
Describing semantic web applications
through relations between data nodes

Enrico Daga1, Mathieu d’Aquin1, Aldo Gangemi2 and Enrico Motta1

(1) Knowledge Media Institute, The Open University
{enrico.daga,mathieu.daquin,enrico.motta}@open.ac.uk

http://kmi.open.ac.uk/
(2) Institute of Cognitive Sciences and Technologies,

Italian National Research Council
aldo.gangemi@cnr.it
http://istc.cnr.it/

Report, May 21, 2015

Abstract

Semantic Web Applications can only be understood if the complex
data flows they implement are clearly described. However, application
developers have very little support at the moment for documenting
such data flows and their rationale, in an appropriately formal and
conceptual manner. In this paper, we propose to apply a knowledge
engineering approach to the formal description of Semantic Web Ap-
plications. Following an ontology building methodology based on
the analysis of several existing Semantic Web Applications, we devise
an abstract, foundational model of data flow descriptions which fo-
cuses on the graph of relationships between “data objects” within the
application, rather than the tasks and processes being implemented.
The result is Datanode, a conceptual framework designed to describe
systems by expressing relations between data nodes (objects), imple-
mented as an ontology of the possible relationships between such data
nodes. We evaluate Datanode by applying it to the description of eight
recent Semantic Web Applications.

Keywords: Semantic Web Applications, Linked Data, Ontology, Knowledge
Engineering, Data Integration, Data Documentation

1



1 Introduction

Semantic Web Applications can be considered as systems operating in the
World Wide Web that follow principles or incorporate technologies of the
W3C Semantic Web such as RDF and other standards [1]. We restrict this
pragmatic definition by considering as Semantic Web Applications systems
that, in addition: (1) make use of information from sources they do not con-
trol; (2) manipulate it to produce new knowledge; (3) process the resulting
data for presentation in a new form.

This definition embraces a set of systems whose complexity makes them
hard to be apprehended by final users, not to mention software agents. The
output of Semantic Web Applications is the result of a process which is
hidden in the code. However, providers of applications have no method
for declaring the rationale behind the information they offer to the user.
How are the resulting data justified? How the presented data connect to
the sources exploited by the application? Which were the assumptions that
have been considered to support the implementation? Answering these
questions, along with providing formal support to interpreting the output of
a Semantic Web application, could help users understand and trust it. There
should be a way to provide a formal context to the data that Semantic Web
Applications have now started to publish and republish in multiple forms
on the WWW. We argue that we can document this diversity coherently.
This documentation should be generic enough to be fruitfully exchanged,
and expressive enough to be useful. To obtain this, it is necessary to abstract
from the specific technologies and implementations of concrete systems.

In this paper we propose to apply a knowledge engineering approach
to the formalisation of descriptions of Semantic Web Applications. We
observed that these systems have a strong focus on “data objects” that may
emerge as input or output at different steps of the process and/or layers
of an application’s architecture. We started from this common ground.
We decided not to represent them in terms of tasks and processes but to
describe them as a graph connecting “data nodes”. The result is Datanode, a
conceptual framework designed to describe systems by expressing relations
between data objects, which is implemented as an ontology.

We report on the design and implementation of Datanode and on its eval-
uation by applying it to the description of eight Semantic Web Applications.
The evaluation demonstrates that these applications can be understood as
networks of data nodes.

2



2 Related work

The problem of trustworthiness of information on the web of data can be
seen as a provenance issue. In [2] the authors develop a vocabulary to
annotate data with provenance information, including metadata about the
process, involved software and provider. The goal is to support the selection
of linked data sources based on trustworthiness. The Linked Data Value
Chain [3] is a conceptualisation targeted to the design of business models
that make use of linked data. This model can be used to analyse the roles
of providers and data in a linked data applications. A component based
approach to the design of Semantic Web Applications have been discussed
in [4]. Our research problem raise a complementary issue: how to support
the understanding of data that is produced by Semantic Web Applications?

In [5] an approach based on knowledge engineering has been applied to
classify Semantic Web Applications with respect to reasoning patterns. In
this work the objective is to abstract the tasks to design inference processes.
Similarly, Semantic Web Applications have been classified in [1] by analysing
the functionalities offered to the users with the aim of extracting generic
requirements to support and improve the development methods. These
efforts were targeted to understanding the structure of a system while we
focus on the characterisation of the data manipulated in order to support
the interpretation and documentation of its output.

