objects
that share the attributes of A, i.e., O = A′. A is called the intent and represents
the attributes that are shared by the objects of O, i.e., A = O′. Note that this
implies that O = O′′ and A = A′′, i.e., the concept (O,A) is equivalently defined
both by its set of objects, and by its set of attributes.

The set of all concepts that can be derived from a formal context form
a lattice that relies on the subconcept relation (denoted by ≤). Indeed, we
say that a concept (O1, A1) is a subconcept of another concept (O2, A2) – i.e.,
(O1, A1) ≤ (O2, A2) – if O1 ⊆ O2 and (equivalently) A2 ⊆ A1. This concept
lattice has an upper-bound and a lower-bound (which are often the concept with
an empty extent and the one with an empty intent respectively).

An interesting aspect of FCA, considering our problem, is that it helps iden-
tifying groups of objects according to their common properties and it gives a
partial order to these groups. In other words, it organises them in a hierarchy,
based on how general/specific they are. We show below how we adapt this
same approach to groups of strings matching common pseudo-regular expres-
sions, rather than objects with common attributes.

3.2 Adaptation to building hierarchies of string patterns

Adapting the notions described above from FCA to our problem involves re-
placing the extent of concepts with strings, and the intent with string patterns.
More precisely, we do not anymore work with a formal context made of binary
attributes, but simply with a set of strings C.

4

A pseudo-regular expression here is a string which might include wildcard
characters (represented by the * sign) that can be replaced by any (possibly
empty) sub-string, e.g., “aa∗ bb∗ cc”. The (.)′ function is therefore defined from
the point of view of a pseudo-regular expression to represent the ‘matching’
operation; i.e., for e a pseudo-regular expression, e′ ⊆ C is the set of strings
in the corpus that match e. For example, with e the pattern “aa ∗ bb”, and
C = {“aaccbb”, “accbb”, “aabb”}, e′ = {“aaccbb”, “aabb”}.

One major difference with typical FCA however is that we do not have
initially a finite and constructable set of attributes, but a potentially infinite
set of all the pseudo-regular expressions E that might apply on each of the
strings of C. The (.)′ function from the point of view of the strings in the
corpus is therefore defined so that it generates the minimal set of pseudo-regular
expressions that are necessary to characterise the strings of C. Considering S a
set of strings, S′ ⊆ E is the set of the most specific pseudo-regular expressions
matched by all the strings in S. The most specific pseudo-regular expressions
are the ones for which none of the ∗-wildcards can be replaced, prefixed or
suffixed by a concrete sub-string and still match all the strings of S.

Thanks to these definitions, the notion of closure applies to string patterns
similarly as to objects and attributes of typical FCA. We can therefore define
a string pattern-concept as a pair (S, P), where P is a set of pseudo-regular
expressions and S is the set of strings of C that match all of P , such that
S′ = P and P ′ = S. The subconcept relation applies to string patterns in a
similar way as in typical FCA and complies with the natural intuition of the
notion of a regular expression being more specific than another, i.e. that it
is matched by a subset of the matching strings of the more general regular
expression. More formally, (S1, P1) ≤ (S2, P2) iff S1 ⊆ S2.

3.3 Lattice building for string patterns

The objective of adapting FCA to string-patterns as defined above is that we
can then reuse the techniques employed by FCA, especially concept lattice con-
struction, to the extraction of string (URI) patterns. Here, we take inspiration
from well-known incremental lattice construction algorithms [5], which have
shown to represent an useful trade-off between efficiency and flexibility. Indeed,
the incremental nature of these algorithms means that we can extend the set
of strings C (here, a sample set of URIs) without having to rebuild the entire
lattice.

The central task of these algorithms is to find common patterns (the closed
itemsets, i.e., combinations of attributes/objects that form concepts) in the con-
sidered objects, and to classify them within the hierarchy being constructed. A
core operation to achieve this is the one that, given two string patterns (which
might be concrete strings from the set of individuals), generates the most specific
common string pattern generalising (or matching) both. To achieve that, we
adapt an algorithm to calculate the Levenshtein distance [10] between strings,
not to calculate their so-called edit distance, but to identify the minimal set of
addition, suppression and substitution operations necessary to transform one

5

string into another. We then replace the original characters where these opera-
tions occur by ∗-wildcards.

