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1. The Bayesian Paradigm

Chapters 2 and 3 have shown that classical statistical methods are usually focused on the
distribution p(y|@) of data y, where p(-|@) denotes either the probability mass function or
the density function of the sample of n cases y = (y1,- .., Yn), which is known up to a vector
of parameters § = (6y,...,0;). The information conveyed by the sample is used to refine
this probabilistic model by estimating @, by testing hypotheses on @ and, in general, by
performing statistical inference. However, classical statistical methods do not give the user
the possibility of incorporating exogenous knowledge about the problem at hand, as arising
for instance from past experience. Consider an experiment that consists of tossing a coin n
times. If the results can be regarded as values of independent binary random variables Y;
taking values 1 and 0, with 8 = p(Y; = 1), where ¥; = 1 corresponds to the event “head in
trial 47, the likelihood function L(#) = p(y|@) (see Chapter 2) is

L) = 22:%i(1 — )" 2o vi

and the MLE of 0 is

§_ 2i¥i
n
which is the relative frequency of heads in the sample. This estimate of the probability of
head is only a function of the sample information.

Bayesian methods, on the other hand, are characterized by the assumption that it is also
meaningful to talk about the conditional distribution of 8, given the information Iy currently
available. Thus, a crucial aspect of Bayesian methods is to regard @ as a random quantity
whose prior density p(6|Iy) is known, before seeing the data. The prior distribution can
arise from data previously observed, or it can be the subjective assessment of some domain
expert. In the example of tossing the coin, we could for instance represent the prior belief
that the coin is fair by adopting a prior density for 8, defined in [0 1], and with expectation
0.5.

The available information changes as new data y are observed, and so does the condi-
tional distribution of 8. This operation of revising the conditional distribution of € is done
by making use of Bayes’ Theorem:

_ p(y|8, Io)p(6|1y)
p(Oly, Ip) = Oy /Io) (1)

which updates p(8|1y) into the posterior density p(8|y,Iy) as the amount of information
changes. Hence, regarding 8 as a random quantity gives Bayesian methods the ability to
incorporate exogenous information into the inferential process so that the posterior distri-
bution of @ is conditional on the total information available:
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total information = prior information + data information
I = Iy + y

Thus, inference is a continuous, dynamic process in which new data are used to revise the
current knowledge. The probability density p(y|lp) in (1) is computed by using the Total
Probability Theorem:

p(yIT0) = [ p(y18. T)p(6110)d6 e

and it is also called the marginal density of data, to point out the fact that it is no longer
conditional on 6.

The posterior distribution is the inference produced by Bayesian methods, and it can be
used to compute a point estimate of the parameters, to test a hypothesis or, in general, to
make probability statements as credibility intervals, or to predict future data y, conditional
on the available information I;, by computing

p(yI1) = [ p(r16, 71)p(6T:)do. )

Note that (3) is essentially (2) with I replaced by I; which is now the information currently
available. If interest is in a subset of the parameters, e.g. 81, then the conditional density
of 6, given I can be obtained from the posterior density p(@|I;) by integrating out the
nuisance parameters 6y = 0\6;:

p(01|T)) = / p(8|1,)d65.

In particular, inference on a single parameter, say 81, is based on its marginal posterior
density:

p(01|T1) = /p(0|11)d02...d0k.

Similarly, inference on any function of the parameters can be performed.

Let now I denote the information currently available and y be future data. In some
circumstances, it is reasonable to assume that, conditional on @, knowledge of I is irrelevant
to y, and hence

p(y|6,I) = p(y|0).

In this case y and I are said to be conditionally independent given @, and we will write
i(I,y|@). The conditional independence assumption is reasonable when @ specifies com-
pletely the current state of knowledge, so that I cannot add any relevant information if @
is known.
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Figure 1: Graphical representation of conditional independence assumptions i(I, y|@).

The stochastic dependency among I, 8 and y, together with the conditional indepen-
dence of T and y given 8 can be graphically represented using the Directed Acyclic Graph
(DAG) in Figure 1. From a qualitative viewpoint, the two directed links pointing from node
0 to I and y represent the stochastic dependence of I and y on 8, so that 6 is called
a parent of I and y, and they are both children of 8. There is not a directed link be-
tween y and I, which can “communicate” only via #: in other words, @ separates I from
y. Separation is interpreted in terms of conditional independence assumptions, and hence
i(I,y|@) [22]. The stochastic dependence of I and y on @ is quantified by the conditional
densities p(I|6) and p(y|@) that are used to sequentially revise the distribution of 8. First,
the conditional density p(@|I) is computed by processing the information I. This updat-
ing operation is represented by the arrow from I towards @ that represents the “How” of
information from I to @ via application of Bayes’ Theorem. After this first updating, the
probability density associated with 6 is p(@|I). When new data arrive, whose probability
density p(y|6,I) = p(y|@) is known, the new piece of information is processed locally, along
the path 8 — y, by applying Bayes’ Theorem again, so that the conditional density of 8,
after this second updating, is p(6|I,y).