The description of data flows as workflows is part of traditional ETL1

and research on data integration [7] in database systems. Rather than the
way data are managed, which is what the relational model is about, we care
about the way they are manipulated. Workflow description is also part of
the research on Semantic Web Services [8]) and, more recently, on Linked
Stream Data processing [9]. Workflow-centric Research Objects [6] have been
designed with the objective of make persistent (and reproducible) research
experiments in the scientific discourse. However, workflows are made of
agents, tasks, processes and methods. We are interested in analysing the
relations beween data objects instead.

Our task is comparable to the documentation of software architectures
[10]. The literature in this field emphasises the multiplicity of structures
existing in information systems. We choose the point of view of data and
designed an ontology to describe data flows. Our design methodology
has been iterative, incremental and test-driven, and is strongly inspired by
Extreme Design in ontology engineering [11].

1http://en.wikipedia.org/wiki/Extract,_transform,_load

3



3 Knowledge Engineering Methodology

Understanding the output of systems requires a certain degree of confidence
in the domain of the application as well as with the methods and tasks
the application implements. The main question here is: how to devise a
common, generic conceptualisation to describe heterogeneous and diverse
data flows? Our methodology to build such a conceptualisation therefore
starts from a survey of existing Semantic Web Applications. It is summarised
as follow:

a) Selection. Select applications described in recent contributions to
Semantic Web conferences by using the definition of Section 1.

b) Acquisition. Isolate the descriptions of each application from the
related paper.

c) Use case abstraction. Generalise the description by translating it to a
generic synopsis.

d) Design. Annotate the synopsis with names of classes and properties
that appear in the text; generate a draft ontology and then refine it
through discussions.

e) Testing. Model the synopsis using the ontology. Testing was done in
parallel with the design phase, until all cases were fully covered.

In the following sections we report on the process that led to the Datanode
ontology. As illustration, we will use the evolution of a snippet from DBRec
[14]. We will leave out the testing phase, that is covered in Section 5, where
we discuss the evaluation of the ontology through descriptions of concrete
systems.

3.1 Selection & acquisition

We selected six applications described in recent contributions to Semantic
Web conferences that fit well our definition of Semantic Web Application:
Aemoo [12], DBRec [14], DiscOU [15], Spud [13], Yokohama Art Spot [16],
EventMedia [17]. All these are applications that do not start from a dedi-
cated dataset, but transform some existing sources for some final task. We
added Rexplore [18] and IBM Watson [19] at a later stage, to strenghten
our evaluation (see Section 5). We started by isolating the portions of text
describing the system. When the system was including several different
features and descriptions spread over many points in the document, we
isolated all of the snippets and merged them in a unique picture at a later
stage. This example is extracted from the discussion of a data preparation
process in DBRec:

4



“On the other hand, we identified lots of redundancy and inconsistencies in our DBpedia sub-

set. Especially, many links between resources are defined redundantly as http://dbpedia.org/ontology/xxx

and at the same time as http://dbpedia.org/pro-perty/xxx. We then removed duplicates,

leading to 1,675,711 triples, i.e. only 55.7% of the original dataset.”

3.2 Use case abstraction

The aim of this activity was to try and extract generic use cases from specific
ones. We went through each description and translated it into a list of atomic
sentences, each describing a step of the process (or a specific feature). We
obtained a synopsis from each text snippet. During this process we tried to
abstract from the specific examples, replacing peculiar aspects with their
generalisation, when possible. We obtained a set of synopses, covering
several aspects of Semantic Web Applications, similar to the following:

1. having data with redundancies and inconsistencies

2. remove redundancies and remove inconsistencies

3. remove duplicates (same as redundancies?)

4. data is now 55.7 percent of before

As a result of this process we obtained a list of text snippets describing
system features, each coupled with a synopsis. The whole set of synopses
constituted our modelling requirements.