Using this method for example, the URIs http://data.open.ac.uk/course
/m366 and http://data.open.ac.uk/course/presentation/aa100-2006b are
generalised into the pattern http://data.open.ac.uk/course/*6*. Applying
it again between http://data.open.ac.uk/course/*6* and http://data.open

.ac.uk/course/aa100 gives the pattern http://data.open.ac.uk/course/*4.
We use this generalisation function in the lattice building algorithm to create
the most specific subsuming concepts of two existing concepts, as well as to test
subsumption between concepts: if the generalisation of two strings a and b is
equal to a, then a is a more general pseudo-regular expression than b.

Based on these elementary operations, the lattice building algorithm gener-
ates hierarchies of pseudo-regular expressions. For example, using as corpus of
strings C the set of URIs {http://data.open.ac.uk/course/aa100, http://
data.open.ac.uk/course/m366, http://data.open.ac.uk/course/presen-

tation/m366-2013b, http://data.open.ac.uk/course/presentation/aa100
-2013b}, we obtain the simple hierarchy of patterns (excluding concepts only
covering the individual URIs from C) shown in Figure 1.

Figure 1: Simple example of a lattice of URI string patterns.

3.4 Pruning the hierarchy

As obvious from the example in Figure 1, not all string patterns found in a set
of identifiers/URI would be relevant to the documentation of the design of these
URIs, as some of them are only shared by a small sub-part of the considered
strings. It is therefore necessary to prune the hierarchy so that it only contains
the (generally small set of) patterns that are significant.5

4Note that the result of this generalisation function is, in theory, not necessarily unique.
However, to simplify, we implement a deterministic way to only return one of the generalisa-
tions. While this affects the construction of the lattice in theory, it has little effect in practice
on the results of the application to URI pattern documentation and drastically reduces the
complexity of the process.

5It is worth noting that, while most of the patterns in the lattice will therefore be filtered
out as irrelevant, they still play a role in the construction of the selected ones, and in assessing
their relevance.

6

We therefore devise a method to filter out patterns based on three basic prin-
ciples: (1) Coverage: a set of patterns/concepts selected should cover all/most
of the set of strings C; (2) Connectivity: other than patterns/concepts at the
top of the hierarchy, a pattern/concept can only be selected if at least one of
its parents is selected; (3) Complementarity: selected patterns/concepts that
are not hiearchically related should not cover the same strings/individuals.

To address principles 1 and 3, we devise a method based on calculating how
a set of sibling concepts represent a partition of C. We define parents(c) as the
set of parents (subsuming concepts) of the concept c = (Sc, Pc) in the lattice,
and children(p) as the set of children (subsumed concepts) of p = (Sp, Cp).
Given a concept c, the following formula therefore gives a score score(x) to a
concept x, depending on how it is included in a set of siblings which partitions
C.

score(x) = max
p∈parents(x)

α
∣∣∣⋂c∈children(p) Sc

∣∣∣
|C|

+ β
1

1 +
∣∣∣⋃c∈children(p) Sc

∣∣∣
 (1)

In this equation, α and β are weights that can be used to give more or
less importance to principle 1 (coverage) or 3 (non overlap) respectively. In
our implementation we set them at 0.5 so that both aspects have the same
importance. To comply with principle 2, we apply this function with a threshold
(we use 0.99 to only keep the patterns which represent a partition of the set
of URIs being analysed) following the hierarchy from top to bottom, i.e. only
assessing for selection the children of selected concepts.

As mentioned above, in most cases only a few patterns/concepts will be
selected by following this approach. In the example of Figure 1 for instance,
only the top pattern http://data.open.ac.uk/course/* is selected.

