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1. Introduction

This paper presents a method for model selection in the specific context of partially classified
categorical data Xi,...,X,,Y in which only the response variable Y is subject to non
response. We assume that the objective of inference is to select the subset of variables in
X1,...,X, that have an effect on Y and assume marginal independence of X1,..., X,. This
choice allows us to represent a model in which Y depends on a subset of variables X1, .., X,
by a directed graph, with arrows pointing from Xi,.., X, to Y. The set M of possible
models is finite, and can be represented by a lattice with v + 1 levels. We shall denote each
model by M;,, where is is one of the possible combination of s indices out of 1,2,...,v. We
adopt a Bayesian approach, and denote by p(M;;) the prior probability of M;,. Then, data
y are used to compute the posterior probability of M;s: p(Mis|y) o p(M;s)p(y|M;s), and
the model with the largest posterior probability is selected as best model given the sample
information. We assume that, given Mg, the distribution of Y is a product of multinomial
distributions with parameters 0,(:5), where p(Y = yj|7r,(czs),0(is)) = 0\ corresponding to

. k] ’
the combinations 7'('](:5) of categories of variables with indexes in ¢s. The prior distribution

of the parameters 9(%5) = {HI(CiS)} is assumed to be a product of Dirichlet distributions [4],

so that parameters associated to different conditional distributions Y|7r,(:s) are mutually
independent. Since we will be considering different models, we shall further assume that
the hyper-parameters a,(czf ), ... ,oz,(czcs ) are chosen so that they yield the same distribution for
the parameters associated to the marginal distribution of Y.

When the sample is complete, these assumptions allow us to find explicitly p(y|M;s) as

T(o{) 1 T(of +ng)
(a]E;ZS)'i_n](CZS)) ; I\(a](;;))

where n,(czj) is the sample frequency of cases with categories ﬂ](cis), y; under model M;;, and

n,(cz,s) =3 n,(czj) Similarly, a,(cz,s) =3 a,(czjs).

When the sample is incomplete and some of the Y values are reported as unknown,
information about the MDM is needed for carrying out inference. Let vy, denote the subset
of y with observed values, y,, be the subset with missing entries and Y,, be the variable
taking as values the possible realization y, of yn,. Following Rubin’s approach [3], the
MDM can be explicitly represented by associating with each case in the sample an indicator
variable R taking value 1 when Y is not observed and 0 otherwise. Let 1) be the parameter
associated to the distribution of R. Ramoni and Sebastiani [2] define the MDM as totally
ignorable if it is ignorable for every model in the set M. They also show that sufficient
conditions for total ignorability are that R 1 Y, |y,, ¥, i.e. data are missing at random
(MAR) and that 6U) 1 + and Yy, L 9|(Y,, X1, ..., Xy, 005)) for every model in M. A less
restrictive assumption is to require partial ignorability that is to assume that glis) | P,

p(y|Mis) o< p(M;s) [
L
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and Yy, L |(Ye, X1,..., Xy, 00)) hold only for some model in M. The consequence of
assuming either total or partial ignorability results in the computation of the likelihood:
for the present problem, assuming total ignorability is simply equivalent to disregarding
incomplete cases from the sample with the consequence that non representative samples
are treated as if they were indeed representative. Partial ignorability, on the other hand,
has the effect of leading to the comparisons of posterior probabilities of rival models that
are conditional on samples of different sizes. Next section will present a model selection
method to resolve this dilemma.

2. Model Folding

The approach we suggest consists of using the sample information to compute an estimate
of the parameters for both the sampling model and the MDM assuming that the incomplete
samples for the saturated model (in which X7, ..., X, affect Y') are representative. Posterior
probabilities of nested models are derived from the estimates of the parameters of the
saturated model and of the MDM and hence we call the method model folding (MF).
Suppose that data are collected in an augmented contingency table, with rows corre-
sponding to the possible combinations 7'('](;]) of categories of X1, ..., X;,. Columns correspond
to the ¢ categories of Y, and the ¢+ 1th column reports the frequencies of unclassified cases

within each ﬂg(f). The unclassified cases will be denoted by m,(f). The other frequencies will
be denoted by n,(;;) so that, in the cell £, 7, n,(;;) is the frequency of cases in the sample with

