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Abstract

Missing data can impair the reliability of statistical inference as they may
affect the representativity of the sample. Nonetheless, under some condi-
tions guaranteeing that the missing data mechanism is ignorable, reliable
conclusions can be still drawn from the incomplete sample. Ignorability
conditions are well-understood for parameter estimation but when the in-
ference task involves the computation of the posterior probability of a data
model, as required by Bayesian model selection and prediction through
model averaging, these conditions are not sufficient. This paper defines
new ignorability conditions for model selection and model averaging from
incomplete data.
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1. Introduction

Missing data can impair the reliability of statistical inference as they may affect the rep-
resentativity of the sample. When the process yielding missing data is not ignorable, as
it sometimes happens in the case of drop-outs from follow-up studies or non responses in
sample surveys, the available data may not contain sufficient information to restore the
representativity of the sample and external information is required about the missing data
mechanism (MDM). This information can be notably large, quite difficult to encode and,
sometimes, not readily available. Under some conditions, nonetheless, knowledge of the
MDM is not necessary and reliable conclusions can still be drawn from the available data.
In these cases, the MDM is said to be ignorable.

Ignorability conditions are well-understood for parameter estimation and they have been
established by Rubin [3]. However, this paper will show that, when the inference task in-
volves the computation of the posterior probability of a data model, as required by Bayesian
model selection and prediction through model averaging, these conditions are not sufficient
to guarantee the ignorability of the MDM.

This paper will provide new ignorability conditions for model selection and model aver-
aging. These conditions will introduce a classification of different ignorable MDMs and the
paper will provide examples and simulation studies to show the impact of these agssumptions
on the robustness of model selection and model averaging.

2. Ignorability Conditions

Formally, ignorability of the MDM allows us to simplify the calculation of the likelihood
function by dropping the parameters encoding the MDM. Let x be a multivariate n x v
data set, with n cases observed on v variables X = (Xi,...,X,). Variables can be either
continuous or discrete but, for simplicity of notation, this paper will assume that they are
continuous. Let p(z|#) be the likelihood function and let the prior density of 8 be p(8).

With complete data, Bayesian inference on 6 is based on the posterior density p(8|z)
p(8)p(z|@). Suppose now that the data set is incomplete, i.e. some values of Xi,..., X, are
recorded as unknown and they will be denoted as X; =7. We can decompose z into z,, Zp,
where z, denotes the observed values, and z,, denotes the subset of £ with unknown values.
In doing so, we define a variable X,,, taking values z, that are the possible realizations of
the unobserved variables in the sample.

According to Rubin’s definition [3], the ignorability of the MDM implies that infer-
ence on 6 can be based on the posterior density p(f|z,) o p(8)p(z,/0)q(zo,8), where
p(x0|0)q(%0,0) = p(2,10) [, p(r|0,2,)dz, and g(z,,0) is an adjusting factor. Thus, missing
data are integrated out regardless of the MDM. The ignorability of the MDM requires two
conditions to be fulfilled. The first condition states that unreported data are Missing at
Random (MAR). This condition is formally characterized by associating each variable X; to
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a binary variable R;. For each case in the sample, the variable R; takes value 1 if X; is ob-
served and 0 otherwise. Let r be the observed values of Ry, ..., R, in the sample and denote
the joint probability of r by p(r|z,v). Missing data are said to be MAR if R = (Ry, ..., Ry)
is independent of X,,, given z, and :

R 1 Xp|zo,1). (1)

The second condition requires the independence of the parameters 8 and 1

0Ly (2)
so that the prior density simplifies into p(,1) = p(6)p(). Under the assumptions (1) and
(2) the posterior density of 8, factorizes into the product

PO, Plzo, ) o [p(B)p(2o|0)g (20, O)][p(¥)p(r |20, )]

and inference about 6 is based on the marginal density p(0|z,) o p(8)p(z,|0)g(z,, 8) that is
not a function of r, so that the MDM becomes ignorable. If g(z,,6) = 1, then missing data
themselves are ignorable and can be discarded from the analysis. When this simplification
is not possible, the MDM is not ignorable.