4 Implementation and Evaluation

We implemented the approach above in a PHP-based framework which, given
a set of strings, builds the corresponding string pattern lattice, and applies
the pruning mechanism described in the previous section. On this basis, we
developed a tool6 which, given a SPARQL endpoint, extracts samples of URIs
associated to the classes used in the graphs (sub-datasets) of the endpoint, finds
the relevant URI patterns, and generates a Web interface to document them.
In this section, we describe the key points of this implementation and give
examples. We also evaluate the behaviour of the tool on several datasets or
various sizes, complexity and origins, focusing on the key performance factor,
i.e. the size of samples.

6http://linkedu.eu/muse

7

http://data.open.ac.uk/course/*
http://linkedu.eu/muse

4.1 URI Sampling

Given a class and (optionally) a graph from a SPARQL endpoint, querying the
endpoint to obtain a subset of URIs of instances of this class is rather trivial.
However, for this subset to be a representative sample of these URIs, they need
to be selected at random. We therefore employ the following SPARQL 1.1 query,
given a graph [g] and a class [c] obtained from prior SPARQL queries, as well
as a sample size [n]:

select distinct ?uri from [g]

where {?uri a [c]}

order by rand() limit [n]

This naturally limits the use of the tool to SPARQL 1.1 endpoints that support
the rand() function. Alternative sampling methods, which we will explore
in later versions of the tool, can help relax this limitation. A key parameter
affecting both the performance – as lattice construction complexity is highly
dependent on the size of the population – and the accuracy of the results – i.e.
whether the right patterns are found and selected – is therefore the size of the
sample [n]. We assess this impact in Section 4.4, whilst exploring the trade-off
between these two aspects.

4.2 Documentation generation

The documentation of the URI patterns employed in an endpoint is divided
according to the endpoint’s graphs (if the endpoint is divided in graphs) and
the classes that each graph instantiates. The endpoint is therefore first queried
to retrieve the list of graphs, and for each graph, the list of classes used as types
of entities within the graph. The sampling query described above is then applied
to generate the base population for lattice construction (the set of strings C).
An example of the generated documentation interface is shown in Figure 2,
as integrated within the interface of the LinkedUp catalogue of educational
datasets7.

As will be shown in the evaluation section, depending on the number of
graphs and classes, on the sample size, on the complexity of the URIs and on
the response time of the SPARQL endpoint, the tool can take up to several
minutes to generate the entire documentation. We therefore also implemented
a series of caching mechanisms, by storing the results first of SPARQL queries
and then of the lattice construction process. As a result, while it might take
some time to generate the documentation initially, the extracted patterns are
persisted and can be retrieved in negligible times, unless the caches are reset.

4.3 Examples and Usage

One of the main motivations for building this tool was to provide the generated
documentation as part of the LinkedUp catalogue of educational datasets. This

7The LinkedUp catalogue http://data.linkededucation.org/linkedup/catalog/

8

http://data.linkededucation.org/linkedup/catalog/

catalogue (see [2] for a preliminary analysis of its content) gathers SPARQL
endpoints from various origins that might, individually or in combination, be
useful to developers of educational applications. We therefore integrated the
tool described above (with a sample size of 10) in the interface that describes
each endpoint on the LinkedUp catalogue (see Figure 2). Besides the more
formal evaluation of the next section, this provides us with a view of the results
of the tool in different situations.

As expected for example, many classes in many of the graphs are repre-
sented with a unique and very simple pattern. Course modules (aiiso:Module)
in data.open.ac.uk (following our earlier examples) are, for instance, associ-
ated with the pattern http://data.open.ac.uk/course/*. More interestingly
however, there is a specific type of course (online courses - ou:OnlineCourse)
whose detected pattern is http://data.open.ac.uk/course/*zx*: the codes
of online courses, used in the last part of the URIs, are indeed built by tak-
ing the code of non-online courses and adding ‘zx’ in addition to another first
letter. Also, this example shows how the way URI patterns are hierarchically
organised by the lattice construction technique can sometimes help understand-
ing the space of URIs covered. Indeed, two significant patterns are found as
children of the one for online courses: One showing that most online courses
have codes starting with ‘bzx’ (.../bzx*) and another showing that exceptions
exist where it starts with ‘dzx’. The .../*zx* pattern therefore represents the
general ‘rule’ for building such identifiers, while the two others are sub-rules
that form a partition of the URI space (it is either a ‘bzx’ online course or a
‘dzx’ online course).