Bayes’ Theorem and the Total Probability Theorem are the fundamental tools of Bayesian
methods to produce the posterior distribution of the parameters. When coupled with the
conditional independence of the data given the parameters, the inference procedure can
process data as a whole (in batch), as classical methods do, but it can also process data one
at the time (sequentially), and the final result will be the same. This incremental nature
is a further advantage of Bayesian methods: the acquisition of new data does not require
reprocessing data considered so far.

In the next section we will describe the foundations of Bayesian methods and their ap-
plications to estimation, model selection, and reliability assessment. We will use simple
examples with the aim of explaining the techniques described. More complex models are
considered in Section 3 in which Bayesian methods are applied to the statistical analysis of
multiple linear regression models and Generalized Linear Models. Computational methods
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to effectively implement these methods will be described in Section 3.3. Section 4 will de-
scribe a powerful formalism known as Bayesian Belief Networks (BBNS) and its applications
to prediction, classification and modeling tasks.

2. Bayesian Inference

Suppose we have a sample of n cases y = {y1,...,¥n}, generated from a density function
p(y|@). The density p(-|@) is known, up to a vector of unknown parameters. We assume that
the cases are independent given 8, and hence the joint probability density of the sample is

p(y16) = [[ (4:l6).
i=1

The likelihood function L(6) = p(y|@) plays a central role in classical methods. For Bayesian
methods, the likelihood function is the instrument to pass from the prior density p(8|y)
to the posterior density p(@|I,y) via Bayes’ Theorem. Compared to classical methods,
Bayesian methods involve the use of a further “ingredient”: the prior density of 8. The first
step of a Bayesian data analysis is therefore the assessment of this prior density.

2.1 Prior Elicitation

The prior density of @ can arise either as posterior density derived from processing past data
or it can be the subjective assessment elicited by some domain expert. Several methods for
eliciting prior densities from experts exist, and [21, Ch 6] reports a comprehensive review.

A common approach chooses a prior distribution with density function similar to the
likelihood function. In doing so, the posterior distribution of 8 will be in the same class and
so the prior is said to be conjugate to the likelihood. Conjugate priors play an important
role in Bayesian methods, since their adoption can simplify the integration procedure re-
quired by the marginalization. If the prior is conjugate to the likelihood, then the posterior
density is in the same class, and the computational problem reduces to finding the updated
parameters. A list of important conjugate distributions is given in [2, Ch. 5].

Example 1 Let yi,...,yn|0 be independent variables taking 0 and 1 values,and let § =
p(Y; =1/|6), 6 € [0 1]. The likelihood function is therefore

L(6) o 622:Yi(1 — g)"= 2

The parameter 8 is univariate, and constrained to be in the interval [0 1]. This choice
constrains the class of possible priors. A prior density of the form

p(0|Iy) < 04711 -0, 0c01], a,b>0
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will be conjugate, since it has the same functional form as the likelihood 6*(1 — 6)*, except
for the exponents. This distribution is called a Beta distribution, with hyper-parameters g
and b, and it is sometimes denoted by Beta(a,b). The word hyper-parameters is used to
distinguish a and b from the parameter 8 of the sampling model. Note that, compared to
the likelihood, the hyper-parameters a — 1 and b — 1 of p(8|1y) play the roles of 3, y; and
n— > ; y; respectively. Thus, a —1 and b—1 can be chosen by assuming that the expert has
an tmaginary sample of 0s and 1s, of size a + b — 2, and he can distribute the imaginary
cases between 0 and 1 as his prior knowledge dictates. The size of this imaginary sample can
be used to characterize the subjective confidence of the expert in her/his own assessment.
Summaries of this distribution are

E0|I,) = a

a+b1

_ a —

met 7 arie B(6]1o) (1L - E(6]10))
. ab _ 0 - 0

variance @+b)%@+b+1) a+tb+1

The prior expectation E(8|1y) corresponds to the marginal probability of Y before seeing any
data:

E@l1o) = [ 0p(6110)d8 = [ p(¥ = 18)p(6110)d6 = p(Y = 1|To).

Since the variance of 0 is a decreasing function of a + b for a given mean, the sum of the
hyper-parameters a + b is also called the precision of the distribution. The posterior density
is easily found to be:

p(O|To) ox 6°F 21 — gy vi=t g e [0 1]

which identifies a Beta distribution with hyper-parameters a+3;y; and b+n—>"; y;. Thus,
the posterior precision is increased by the sample size n.

