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1. Introduction

A Bayesian Belief Network (BBN) is defined by a set of variables X = {X1,...,Xr} and a
directed acyclic graph defining a model M of conditional dependencies among the elements
of X. A conditional dependency links a child variable X; to a set of parent variables II;, and
it is defined by the conditional distributions of X; given the configurations of the parent
variables. We consider discrete variables only and denote by ¢; the number of states of X;
and X; = z;; by x;5. The structure M yields a factorization of the joint probability of a set
of values xy = {1y, .., 21} of the variables in X as p(X = z) = [[]_, p(zix|mi5), where
m;; denotes one of the g; states of II; in z;. Suppose we are given a database of n cases
D ={zy,...,z,} and a graphical model M specifying the dependencies among the variables
X. Our task is to estimate, from D, the conditional probabilities 8;;; = p(xix|mij, 6) defining
the dependencies in the graph, where 6 = (0;;1,).

When the database is complete, closed form solutions allow efficient estimation of the
conditional probabilities in time proportional to the size of the database. The Max-
imum Likelihood estimates (MLE) of 6;;; are the values éijk that maximize the likeli-

hood function 1(6) = [ HZ(:“M“) where n(z;|m;;) is the frequency of (z;x, ;) in D.
Thus, éijk = n(zg|mi;)/n(m;) which is the relative frequencies of relevant cases, and
n(m;) = > n(z|mi;) is the frequency of m;;. The Bayesian approach generalizes the
MLE by introducing a flattening constant c;;; > 0 for each frequency, so that the estimate
is computed as

jo = ikt n(zig|mij) — 1
Y a5 + n(mij) — ¢

1)

where a;; = > o, The quantity (o, —1)/(0uj —c;) is interpreted as the prior probability
believed by the learning system before seeing any data, and the learning process is regarded
as the updating of this prior probability by means of Bayes’ theorem. When the prior
distribution of (8;j1...,60;j4¢;) is Dirichlet, with hyperparameters (cuj1, ..., 04jc, ), then (1) is
the posterior mode, the Mazimum a Posteriori (MAP), of 6;;;. Unfortunately, simplicity
and efficiency of these closed form solutions are lost when the database is incomplete, that
is, some entries are reported as unknown. In this case, the exact estimate is the mixture of
the estimates given by (1) for each database generated by the combination of all possible
values for each missing entry, and the computational cost of this operation would grow
exponentially in the number of missing data.

Simple solutions to handle this problem are either to ignore the cases including missing
entries or to ascribe the missing cases to an ad hoc dummy state. Both solutions introduce
potentially dangerous bias in the estimate, as they ignore the fact that the missing entries
may be relevant to the estimation of . Current methods rely on more sophisticated tech-
niques, such as the EM algorithm [2] and Gibbs Sampling (Gs) [3]. More recently, Ramoni
and Sebastiani [5] introduced a deterministic method, called Bound and Collapse (BC) to
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perform the estimation task. This paper presents an experimental comparison of EM, GS
and BC on a real-world database.

2. Methods

This paper will compare the accuracy and the efficiency of EM, Gs, and BC. This section
outlines the character of these three methods.

The EM algorithm is an iterative method to compute MLEs and MAP. The EM algorithm
alternates an expectation step, in which unknown quantities depending on the missing
entries are replaced by their expectation in the likelihood, to a maximization step, in which
the likelihood completed in the expectation step is maximized with respect to the unknown
parameters, and the resulting estimates are used to replace unknown quantities in the next
expectation step, until the difference between successive estimates is smaller than a fixed
threshold. The convergence rate of this process can be “painfully slow” [6], and several
modification have been proposed to increase its speed under certain circumstances.

GS is one of the most popular Markov Chain Monte Carlo methods for Bayesian inference.
The algorithm treats each missing entry as a parameter to be estimated and iterates a
stochastic process that provides a sample from the posterior distribution of . This sample is
used to compute empirical estimates of the posterior mean, the posterior mode, or any other
function of the parameters. In practical applications, the algorithm iterates a number of
times to reach stability (burn-in) and then a final sample from the joint posterior distribution
of the parameters is taken.