Y =jand Xy,..., X, = ﬂ,(f). We further denote by « the overall prior precision, by n the
size of the complete sample and by m the number of missing data on Y. We continue to
assume that data are missing at random and that the MDM is ignorable for the saturated
model. Thus, p(R = 1|Ym, Yo, Z,?) is a function of ﬂ,(f). We shall denote p(R = 1|7r,(cv)) by
1/1,(;’), and assume as prior distributions on 1/1,(;’) Dirichlet distributions with hyper parame-

ters B,(Cﬁ),ﬁ,(cg). The possible models of which we wish to evaluate the posterior probabilities
are displayed in a lattice. The strategy we propose is top-down, and can be divided into
v + 1 steps. Each step corresponds to the evaluation of posterior probabilities of models
within a level of the lattice. We start from the saturated model, and estimate, for each 77,

(v) (v)
4 _ Yk T
kj — :
/ a,(:) + n,(f)
These estimates can then be used to evaluate the posterior probability of the saturated

model, conditional on the complete sample in which missing data are distributed as pre-
dicted values. Thus



Model Folding for Data Subject to Nonresponse

(v) (v) (v) Alv), (v)

INCY T(ay +mny +0,my")

p(Myly, ) OCP(MU)H 0 ( (]Z])) = H kj k](v) ki Tk
k Dlog” +ng” +my”) 75 INCvY

Next step consists of computing posterior probability of the v models with v —1 explanatory

variables. For each of these models, we need to estimate the probabilities of completions
from the conditional probabilities 0,(;;) estimated in the saturated model, and from the esti-
mates of 1. Let h be a combination of v — 1 indices and consider the model M},. We denote

by n,(cl;) the frequency of cases with ﬂ](ch),Y = 4, and by a,(cl;) the prior hyper-parameters

of the distribution of HI(Ch). In order to approximate the posterior probability of M}, we

need an estimate of the probabilities of completions ¢,(£.) =p(y, = j|7r,(ch), Yo, Mp,10). These

probabilities are estimated from the estimates of the parameters 0,(;]’.) and from the esti-

mates of 9;;, by application of the Total Probability Theorem. Hence, up to a normalizing
constant, we estimate ¢,(£.) by gﬁ,(;;) o Zl(al(,v) + nl(v) + ml(v))él(;)z/;lj, where the summation is

(v) (h)

extended over all categories m; ; b

of the saturated model containing ; ;, and the quantity

1y; is estimated as

B + m;:’)
. +n” +m{®

Py =

The quantities g%,(!;) are then used to distribute the incomplete cases across categories of Y

(h)

as @,(:;)mk , and hence an estimate of the posterior probability of M}, is

(h) (h) | 3(h) _ (h)
I‘(a(h)) Doy, +ny + ¢ my”)
p(Mply, z) o< p(My) k. 7 J J i
1;[ (of +ng) +m{”) 1;[ T(af?)

By repeating the same procedure for every model M}y, h € co(v,v — 1), we estimate the
posterior probabilities of the v models with v — 1 explanatory variables, and we can then
move to evaluate posterior probabilities of model with v — 2 explanatory variables and
so forth. As we move down the lattice of models, the operation of marginalization and
estimation of the probabilities of completions can be carried out using counts and estimates
collected in the previous step. Note that, if the probability of Y being missing is only a
function of a subset of the explanatory variables, then the probabilities of the completions
turn out to be the predictive probabilities, adjusted to take into account prior information
about the MDM. In particular, if missing data are MCAR, then the effect of carrying on the
MDM in the estimation steps become negligible, and the effect of MF is only to enlarge the
incomplete samples so as to base the comparisons of posterior probabilities conditional on
samples having the same size.
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The intuition behind MF goes somehow forward sustaining the idea of using multiple
imputation when missing data are MAR [1]. As far as we know, the fact that there are several
ways of imputing missing data, according to the assumptions made about the MDM, has gone
unnoticed. We shall define Global imputation a stochastic version of our approach: missing
data are simulated from the saturated model using the predictive distribution conditional on
the observed data, and the completed sample is used to evaluate the posterior probabilities
of all possible models nested within the saturated one. The effect of using global imputation
instead of MF would be to limit unwanted bias. This version of imputation differs from the
imputation-based approach suggested for instance by [1], in which missing data are imputed
from the predictive distributions conditional on different models. We shall name the latter
Local imputation. Imputing missing data conditional on different models has a bias effect
as shown in the next example.