Many other similar cases clearly show how URIs are constructed, sometimes
in a sophisticated manner. In linked.opendata.cz for example, one graph
contains the class frbr:Expression with the URI pattern

http://linked.opendata.cz/resource/legislation/cz/act/1993/15-1993/version/cz/201*-*-01/section/*

where we can clearly recognise that one part of the URI is constructed to
represent a date (supposedly of publication). In the same endpoint, but another
graph, we can find a class Product with the pattern

http://linkedopendata.cz/resource/fda-spl/product/*

and another class ProductIngredient with the pattern
http://linked.opendata.cz/resource/fda-spl/product/*/product-ingredient/*.
We can therefore expect instances of the former to represent ingredients

of the products which identifiers are represented in the first part of the URI.
It is interesting to note that, while some URIs in this endpoint might appear
very sophisticated, the pattern detection reveals that the part which is actually
significant is not necessarily complex. For example, in one of the graphs, Dosage
is associated with the pattern

http://linked.opendata.cz/resource/drugbank/dosage/*-A1E*-11E2-dce1-09173F13E4C5.
No doubt that codes which are therefore constant at the end of the URIs

would have some significance to a domain expert or the originator of the data.
Interestingly, the tool for URI pattern documentation can also be used to

detect errors, inconsistencies or mistakes in the way URIs are built. For ex-
ample, in data.cnr.it the class foaf:Person is associated with the pattern

9

http://vocab.deri.ie/void#* (i.e., the namespace of the VoID vocabulary).
According to one of the creators of this endpoint, also the third author of this
paper, this was due to the actual data in the endpoint using another class
(http://www.cnr.it/ontology/cnr/persone.owl#Persona) for people. How-
ever, the RDF of the VoID vocabulary, which includes URIs for its authors as
instances of foaf:Person, is also imported in the dataset.

Finally, cases of specifically constructed URIs show how the pattern detec-
tion mechanism is flexible in the way it can find significant invariants in URIs
through not imposing assumptions on their structure. A typical example is the
one of the vcard:Voice class of one of the graphs of data.ox.ac.uk, which
has for top URI pattern tel:+441865*, with +441865 being the prefix of phone
numbers in Oxford, UK. In another graph of the same endpoint, dedicated to
the IT services of the university, the same class is associated with an even more
specific pattern: tel:+44186527320*, which hints at how IT support lines can
be reached.

4.4 Evaluation

There are two key aspects that need to be considered in evaluating the approach
and the tool proposed in this paper:

1. Stability of the results: The results of each pattern extraction task are
by nature uncertain as they rely on random samples to find significant
patterns. Understanding how stable the results are depending on the
sample size gives us a confidence indicator on whether or not the pattern
found is significant.

2. Performance: The techniques employed in the tool are complex (see e.g. [9]
on the complexity of lattice construction in FCA). Besides the number of
graphs and classes in an endpoint (which will affect the number of times
URIs are sampled and a lattice is built), the time to construct a lattice is
highly dependent on the size of the initial population, represented by the
sample size here.

Of course, we do not expect the tool to process an entire endpoint in under a
few minutes, as it will in most cases have to generate several dozen lattices and
will anyway only be required to do so once (as explained above, the resulting
documentation does not require to be computed more than once if there are no
significant changes to the data in the endpoint). It is expected, however, that
an increased size of samples will affect positively the stability of the results,
while impacting negatively on performance. One of the goal here is therefore
also to assess what is the right trade-off between the two aspects, i.e., what size
of sample is large enough to give acceptable results while keeping computing
time reasonably low.