Both EM and Gs provide reliable estimates of the parameters and they are currently
regarded as the most viable solutions to the problem of missing data. However, both these
iterative methods can be trapped into local minima and the convergence detection can
be difficult. Furthermore, they rely on the assumption that the missing data mechanism is
ignorable: within each observed parent configuration, the available data are a representative
sample of the complete database and the distribution of missing data can be therefore
inferred from the available entries [4]. When this assumption fails, and the missing data
mechanism is not ignorable (N1), the accuracy of these methods can dramatically decrease.
Finally, the computational cost of these methods heavily depends on the absolute number
of missing data, and this can prevent their scalability to large databases.

These limitations motivated the development of BC, a deterministic method to estimate
conditional probabilities from an incomplete database. The method bounds the set of possi-
ble estimates consistent with the available information by computing the minimum and the
maximum estimate that would be obtained from all possible completions of the database.
This process returns probability intervals containing all possible estimates consistent with
the available information. These bounds are then collapsed into a unique value via a con-
vex combination of the extreme points with weights depending on the assumed pattern of
missing data. Details and properties of BC are described in [5].
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Figure 1: The BBN used for the evaluation.

Estimation Errors
Ignorable Non Ignorable
9% 37% 3% 9%
GS EM BC GS EM BC GS EM BC GS EM BC

Min 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0003 0.0003 0.0003
1st Qu. 0.0001 0.0001 0.0001 0.0008 0.0008 0.0009 0.0003 0.0003 0.0003 0.0017 0.0017 0.0016
Median 0.0004 0.0004 0.0003 0.0018 0.0019 0.0021 0.0008 0.0008 0.0008 0.0057 0.0056 0.0057
3rd Qu. 0.0007 0.0007 0.0010 0.0031 0.0030 0.0041 0.0021 0.0020 0.0020 0.0116 0.0116 0.0116
Max 0.0035 0.0034 0.0037 0.0119 0.0117 0.0229 0.0112 0.0111 0.0112 0.0917 0.0907 0.0918
X Ent. 0.0012 0.0011 0.0018 0.0336 0.0319 0.0473 0.0078 0.0078 0.0078 0.3583 0.3501 0.3587

Prediction Errors
Min 0.0000 0.0001 0.0001 0.0066 0.0049 0.0018 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
1st Qu. 0.0021 0.0028 0.0013 0.0088 0.0097 0.0175 0.0272 0.0275 0.0273 0.1186 0.1131 0.1186
Median 0.0046 0.0051 0.0021 0.0220 0.0224 0.0199 0.0314 0.0315 0.0314 0.1436 0.1440 0.1438
3rd Qu. 0.0059 0.0062 0.0031 0.0404 0.0396 0.0414 0.0355 0.0359 0.0356 0.1696 0.1756 0.1697
Max 0.0087 0.0094 0.0089 0.0719 0.0699 0.0858 0.0669 0.0678 0.0672 0.4786 0.4750 0.4789

Table 1: Summary statistics of estimation and prediction errors.

3. Experimental Evaluation

Aim of these experiments is to evaluate the estimation accuracy of BC, EM algorithm and
GS as the available information in the database decreases. We used a database reporting
the values of six risk factors of coronary diseases in 1841 employees of a Czechoslovakian
car factory during a follow up study [8, page 261]. All variables are binary and they repre-
sent Anamnesis (X1), Strenuous Mental Work (X3), Ratio of Beta and Alpha Lipoproteins
(X3), Strenuous Physical Work (X4) Smoking (X5) and Systolic Blood Pressure (Xg). The
database is complete and we extracted the most probable directed graphical model, de-
picted in Figure 1, using the K2 algorithm [1]. The 15 conditional dependencies specified
by this BBN were then quantified from the complete database. Uniform prior distributions
were assumed for the parameters . We then used the BBN in Figure 1 to run two different
learning tests in order to evaluate the accuracy of BC relative to GS and EM, using the
implementation of accelerated EM in GAMES [6], the implementation of GS in BUGS [7] and
the implementation of BC in BKD. The threshold for the EM was 10~%. Results of GS are
based on a first burn-in of 5,000 iterations, sufficient to reach stability, and a successive
sample of 5,000 cases.