3.3 Ontology design

We traversed the collection of synopses and treated each sentence as stan-
dalone. We annotated each sentence with a set of keywords. We then looked
at the keywords and modified them in order to make them represent either
a verb or a type of things. In the above case, we wrote it capitalised:

0) access, Data, Redundancy, Inconsistency

1) remove, Redundancy, Inconsistency

2) remove, Duplicate

3) Data, Now, Before

We traversed all synopses several times, trying to harmonise the concepts
(e.g., merging synonyms) while maintaining the specificities emerging from
each case.

5



We then collected all 159 keywords from our annotations, analysed them
trying to reduce redundancy (for example normalising names to be singular).
The result was a list of concepts and verbs. We automatically generated a
draft ontology considering all concepts to be istances of owl:Class and all
verbs to be relations between (yet) unspecified things. This draft ontology
included 132 classes and 168 properties, covering several different aspects of
a Semantic Web Application. Here is a sample list: Operation, Collect, Opti-
mize, Capability, newer-version-of, not-fits, before, Entity, Dataset, about,
Summarize, component-of, Stand-in, concern-of, derive-from. The next step
of the process required to abstract and simplify this automatic, disorganised
and heterogeneous ontology. This was based on two main observations:
1- many of the types represented data sources of objects in various forms;
and 2- many of the processes could be represented through the relation-
ships between their input data and their output data. The foundation of the
Datanode ontology is therefore devised as a simple abstraction including
a unique class, Datanode, which represents “data” in a broad sense (data
sources of any kind or format), and formalised relationships between these
datanodes.

Figure 1: Example test case, from DBRec [14]

With this foundation established, we then refactored all the elements
obtained in the previous steps so that they are either abstracted into the
Datanode class, or formalised as properties of the Datanode class, as de-
scribed in the next section.

4 The Datanode ontology

The Datanode ontology terms are under the http://purl.com/datanode/ns/
namespace2. The ontology defines a unique type - Datanode - and 114 rela-
tions, starting from a single top property: relatedWith, having Datanode as
domain and range. We found data to have several different facets in the sys-

2Documentation is online at http://purl.org/datanode/docs/. It includes a tree dia-
gram of the relations and usage examples.

6



tems’ descriptions, examples include: sets of data, data sources, identifiers,
individuals - but even methods (like in Aemoo [12]). The Datanode class
abstracts from the notion of dataset and it is independent from the notions
of containment, individual or identifier. A datanode is any data object. The
class groups datasets, individuals, schema elements such as classes and
properties, as well as identifiers under the same umbrella. The nature of this
concept is voluntarly underspecified. Datanode relations can be grouped in
ten “branches” covering several aspects of a semantic web data flow:
meta. This branch covers the relations between something and its meta-
data. “Meta” is used to designate a relation with information that ap-
plies to the datanode as a whole, possibly including it. The top relation
is “metadata”, which has for inverse “about”. This kind of relations spe-
cialises as describes/describedBy, hasAnnotation/isAnnotationOf and hasStatis-
tic/isStatisticOf (we will follow this convention to pair relations that are
inverse of each other).
reference. The top relation is references/referencedBy. A datanode includes
a mention to something which is another datanode. This branch covers
linking (as intended in the context of linked data) - links/linkedBy; as well
as dependencies between data objects (hasDependency/isDependencyOf ) and
between data and a schema definition, for example an ontology (usesS-
chema/schemaUsedBy).
derivation. This relation indicates that a datanode is the origin of an-
other, in the sense that the second have been produced using the first
as information source. It is possible that a source hasInterpretation (isIn-
terpretationOf ) some other data, as a result of a mining process - hasEx-
traction/isExtractionOf ; or a logical process - hasInference/isInferenceOf. A
relation processedFrom/processedInto is identified when a derivation is also the
transformation of a data node into another one, being it cleanedFrom/cleanedInto,
optmizedFrom/optimizedInto, refactored, remodelled or the result of a computa-
tion - hasComputation/isComputationOf. It is possible to derive a new data
node by making a copy - hasCopy/isCopyOf, when making snapshots or
caching strategies (hasSnapshot/isSnapshotOf, hasCache/isCacheOf ). We con-
sider also the case when a derivation is done by cloning a part of a datanode
with specific features - hasSelection/isSelectionOf.
adjacency. adjacentTo is used to represent proximity between two datan-
odes without assuming any special relation at domain level. Proximity may
result from being parts of the same dataset - disjointPartWith. Another case
of proximity is between an object and its attachment - hasAttached/attachedTo.
The hasAnnotation/isAnnotationOf relation, mentioned above, specialises
also hasAttached/attachedTo.
partition. A datanode may be described as container of other datanodes:

7



hasPart/isPartOf. A first distinction is done via hasSection/isSectionOf and
hasPortion/isPortionOf. We call “section” the partition of a datanode by the
means of a set of attributes (with no information about its population), while
“portion” is a partition done by keeping a part of the population (with no
information about the attributes). In the extreme case, hasSection can be
further specialised into hasIdentifiers/identifiersOf. A portion can also be
a sample - hasSample/isSampleOf. Deriving by selection is also a way of
isolating a part of the source, thus hasSelection/isSelectionOf appears also on
this branch, with the sub-property hasExample/isExampleOf.
vocabulary. The range of hasVocabulary is a datanode which enumerates
a set of terms that are all used by the subject data node as identifiers
(inverse is isVocabularyOf ), to name structural elements like hasDescrip-
tors/descriptorsOf. These can be attributes, relations, or to link a datanode to
its types - hasTypes/typesOf or datatypes with hasDatatypes/datatypesOf. This
is different from the case of a relation with a schema (under “references”): a
schema is defined independently from the actual data.
version. This property implies a temporal relation between two data nodes
that are meant to be the same at a different point in time. We find under
this category relations such as newerVersionOf /olderVersionOf and nextVer-
sionOf /previousVersionOf. versionOf is symmetric and does not specify a
direction. It is not transitive. While it can be argued that the identity of
something tracked over time should not change, thus implying transitivity,
we want to support the case when a datanode has more than one single
following version (branching).
update. A data node may be related to another because it contributes to
improve its validity. hasUpdate (inverse isUpdateOf ) may happen in the
form of a new version that is meant to substitute the original (hasUpdated-
Version/isUpdatedVersionOf, which is also under the hasVersion umbrella).
While the updating (as activity) can be seen as a way of versioning, the
two concepts are different when modelled as relations between datanodes.
An update may not replace its target datanode. It is the case when the
update is meant to modify the data node: hasChange/isChangeOf and its
sub-properties hasAddition/isAdditionOf and hasDeletion/isDeletionOf.
consistency. This aspect is covered by two properties: consistentWith and
inconsistentWith. We intend (in)consistency in a wide sense: two datanodes
are (in)consistent because they are (not) compatible in some fundamental
respect. For example, (in)consistentWith may be used to indicate a data
node that should (not) be used together with another. In some settings, it
may be useful to specify that some datanodes are consistent with others,
eventually to state that a datanode is consistentWith itself. It is also possible
that a datanode is inconsistentWith itself, meaning that it is wrong, buggy or

8



somehow corrupted.
capability. Capability is intended as “the power or ability to generate some
outcome”3. Similarly to consistency, capability is covered with two separate
branches starting from overlappingCapabilityWith and differentCapabilityFrom
respectively. Two data nodes may have similar potential. This may refer
to any kind of feature, be it structural (e.g., they share schema elements),
physical (e.g., they are both in XML) or related to the domain (they both
talk about Music Artists) - to name but a few examples. This relation is
intentionally left abstract since there might be many different ways to ex-
press capabilities. Extensions for specific use cases can of course be made
as specialisations of this relation. Datanode therefore only contains a few
general cases: overlappingVocabularyWith and overlappingPopulationWith, both
leading to redundantWith, sameCapabilityAs and duplicate - all describing a
similar phenonmenon with different intentions. Under this scope we also
positioned optimizedFrom/optimizedInto - to state the empowerment of an
existing capability; and cleanedFrom/cleanedInto - to represent the result of
a process aimed to make emerge a potential capability whilst maintaining
another fundamental one. In contrast, two datanodes may have different
potential. For example, two data nodes use different vocabularies (differ-
entVocabularyFrom, or disjointSectionWith, when parts of the same datanode)
or have different population (differentPopulationFrom, or disjointPortionWith).
When both vocabularies and populations are different it is possible that two
datanodes have disjoint capabilities - disjointCapabilityWith.