Conjugacy restricts the choice of priors to a limited class of distributions and prior informa-
tion can only be used to choose the hyper-parameters. However, if the class of distributions
is large enough, this limitation is not a serious issue. For instance, in Example 1 a choice
a = b =1 yields a prior distribution which is uniform in [0 1], and hence uniform prior
uncertainty about 8, so that all values are equally likely. Choosing a = b implies that the
distribution of 8 is symmetrical about the prior mean and mode that are both equal to 0.5.
A choice a < b induces negative skew, so that large values of 8 are, a priori, more likely.
Positive skew corresponds to a > b. Several examples are given in plots (a), (b) and (c¢) in
Figure 2. The corresponding posterior densities derived from a sample of size n = 10, and
> yi = 6 are given in plots (d), (e) and (f).
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Figure 2: Densities of Beta distributions for different choices of the hyper-parameters a
and b. Continuous lines report symmetric densities: (a) a=b=1; (b) a=b=2; (c¢) a=b=10.
Dotted lines report positively skewed densities: (a) a=1.5; b=0.5; (b) a=3; b=1; (¢) a=15;
b=>5. Dashed lines report negatively skewed densities: (a) a=0.5; b=1.5; (b) a=1; b=3; (c)
a=5; b=15. Plots (d), (e) and (f) report the corresponding posterior densities derived from
a sample of size n = 10, and ), y; = 6.
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The effect of the prior input is small compared to the data when the sample size n is
larger than the prior precision (plots (a), (b) versus (d) and (e)): posterior densities are very
different from prior densities. For instance, when the prior hyper-parameters are ¢ = 0.5
and b = 1.5 (dashed line in plot (a)), the prior distribution assigns larger probability to
values of # smaller than 0.5. The impact of the sample information is to concentrate the
posterior distribution in the range [0.2 0.9], with a median around 0.5. The difference is less
evident in plots (c) and (f), when the prior precision is larger than the sample size: in this
case the posterior densities are slightly shifted to take into account the effect of the sample.

An alternative way to assess prior distributions is based on the concept of Mazimum
Entropy: it requires the expert to specify some summaries of the prior distribution, such
as the mean or the variance, and it returns the prior distribution having maximum entropy
among the class of distributions identified by the given summary. This assessment method,
due to Jaynes [17, 18], was devised in order to provide probability assessments that are
subject only to the available information and the prior returned contains as little information
as possible, apart from the summaries specified. In this way, bias due to unintentional
subjective components included in the elicitation process is removed, and two experts with
the same prior information will return the same prior distribution.

Example 2 (Maximum Entropy Priors) When 6 is univariate and takes all real val-
ues, and the prior mean and variance are specified, the mazximum entropy prior is ¢ Normal
distribution with the specified mean and variance.

An open problem of Bayesian methods is the choice of a prior distribution representing
genuine ignorance. When this prior exists, it is called non-informative. When a distribution
for @ is non-informative, and we make a parameter transformation ¥ = g¢(@), then the
distribution of 9 must be non-informative. The Jeffreys’ rule [19] allows us to find prior
distributions that are invariant under reparameterizations. If the likelihood function L(8)
is known and we define [(6) = log L(8), the expected Fisher information matrix is

B 0%1(8)
16)=-FE { 06,00, }

where the expectation is over the conditional distribution of the data given 6, and the
Jeffreys prior has density

p(0]10) o det{I(8)}'/?,

with det(-) denoting the determinant of a matrix. If ¢ = g(8), then p(v|Iy) o det{I(4p)}/?,
and the prior distribution is invariant with respect to reparameterization. In most cases,
Jeffreys priors are not technically probability distributions, since their density functions
do not have finite integrals over the parameter space, and are therefore termed improper
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prior. It is often the case that Bayesian inference based on improper priors returns proper
posterior distributions which
then turn out to be numerically equivalent to the results of classical inference [3].

Example 3 Let yi,...,yn|0 be independent, normally distributed variates with mean 6 and
known variance o®. Then,

p(y10) o< exp{—n(y — 6)*/20°}

and I(0) = n/o?, so that the Jeffreys prior for 6 is the (improper) uniform distribution over
the real numbers. Nonetheless, the posterior distribution is

Oly ~ N(g,0°/n)

which is a proper distribution.

Problems related to the use of improper prior distributions can be overcome by assigning
prior distributions that are as uniform as possible but still remain probability distributions.
For instance, in Example 3, the prior distribution can be Normal with a very large variance.
This would also be the Maximum Entropy prior, when the prior knowledge is extremely
uncertain.