As expressed in the previous section, one of our main motivations for this
work was to provide an interface for users of the LinkedUp catalogue of educa-
tional datasets to have an overview of the type and design of identifiers in these

10

Table 1: Overview of the test SPARQL endpoints.
Endpoint Description Graphs Classes Triples
http://data.open.ac.uk/query The Open University 25 82 2,733,194
http://data.linkedu.eu/slidewiki/query SlideWiki RDF export 1 6 53,300
http://linked.opendata.cz/sparql Open Data Czech Republic 45 188 71,085,064
http://data.aalto.fi/sparql Aalto University 8 22 1,547,552
https://data.ox.ac.uk/sparql/ (OxPoints) Oxford University 99 131 296,881
http://data.uni-muenster.de/sparql Muenster University 27 85 1,947,320
http://data.linkedu.eu/hud/query Hud. Uni. Book Borrowings Stats 4 6 3,553,343
http://data.linkededucation.org/ LAK Data Challenge 13 14 37,194
request/lak-conference/sparql

datasets. We therefore focus our evaluation on a sub-set of the endpoints in this
catalogue. These endpoints were selected because they support the rand() func-
tion in SPARQL 1.1, they include named graphs and they were stable enough to
sustain the series of queries our experiments required. The selected endpoints
are summarised in Table 1.

To assess the performance of the pattern extraction technique, we ran it
(with the caching mechanisms disabled) on a virtualised server with PHP 5.3,
Apache HTTPD, 4 cores and 8GB of RAM using varying sample sizes (5, 10,
15, 25, 30, 35 and 40), and logged the time taken specifically to extract patterns
(i.e., excluding the query time to the endpoint, since it is dependent on factors
out of our control). To assess stability, we ran each of these tests 5 times on
different samples and logged the results for comparison.

Figure 3 shows the results of the stability test in terms of the average stability
(in percentage) for each of the tested sample sizes. Here, percentage of stability
refers to the average size of the stable part of the 5 tests, i.e., if 4 out of 5 results
were the same for a given endpoint, graph and class, then the assessment of
stability is 80%.

As can be seen from this figure, while large variations can be observed be-
tween endpoints (some never reaching more than an average of 80% stability,
and others reaching 100% from the smallest sample size), most endpoints on av-
erage reach a plateau of stability at a sample size of 10 or 15, reaching in most
cases between 80% and 90%. This shows that such sample sizes are sufficient
to reach acceptably accurate results. Also, while it cannot be easily assessed
formally, often the erroneous patterns (the unstable ones) are similar to the ones
found to be stable.

The variations between endpoints can basically be explained by the variation
in the complexity of URIs in these endpoints, and in their significance within
the overall URI population. Reaching very good results at very small sam-
ple sizes happens in datasets where the URI patterns are very simple (mostly,
a namespace and a single, simple code for each type of entities) and are ap-
plied consistently. More unstable endpoints have more complex URIs (with
several variable parts, made of longer, more random codes), that might not be
as consistently applied (e.g., where there are exceptions, or even many different
conventions applied to the same type of entities).

11

Figure 4 shows the results of the performance evaluation, showing for each
endpoint the average time in seconds to build a lattice (in log scale) for each of
the tested sample sizes, as well as some indication of the maximum computation
times. As was expected, computation time increases steadily with the size of
the samples. It shows that for sample sizes below 20, each computation will
take only a few seconds on average.

A slightly unexpected aspect of this evaluation, which appears clearly in
this figure, is the large variations appearing in computation time for the same
sample sizes not only between endpoints, but also within endpoints (difference
between min – always 0 – and max). Very low computational times (0, i.e.
under a second even for large sample sizes) can be easily explained as being due
to exceptional cases of classes having very small number of instances (therefore
not reaching the limit in the size of the sample). Longer times are of course
more interesting. Indeed, it shows that the assumption that the time to compute
the lattice is dependent purely on the size of the population is actually naive.
One key aspect that affects computational time is the complexity or lack of
regularity in the patterns. Indeed, some of the most difficult cases are the
ones where one of the variable parts of the pattern (the ones changed into a
wildcard) is in individual URIs a long string of random characters (such as a
hashcode). Such cases naturally generate more intermediary (non-significant)
patterns, and therefore lead to larger lattices, which take more time to construct
for the incremental algorithm.