5 Describing systems: evaluation in practice

In the introduction we made the assumption that a knowledge engineering
approach could produce a method to represent the diversity of semantic
web applications coherently. In this section we describe how the Datanote
ontology can be used to describe eight different systems. Six of these ap-
plications are the ones used in the survey part of the methodology. For the
evaluation phase we added two more applications, Rexplore [18] and IBM
Watson [19]. This evaluation corresponds to testing the requirements that
have been extracted from the survey on Semantic Web Applications. We con-
sider this an evaluation of both the abstract conceptualization - foundation
of the ontology, and of the ontology itself.

To setup an evaluation use case we followed a precise process starting
from the textual descriptions of the systems:

1. isolate portions of text describing the system (similarly of what hap-

3Definition from http://en.wiktionary.org/wiki/capability.

9



Figure 2: Description of the reuse of sources in the EventMedia mash-up
[17]. The input sources are the top nodes. The node at the bottom depicts
the output data, which is a remodelling of the data collected from various
sources according to a specific schema. Used branches: reference, derivation,
partition, capability.

pened in the initial phase of our methodology, see Section 3);

2. identify data source(s) and data output and model them as datanodes;

3. connect the two using the properties defined in the ontology to express
the data flow of the system, by adding any necessary datanode in
between.

The use cases are grouped following the definition of Semantic Web
Applications mentioned in Section 1.

SWAs make use of information from sources they do not control. Event-
Media [17] is a a web-based system that exploits real-time connections to
enrich content describing events and associate it with media objects4. The
emphasis here is on the linkage with multiple sources for collecting event
data and multimedia objects. Figure 2 displays how data in EventMedia
is kept from three public event directories and is enriched with data from
sources like the BBC or Foursquare [17]. The information is then presented
using the LODE ontology. Similarly, Yokohama Art Spot relies on linked
data to present the cultural offers of artistic institutions spread in the area of
Yokohama [16] - see Figure 3 .

4See http://eventmedia.eurecom.fr/.

10



Figure 3: Starting from the user’s location, Yokohama Art Spot [16] aggre-
gates information from artistic events and museums nearby, packing it in a
single web page. Used branches: derivation, partition

.

Figure 4: Syntetic description of the DBRec data preparation process. Used
branches: derivaton, partition, update, consistency and capability.

SWAs manipulate information to produce new knowledge DBRec is a
music recommendation system built using DBPedia [14]. The paper, among
other aspects, describes the preparation of the data done to maximise the
efficiency of the Linked Data Semantic Distance algorithm. The Datanode
graph depicted in Figure 4 shows how a process that goes from the DBPe-
dia dataset to an optimized and curated dataset can be formalised. SPUD
exploits semantic technologies to obtain business results in an environment
with hundreds of heterogenous real datasets coming from different data sources
and spanning multiple domains [13]. The system is a web application with
several functionalities. One of them is the “incremental semantic lifting of
data. [...] We capture provenance (using the latest W3C working draft) by making
views over datasets immutable” [13]. It is quite easy to show this engineering
solution purely at the knowledge level using datanodes (see Figure 5). In
the same application, some data are published in a slightly changed fashion

11



Figure 5: In Spud [13] the database is versioned. Each view is a snapshot
of the data, annotated with provenance information. Semantic linfting is
executed and stored in the views as data enrichment (they are the nodes
at the bottom, using the pattern hasAnnotation-isExtractedFrom). Uses:
reference, adjacency, version, derivation

in order to protect sensible information. Figure 6 represents this solution.
The published data can be described as composed by two sections, one
containing all the non private information from the database, the second
being an anonymisation of the private data (the new knowledge, in our
definition). DiscOU is presented as a discovery engine for Open Educational

Figure 6: In Spud [13] information which is publicely shared contains the
part of the database with no privacy concerns as well as some data which is
processed to hide sensible information. Uses: partition, capability, deriva-
tion.

Resources Using Semantic Indexing and Relationship Summaries [15]. The index-
ing component stores DBPedia entities extracted from the text of a Semantic
Web resource. Giving a resource as input the engine performs a similarity
search returning the best similar resources. This process is described in
Figure 7.