3. A Simulation Study

Data below are a random sample generated from the saturated model Miy and p(Y =

X1, Xo

Y11 1,2 21 22
1 {52 17 66 36
48 83 34 64

Four models My, M1, My and M5 can be considered. Assuming uniform prior probabilities,
their posterior probabilities (in log scale) are easily found to be: logp(Myly, ) o< —275.1086
, log p(M|y, z) o< —255.4863, log p(Ma|y, ) < —271.6517, log p(Mi2ly, z) o< —252.9841 and
Mo would be selected, conditional on the observed data. The complete sample was then
subject to a random deletion of Y entries with the following process. The values of Y were
associated with the values of a binary variable R whose distributions are p(R = 1|(1,1)) =
0.2, p(R = 1|(1,2)) = 0.3, p(R = 1/(2,1)) = 0.1 and p(R = 1|(2,2)) = 0.6. The complete
sample was then parsed, and for each case in the sample a value of R was generated from the
distribution of R conditional on X, Xo. If the value of R turned out to be 1, the entry of Y
was removed. Clearly, missing data are MAR, since the probability of Y being missing is at
most a function of the observed cases in the sample. This deletion process was repeated 100
times, and in each incomplete sample, posterior probabilities of the four models My, M1, M,
and Mo were computed using MF, global and local imputation based on 10 imputed values
for each missing entry, and disregarding missing data. Figure 1 reports the estimates of the
posterior probabilities of My, M1, My, Mo that are denoted by 0,1,2,and 3. The estimates
of the posterior probabilities computed with global and local imputation are obtained by
evaluating the posterior probabilities from the completed samples and then by averaging
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Figure 1: Posterior probabilities of My (0), M (1), Ms (2) and M2 (3) from 100 incomplete
samples.
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logp(Moly,z) logp(Mily,z) logp(Maly,z) logp(Misly,z)
Model Folding -275.2661 -255.2350 -271.6484 -252.4831
Global Imputation | -275.0549 -255.2079 -271.3363 -252.0717
Local Imputation -277.4527 -249.6824 -270.9706 -251.9317
Data Deletion -193.8340 -178.3028 -190.5554 -177.6876

Table 1: Mean values of the posterior probabilities of My, My, My, M12.

out the results. In the 100 incomplete samples, MF selects M7 in 16 samples, My in 84
samples. When global imputation is used, the correct model is selected from 15 samples.
Thus the error rates of the two methods are equivalent. If local imputation is adopted, the
error rate rises to 81%. Removing incomplete cases leads to selecting model M; from 36
incomplete samples, and model M5 in the remaining 64. The error rate incurred by MF
and global imputation is within sampling variability: in 100 complete samples, model M,
was selected in 20% of cases.

Figure 1 reveals the reasons behind the large error rates incurred under the assumption
of total ignorability, which is assumed by local imputation and data deletion. In the first
two plots of Figure 1, there are two distinct patterns of points, the estimates of p(Myly, x)
and p(Mas|y,z) in the lower part of the figure, and p(M, |y, z) and p(Mi2ly,z) in the top.
These two patterns reproduce the ordering between the posterior probabilities computed
from the complete samples when MF or global imputation are used and the accuracy is
shown in the first two rows of Table 1.

However, when local imputation is used, and the MDM is assumed to be totally ignorable,
there is an evident bias in the estimates. The estimates of p(Ma|y, z) are almost all above
the estimates of p(My|y,z). A similar result is for the estimates of p(Mi|y,z) that are
almost all greater than the estimates of p(Mi2|y,z). If missing data are simply ignored
there is no longer an evident distinction between the posterior probabilities of the four
models. Hence, the assumption of total ignorability coupled with imputation has the effect
of maximizing the bias that would be incurred in simply disregarding missing data. This
result confirms the conjecture put forward in the previous section. This bias is clear from
the summary statistics reported in the second two rows of Table 1.
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