5 Conclusion

In this paper, we presented an FCA-based technique to extract URI patterns
from SPARQL 1.1 endpoints. This technique is used to create a tool that can
automatically generate an interface documenting how URIs are constructed for
each class of each graph of a dataset exposed through SPARQL. Sampling of
URIs is a necessary part of this approach. We therefore evaluated how the
size of the samples of URIs used to extract patterns affected both the stability
of the results and the performance of the tool on several datasets of various
origins, sizes and richness. Besides providing many examples showing the value
of the approach in terms of its flexibility and of the information provided to
the users (and even the developers) of datasets, this evaluation demonstrated
that, in most cases, small sample sizes of around 15 URIs picked randomly
were enough to obtain acceptable results. Such sample sizes lead to the URI
pattern extraction algorithm requiring only a few seconds for each graph and
class, meaning that even in datasets with a large number of such graphs and
classes, generating the whole documentation will take a few minutes at most.

While the value of documenting the content and structure of linked datasets
is evident, and the design of URI patterns is a core aspect of the creation of a
linked dataset, it is an area that has not received much attention so far. The
approach proposed here therefore constitutes a first contribution in this area,
which has the advantage to be both formally grounded (using FCA as a base

12

foundation) and concretely implemented (in a usable tool, integrated with the
LinkedUp data catalogue). There are however limitations that we are planning
to address in our future work. One of them is the reliance on SPARQL 1.1.
The reason for this is that it allows us to efficiently achieve random sampling.8

Indeed, the rest of the technique is independent from the way sample URIs are
obtained (it could even be used with other types of identifiers, or even other
kinds of strings). An efficient way to sample URIs randomly from a SPARQL 1.0
endpoint or other data access methods would therefore broaden the applicability
of our tool.

Besides the technical implementation of sampling, another aspect that can
be explored is how sampling can be performed in a smarter way, through dy-
namically assessing the results and extending the sample as needed. Indeed,
one approach would be to iteratively increase the size of the sample and incre-
mentally build the lattice until an acceptable level of stability has been reached.
Another complementary approach would be to interrogate the endpoint to as-
sess the completeness of the current results, checking whether URIs exist that
do not comply with the top-level patterns that were obtained, adding samples
of such noncompliant URIs to the lattice being built. The possibility of im-
plementing such strategies is actually the reason why we used an incremental
lattice building algorithm.

Performance is obviously one aspect that can be improved from this first
version of the technique/tool. While, as discussed above, the advantage of an
incremental lattice construction algorithm is that it makes it possible to itera-
tively increase the size of the sample, it is also less efficient than an algorithm
that builds the lattice using the whole population at the same time. Implement-
ing such an approach as a way to reduce at least the time to build the initial
lattice would therefore reduce the time needed to generate the documentation.
Considering the type of results we obtain, one could argue that other, possibly
simpler ways (not based on FCA) to generalise URI strings into patterns might
be more efficient. However, FCA-based algorithms are explicitly designed to
efficiently achieve such tasks, using the hierarchical structure of the lattice to
avoid unnecessary comparisons. This hierarchical organisation of the results,
while not strongly featuring in the final documentation presented to the user,
is also a key aspect in our approach to filter URI patterns.

Finally, an interesting aspect to explore is the way in which the extracted
patterns could be used beyond providing potential users with an overview doc-
umentation of an endpoint. We have already discussed use cases where the
creators of datasets could detect peculiarities in their URIs and use this infor-
mation to improve their consistency. Another interesting use case is to support
data linking, through providing information about the way to construct the tar-
get URIs for the links. An interesting further extension of our approach related
to this use case would be to enable more complex patterns that not only re-
place the variable part of the URIs with a wildcard character, but with some

8This is a strong requirement, as, while it is not in theory significant, the order in which
results of SPARQL queries are returned by endpoints tends to introduce a very significant
bias with respect to URI patterns

13

indications of its relationship to the data associated with the entity (e.g., that
the URI of a book is formed using its date of publication and a number, or its
ISBN).