SWAs process the resulted data for presentation in a new form. This last
part of the evaluation is dedicated to show how the visible results of a sys-
tem’s behaviour can be sustained by a formal description with Datanode.
Aemoo is presented as a web application for exploratory search over the
semantic web [12]. The input requested is the name of a semantic web entity
(as string) and the output is a summarisation of the relevant knowledge

12



Figure 7: The similarity search process in DiscOU. This example shows the
usage of derivation, partition and capability.

about the entity extracted from dbpedia and other linked data sources and
arranged according a set of Knowledge Patterns [12] mapped to entity types.
We can see in Figure 8 a description of the system according to Datanode.
The output node dn:resourceSummary is dn:isSummarizationOf the input,
dn:remodelledFrom a node which in turn dn:isPortionOf DBPedia. The
output dn:usesSchema the knowledge pattern dn:isDescriptionOf the re-
source’s primary type, a dn:isSelectionOf the types of the resource, from the
set of dbpedia types. More precisely, the knowledge pattern is one of a set
of summarization methods which are a dn:combinationFrom knowledge
patterns and DBPedia types. It is clear that we have abstracted from the
implementation of Aemoo, while we have now a better understanding of its
output. Finally, the output is presented as dn:isStandInOf the data about
the input resource.

Rexplore “integrates statistical analysis, semantic technologies, and visual
analytics to provide effective support for exploring and making sense of scholarly
data” [18]. Figure 9 shows a diagram of the visualised information about
Topic’s trends. Publication trends is the number of publications associated
with a semantically enriched topic on a timeline; similarly, author trends is
the number of associated authors. Migration trends is the number of esti-
mated migrations between two topics computed by analysing the shifting
in authors’ interest.

IBM Watson is the well known computer that became famous after
winning the Jeopardy! contest. Figure 10 shows the data flow of the system
as it is described in the Wikipedia page [19].

13



Figure 8: Description of AEMOO [12]. The input is a resource described in
DBPedia. The system outputs a resource summary. Used branches: meta,
reference, derivation, partition, vocabulary.

We have been able to express with Datanode all the data flows of the
Semantic Web Applications collected. The following table shows the cover-
age of the Datanode ontology branches on each application considering not
only the descriptions reported here but all the use cases evaluated:

EventMedia Yokohama Art Spot DBRec Spud DiscOU Aemoo Rexplore IBM Watson
meta x x
reference x x x
derivation x x x x x x x x
adjacency x x
partition x x x x x x x x
vocabulary x x x
version x
update x
consistency x
capability x x x x x

6 Conclusions

In this paper we devised a conceptualisation of data flows within Semantic
Web Applications which is based on describing relationships between datan-
odes. This abstract conceptualisation, implemented in an ontology was
designed based on the analysis of several Semantic Web Applications of var-
ious origins and was evaluated by showing that it can be used to adequately
capture data flows implemented by these applications and others.

We know from the literature [10] that understanding a software system is

14



Figure 9: The visualised information about the trends of :aTopic in Rexplore.
The web page includes publication trends, author trends and migration
trends. Uses: meta, derivation, partition.

not achievable without choosing a certain facet as focus of the analysis. We
choose the “data” to be our “ideological perspective” because we observed
Semantic Web Applications and saw that manipulating data is the facet they
had in common. As stated several times in the paper, the Datanode ontology
and the class Datanode are voluntarly abstract. As a result, often the same
system could have been described in different ways, all perfectly valid.
This distinctive aspect of each representation - be the result of intentional
choices - is important because it formalises and makes explicit the intention
that system’s authors put in their descriptions, and which is often hard to
document differently than in natural language.

We focused here on improving the understanding of the output of Se-
mantic Web Applications. It can be argued that the same approach could
be tested by describing a wider range of applications, for instance in the
context of sensor networks or data intensive systems.

15



Figure 10: Watson at Jeopardy!, from the “clues” to the set of answers “buzzer
activators”. This has been designed from the description on Wikipedia [19].
Uses: derivation, partition and capability.