However, we note that a further agssumption is made throughout all these calculations,
namely that

X L tp|z,, 0. 3)

The conditional independence of X,, and % is equivalent to assuming that the MDM is not
informative with respect to the missing data so that the probabilities of the completions
z, are simply the predictive probabilities given the observed values in the sample. The
importance of making this last assumption explicit becomes even clearer when we move from
the task of estimating the parameters 8 to the task of computing the posterior probability
of a model m for the variables X. In this case, the MDM can be either ignorable with respect
to all possible models or with respect to just few of them. We shall call the former case total
ignorability and the latter partial ignorability. The posterior probability of m that accounts
for the MDM is

p(m, P|xo,7) o< p(m, Y)p(xo, r|m, b)), (4)

and the MDM is ignorable if, by integrating  out, we obtain a quantity that is not a function
of r, say p(m|z,) o< p(m)p(ze|m)q(z,, m) where, g(z,,m) is an adjusting factor. In order
to characterize the ignorability of the MDM for model selection, it is therefore sufficient to
identify under which conditions we have this simplification.

We shall show in the paper that total ignorability of the MDM holds if R 1 X, |z,, 9,
M 1+, and X, L t|zs, M, where M is the variable representing the possible models. In
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X1
X9 1 2 ? Total
1 n(zi1]ze)e n(zi2lzar)e  n(?|z21) | n(wor)
2 n(zi1]zee)e n(zi2lzaz)e  n(?|za2) | nwoo)
Total | n(z11)e n(z12)e n(Xy =7) n

Table 1: The representation of the incomplete contingency table used in the example.

this case, inference on M can be based on p(m)p(z,|m)q(z,, m). Partial ignorability holds
when we require that p(z,|z,,m,v¥) = p(zr|z,, m) holds for some model m or, in words,
that the MDM is non informative only for some model. This paper will show that enforcing
total ignorability can yield inconsistencies and introduce a severe bias in model selection
and prediction based either on the best model selected or model averaging. Here, we give
only one example. The full paper will provide detailed simulation studies using both exact
and imputation-based techniques.

3. An Example

Let X; and X2 be binary variables and consider two possible directed graphical models:
model my specifies that the two variables are independent and, conditional on mgy, we can
parameterize p(a:11|0(0)) = f1 and p(x21|0(0)) — 09, where 89 is the parameter vector
associated to myg; model m; specifies that X5 is a parent of X1, so that the induced param-
eterization is p(x21|0(1)) = 01 and p(z1|z9y, 0(1)) = 0;11. Suppose that the complete sample
is subject to some random process which deletes part of the entries of the variable X; but
we continue to have a complete sample for X5. We model the MDM by associating, with
each case in the sample, the value of a binary variable Ry whose distribution is a function
of Xy. Let p(Ry = 1|Xo = i) = vy, i = 1,2, and ¢ = (tp1,1h2) L 8™ |m. For each case in
the sample, we generate a value for Ry| X and remove the entry of X, if Ry = 1. After the
deletion process, the incomplete counts are summarized into Table 1. Since the values of
X5 are always observed and the probability that a value of X is deleted is only dependent
on Xo, missing data are MAR.

Let n(zgj). be n(z11|z2j)e + n(z12|24)e, § = 1,2. Thus, n(zy;). is the frequency of
cases with both X; and X9 observed. The total number of complete cases is then n, =
n(za1)e + n{za2)ec.

Denote by B(ay, a2) a Beta distribution [1]. Suppose that, given myg, 02 = (621, 22) ~
B(2,2) and 6; = (011,012) ~ B(2,2), and they are independent. Given mq, we assume
that 61 = (6;11,0512) ~ B(1,1), and they are independent. Thus, a priori, the marginal
probabilities of z9;, 21 and z1x|z2; are all uniform and are based on a total prior precision
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4. Under the assumption that the MDM is ignorable for computing p(m|z), [4] show that
the marginal likelihood p(z,|m) can be computed exactly and is:

12[ T(4)T(2+n xQJ ﬁ T(1 + n(z1k|z25)c)

il I(a+n)T Pt 2+n(a72]) yr(1) ’

p(o|mi) =

and since g(x,,m1) = 1 missing entries are simply ignored. Consider now the model of
independence. If we also assume that the MDM is ignorable for computing p(myg|z), then we
can show that

p(zalmy) o H D+ n(zy)) 17 POTER + nloie)e)
4 +n)I'(2) 5 Td+n)T(2)

Thus, the assumption that the MDM is totally ignorable implies that missing data are simply

ignored and the incomplete sample on X is treated as if it were representative.