References

[1] D. Ayers and M. Völkel. Cool URIs for the Semantic Web. W3C Interest
Group Note, http://www.w3.org/TR/cooluris/, 2008.

[2] M. d’Aquin, A. Adamou, and S. Dietze. Assessing the educational Linked
Data landscape. In ACM Web Science, 2013.

[3] L. Dodds and I. Davis. Linked Data patterns. Online book - http://

patterns.dataincubator.org/book/, 2012.

[4] O. Eriksson and P. Ågerfalk. Rethinking the meaning of identifiers in
information infrastructures. Journal of the Association for Information
Systems, 11(8), 2010.

[5] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation
algorithms based on Galois (concept) lattices. Computational intelligence,
11(2), 1995.

[6] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard.
URI template. IETF RFC 6570, http://tools.ietf.org/html/rfc6570,
2012.

[7] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S. Decker.
An empirical survey of Linked Data conformance. Web Semantics: Science,
Services and Agents on the World Wide Web, 2012.

[8] K. Janowicz, A. Bröring, C. Stasch, and T. Everding. Towards meaningful
uris for linked sensor data. In Towards Digital Earth: Search, Discover and
Share Geospatial Data. Workshop at Future Internet Symposium, 2010.

[9] S. O. Kuznetsov and S. Obiedkov. Comparing performance of algorithms
for generating concept lattices. Journal of Experimental and Theoretical
Artificial Intelligence, 14(2-3), 2002.

[10] V. Levenshtein. Binary codes capable of correcting deletions, insertions an
reversals. Cybernetics and Control Theory, 10, 1966.

[11] M. Nottingham and E. Hammer-Lahav. Defining well-known uniform re-
source identifiers (URIs). IETF RFC 5785, http://tools.ietf.org/

html/rfc5785, 2010.

[12] R. Wille. Why can concept lattices support knowledge discovery in
databases? J. Exp. Theor. Artif. Intell., 14(2-3), 2002.

14

http://www.w3.org/TR/cooluris/
http://patterns.dataincubator.org/book/
http://patterns.dataincubator.org/book/
http://tools.ietf.org/html/rfc6570
http://tools.ietf.org/html/rfc5785
http://tools.ietf.org/html/rfc5785

Figure 2: Screenshot of the URI pattern extraction tool (bottom) integrated
with the interface of the LinkedUp data catalogue. URI patterns are show for
each class of each graph of the data.open.ac.uk endpoint.

15

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40
Sample size

A
ve

ra
ge

 S
ta

bi
lit

y
[0

..1
]

endpoint

http://data.aalto.fi/sparql

http://data.linkededucation.org/request/lak−conference/sparql

http://data.linkedu.eu/hud/query

http://data.linkedu.eu/slidewiki/query

http://data.open.ac.uk/query

http://data.uni−muenster.de/sparql

http://linked.opendata.cz/sparql

https://data.ox.ac.uk/sparql/

Figure 3: Average stability of results for different endpoints with different sam-
ple sizes.

16

1

100

10 20 30 40
Sample size

T
im

e
(s

)

endpoint

http://data.aalto.fi/sparql

http://data.linkededucation.org/request/lak−conference/sparql

http://data.linkedu.eu/hud/query

http://data.linkedu.eu/slidewiki/query

http://data.open.ac.uk/query

http://data.uni−muenster.de/sparql

http://linked.opendata.cz/sparql

https://data.ox.ac.uk/sparql/

Figure 4: Average and max time in seconds for building a lattice in different
endpoints with different sample sizes.

17

	Introduction
	Related Work
	An FCA-based approach to extracting URI patterns from SPARQL endpoints
	Overview of basic FCA notions
	Adaptation to building hierarchies of string patterns
	Lattice building for string patterns
	Pruning the hierarchy

	Implementation and Evaluation
	URI Sampling
	Documentation generation
	Examples and Usage
	Evaluation

	Conclusion