References

1. Oren, E.: Algorithms and Components for Application Development on
the Semantic Web. PhD thesis, Nat. Univ. of Ireland, Galway (2008)

2. Hartig, O., Zhao, J.: Publishing and Consuming Provenance Metadata
on the Web of Linked Data. In: Provenance and Annotation of Data and
Processes. Third International Provenance and Annotation Workshop
(IPAW), Troy, NY, USA, June 15-16. LNCS Volume 6378, pp 78-90, Springer
(2010)

3. Latif, A., Hoefler, P., Stocker, A., Ussaeed, A., Wagner, C.: The Linked
Data Value Chain: A Lightweight Model for Business Engineers. In:
Proceedings of International Conference on Semantic Systems, pp. 568-
576, Graz, Austria, 2-4, Sep. 2009. (2009)

4. García-Castro, R., Gómez-Pérez, A., Muñoz-García, Ó., Nixon, L. J. B.:
Towards a Component-Based Framework for Developing Semantic Web
Applications. In: The Semantic Web, LNCS Volume 5367, 2008, pp 197-
211, Springer (2008)

16



5. van Harmelen, F., ten Teije, A., Wache, H.: Knowledge Engineering
rediscovered: Towards Reasoning Patterns for the Semantic Web. In: Pro-
ceedings of The Fifth International Conference on Knowledge Capture,
page 81–88. ACM (2009)

6. Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D.R.,
Palma, R., Bechhofer, S. and others: Workflow-Centric Research Objects:
A First Class Citizen in the Scholarly Discourse. In: Proceedings of the
ESWC2012 Workshop on the Future of Scholarly Communication in the
Semantic Web (SePublica2012), Heraklion, Greece (2012)

7. Lenzerini, M.: Data integration: A theoretical perspective. In: Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp 233-246, ACM (2002)

8. Pedrinaci, C., Domingue, J., Sheth, A. P.: Semantic Web Services. In:
Handbook of semantic web technologies, pp 977–1035 Springer (2011)

9. LePhuoc, D., Parreira, J. X., Hauswirth, M.: Linked stream data process-
ing. In: Reasoning Web. Semantic Technologies for Advanced Query
Answering. Proceedings of the 8th International Summer School 2012, Vi-
enna, Austria, September 3-8, 2012. LNCS Volume 7487, 2012, pp 245-289,
Springer (2012)

10. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Merson, P., Nord, R., Stafford, J.: Documenting software architectures:
views and beyond. 2nd Ed., Pearson Education (2010)

11. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-Based Ontol-
ogy Design. In: Ontology Engineering in a Networked World, pp 35-64,
Springer (2012)

12. Musetti, A., Nuzzolese, A. G., Draicchio, F.,Presutti, V., Blomqvist, E.,
Gangemi, A. and Ciancarini, P.: Aemoo: Exploratory search based on
knowledge patterns over the semantic web. In: Semantic Web Challenge,
10th International Semantic Web Conference, Springer (2011)

13. Kotoulas, S., Lopez, V., Lloyd, R., Sbodio, M. L., Lecue, F., Stephenson,
M. and others: SPUD: Semantic Processing of Urban Data. In: Semantic
Web Challenge, 11th International Semantic Web Conference, Springer
(2012)

14. Passant, A.: Dbrec - music recommendations using DBpedia. In: The
Semantic Web - 9th International Semantic Web Conference, Springer
(2010)

15. d’Aquin, M., Allocca, C., Collins, T.: DiscOU: A Flexible Discovery
Engine for Open Educational Resources Using Semantic Indexing and

17



Relationship Summaries. In: 11th International Semantic Web Conference.
Posters & Demos. (2012)

16. Matsumura, F., Kobayashi, I., Kato, F., Kamura, T., Ohmukai, I., Takeda,
H.: Producing and Consuming Linked Open Data on Art with a Local
Community. In: Third International Workshop on Consuming Linked
Data (COLD2012) in conjunction with the 11th International Semantic
Web Conference. Boston, MA, USA, November 12, 2012. http://ceur-ws.
org/Vol-905/ (2012)

17. Khrouf, H., Troncy, R.: EventMedia: A LOD dataset of events illustrated
with media. In: Submitted to Semantic Web Journal, Special Issue on
Linked Dataset descriptions, 2012 http://www.semantic-web-journal.
net/content/eventmedia-lod-dataset-events-illustrated-media

18. Osborne, F., Motta, E., Mulholland, P.: Exploring Scholarly Data with
Rexplore. In: The Semantic Web – ISWC 2013. 12th International Semantic
Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceed-
ings, Part I Series: LNCS in Computer Science, Vol. 8218 pp 460-477.
Springer (2013)

19. Wikipedia page for Watson_(computer): http://en.wikipedia.org/
wiki/Watson_(computer)

18