However, if we do not consider the sampling variability, the expected frequency of cases
removed under the MDM considered are 1;n(z|z2;), where n(z5|zo;) are the counts of
the complete sample. The relationship between the complete counts and those in Ta-
ble 1 is therefore n(z1x|z2;) = n(z1x|r2;)e + ¥jn(zix|z2;). The marginal counts observed
on X, are in the relationship n(z1x) = n(z1x)e + Yin(zi1x|z21) + Yon(z1x|z22). The pro-
portions in each conditional distribution are maintained, since n(z11|z2;)c/n(z12|224)e =
n(z11|T2;)/n(212|22;) and hence the incomplete samples within parent configurations are
representative. However, the marginal frequencies of X; are no longer in the same original
proportion, since:

n(zi)e (1 —)n(zu|za) + (1 —)n(zi|ze)  n(ri)
n(zi2)e (1 —p)n(ziz]za) + (1 — Yo)n(ziz|zee)  nlz12)

if and only if either 1/11 = '(/12, or n($11|x21)n($12|x22) = ($11|m22)n(m12|x21). Thus, the
marginal counts on X; are not a representative sample, and enforcing total ignorability of
the MDM will have the consequence of introducing bias in the model selection process as

shown in the next simulation study.

4. A Simulation Study

Data in Table 2 is a random sample generated from the model that assumes a dependence
between X; and X» and p(X; = 1|X2 = 1) = 0.57 and p(X; = 1|X2 = 2) = 0.50. We
assume that p(mg) = p(mq), together with the parameterizations described above, with
o = 4. Tt is easily shown that the Bayes factor is p(z|m1)/p(x|mo) = 3.45 so that, model
my would be selected from the complete sample.

Suppose now that some of the occurrence of X; are deleted with the same process
described in the previous section. We choose 1y = 0.6 and ¥ = 0.1, so that the expected
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X1
X9 1 2 | Total
1 577 423 | 1000

2 510 490 | 1000
Total | 1087 917 | 2000

Table 2: Data simulated from a model of association with p(X; = 1|X = 1) = 0.57 and

number of cases that would be removed is 700. In 400 repetitions of this deletion process,
in which in each incomplete sample the posterior probability of m; and m were computed
assuming h total ignorability of the MDM, in 37% of cases only the correct model m; was
chosen. Thus, a random model selection can be better than doing the exact inference! The
wrong number of selection is well below what we would expect by considering the sampling
variability. In 400 complete samples generated from the model described above, the Bayes
factor was greater than 1 in 74 % of cases. Thus, the large error rate under the MAR
assumption coupled with the ignorability of the MDM can be due to the incorrect use of the
sample information.

In this example, assuming total ignorability has the effect of simply ignoring missing
data. In similar cases [2] suggest using multiple imputation as the panacea. Multiple
imputation would consist of estimating the posterior probability of each model by imputing
missing data conditional on that model. The results of the simulation study reported in the
final paper will show that this strategy is nothing more than a ”placebo”.

5. Conclusions

The example described show the bias effect of enforcing total ignorability of the MDM for
model selection. If we assume only partial ignorability, we can suppose that the MDM
is ignorable for one particular model and not ignorable for other models where the non
ignorability is a consequence of assuming the MDM informative for the computation of
p(zr|To,m,1P). Thus, in the examples shown in this paper, missing data would not be
disregarded in computing for instance p(z,|z,,mo,1). However, a consequence of this
approach would be to compare the posterior probabilities of models conditional on different
sample sizes. [5] have shown how to overcome this problems for incomplete sample in which
only the response variable is subject to non response. A general solution seems to be an
open problem.
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