The aim of the first test was to compare the estimation accuracy of the three methods
when the missing data mechanism is ignorable. For this purpose, four incomplete databases
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were created by incrementally deleting data from the complete database. A vector 1 of
15 numbers between 0 and 1 was randomly generated, and elements of i/ were taken as
the probability of deleting the occurrences of each variable X;, independently of its value,
given the parent configuration, in the the 10%, 20%, 30% and 40% of the database. This
process generated four databases with 9% (1004), 18% (2035), 28% (3041) and 37% (4092)
missing entries, and the observed entries within parent configurations are representative of
the complete samples.

The rationale of the second test was to compare the robustness of these methods with
a not ignorable missing data mechanism. Four samples were generated from the complete
database by incrementally deleting respectively 256%, 50%, 75% and 100% of the entries
(X5 = 2,Xg = 1) with probability 0.9, and (X5 = 2, Xg = 2) with probability 0.1. This
process generated 4 databases with 3% (278), 5% (532), 7% (790) and 9% (1030) missing
entries. The estimation accuracy is measured by comparing the exact joint probability
distribution of (Xj,..., Xg) to those learned from the incomplete data using Gs, EM and
BC. Table 1 reports some summary statistics of the results obtained on the two extreme
databases generated in the two tests. The first five rows of Table 1 report summary statistics,
in terms of minimum, maximum, first, third quartile and median of the absolute difference
between the 64 exact joint probabilities and those obtained from the BBNs learned with GS,
EM and BC. X Ent. labels the cross entropy between joint probability distributions.

The predictive accuracy was evaluated by comparing the predictive probabilities of Xg
obtained by the three methods to those calculated by the BBN extracted from the complete
database. Given the conditional independence assumptions embedded in the BBN there are
43 possible evidences that can be considered: 10 are given by observing one of the variables
X1, -+, X5 alone, 32 by observing one of the pairs (X1, X3), (X1, X4), (X1, X5), (X2, X3),
(X2, X4), (X2, X5), (X3,X4), (X3,X5), and one in which the evidence is the empty set, so
that the marginal probability of X is returned. Bounds on the predictive probabilities were
also computed by propagating BC upper bounds for each conditional dependency. Summary
statistics of the absolute errors are given in the second half of Table 1.

When 9% of data is missing and the missing data mechanism is ignorable, the distribu-
tion of the errors incurred by the three methods differs at the fourth decimal point and a
slightly higher maximum value of BC is balanced by a lower median point. The difference
becomes a little more evident when 37% of data are missing. Nonetheless, the median
difference still remains around 0.0002 and, most of all, these differences do not affect the
predictive power of the BBN extracted by BC, which, if anything, scores a slightly better
median performance, larger than any difference among the estimates.

This overall equivalence among the three methods is confirmed when missing data are NI,
where error distributions are almost identical, and the impact of a wrong assumption about
the pattern of missing data equally affect all methods. However, BC provides bounds on
the predicted values which reflect their reliability and can be taken into account during the
reasoning process. It must be also remarked that BC does not rely per se on the ignorability
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Missing GS EM BC
278 | 00:15:22 00:00:30 00:00:14
532 | 00:23:00 00:01:10 00:00:13
790 | 00:29:42 00:01:50 00:00:14
1004 | 00:37:47 00:01:50 00;00:13
1030 | 00:29:12 00:02:00 00:00:13
2035 | 01:09:47 00:03:12 00:00:13
3041 | 01:56:02 00:04:18 00:00:14
4056 | 04:26:07 00:07:26 00:00:13

Table 2: Execution time for each method.

assumption and that the available information about the missing data could have been
exploited by BC to achieve a better performance. The main difference among the three
methods highlighted by the experiments is the execution time and, most of all, the shape
of its growth curve, showing that the execution time of BC is independent of the number of
missing data [5]. Table 2 shows the execution time for all eight databases generated during
the experiments. The first column reports the absolute number of missing entries from the
original entries of the complete database. Results are in hours:minutes:seconds format.

4. Conclusions

The first character of BC is its ability to explicitly and separately represent the information
available in the database and the assumed pattern of missing data, so that BC does not need
to rely on the ignorability assumption, although it can be easily represented as any other.
Furthermore, BC reduces the cost of estimating each conditional distribution of X; to the
cost of one exact Bayesian updating and one convex combination for each state of X; in each
parent configuration. This deterministic process does not pose any problem of convergence
rate and detection and its computational complexity is independent of the number of missing
data. The experimental comparison with EM and Gs showed a substantial equivalence of
the estimates provided by these three methods and a dramatic gain in efficiency using BC.
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