The use of uniform prior distribution to represent uncertainty clearly assumes that
equally probable is an adequate representation of lack of information. Recent advances
question this assumption and advocate the use of bounds on the set of possible values that
0 can take [14], [28]. Finally, it is worth mentioning that prior distributions elicited from
several experts can be combined in a single mixture of different distributions with weights
representing the reliability of each expert.

2.2 Estimation

Bayesian inference returns the posterior density p(@|ly,y) = p(8|I1). Marginal inference
on parameters of interest is then based on the marginal posterior distribution, and for an
individual parameter 6; on

p(OL|T) = / p(8|1,)d05d85 . .. dby.

A standard point estimate of 87 is the posterior expectation:

E(@:|1) = [ 61p(61 /1)ty )

An alternative point estimate, based on a principle similar to Maximum Likelihood (see
Chapters 2 and 3), is the posterior mode:
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61 = arg maxyp(6|1y). (5)

Since p(8|I1) « p(y|0)p(8|Iy), the vector of posterior modes  maximizes the augmented
likelihood p(y|6@)p(6|Iy), and it is therefore called the Generalized Maximum Likelihood
Estimate (GMLE) of 8. When the parameters 61, ..., 60 are, a posteriori, independent, then

p(6|I) = HP(9i|—71)

and the posterior mode of individual parameters can be computed from the marginal pos-
terior densities.

Ezample 1 (continued). Since the posterior distribution is still Beta, the posterior mean is

a+ >y a+b a n >
B(Q|I) = -~ &idi i
011) at+b+n atbtnatb atbtn n
a+b n
= °"7 RO+ ——73
atb+n (|0)+a+b+ny

which is a weighted average of the prior E(6|Iy) and sample mean g, with weights depending
on the sample size n and prior precision ¢ + b. If n < a + b, the prior mean has a larger
weight than the posterior mean. As the sample size increases, prior information becomes
negligible, and the posterior mean approximates the MLE § of 8. The posterior mode
ho_otdivyi—1
6= ——"———
a+b+n—2

reduces to the standard MLE of @ when ¢ = b = 1, and hence the prior distribution assumes
that all values of 8 are equally likely.

Example 4 Let y1,...,yn|0 be independent, normally distributed with mean 6 and known

variance 0® = 772, where 12 is called precision. Then,

p(y10) oc exp{—n7*( — 6)*/2}

and 0|1y ~ N(uo,08) is a conjugate prior with hyper-parameters py and o3 = 74 2, (this
is also the Mazimum Entropy prior for specified mean and variance.) By conjugacy, the
posterior distribution is N(u1,02) and it can be easily shown, for instance [21, page 7], that
the posterior hyper-parameters are:

oil=12 = 27'3 + n7'22
ToMo +NT7Y -
K1 =
1

10
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Thus, the posterior mean is again o weighted average of the prior and sample means, with
weights that depend on the sample size n, the datum precision 72 and the prior precision
18. As in Ezample 1, there is a trade-off between data and prior information, and for
small samples the prior mean has a weight larger than the sample mean. As the sample size
increases, the prior input becomes negligible, and asymptotically the Bayesian estimate is

the sample mean y. By symmeltry, the posterior mode and mean are coincident.

2.3 Credibility Intervals

The posterior mean and mode provide simple summaries of the posterior distribution that
can be further used to evaluate the probability that @ is in some given region R, or to find
a region R that contains @ with a specified probability 1 —a. The latter is called a (1 —a)%
credibility region, i.e.

p@ER)=1-a

When R is the region of smallest volume, it is also called the Posterior Highest Density
(PHD) region. When

6 = 0, the PHD region is an interval, and if the posterior density of 8 is unimodal, the
PHD region is given by two values [; and [l such that

JPp)dd = 1-a
p(lillh) = plle|h)

Computational methods for finding the PHD region in particular problems can be found in
[1, page 140].

Ezample 3 (continued). Given that the posterior distribution of 8 is N (§,0%/n), a (1— )%
PHD interval is easily found to be:

o
giza/2%§ p(Z > z42) = /2; Z ~N(0,1)

which is identical to the classical (1 — a)% confidence interval for the mean of a normal
population when the variance is known (see Chapter 2). However, the meaning of the latter
is different. The frequentist interpretation of the (1 — @)% confidence interval is based on
the repeatability of the sampling process, so that if we could take, say, 100 samples, we
would expect that in (1 — @)% of cases the interval § + z, /2% contains the true value of
6. The (1 — a)% PHD interval returned by the Bayesian method is a credibility statement,
conditional on the information I; currently available: we believe that, with probability
(1 — @), 0 belongs to the interval § + 2, /9 %

11
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2.4 Hypothesis Testing

The Bayesian approach to hypothesis testing is based on the computation of the conditional
probability of a hypothesis H given the information currently available Iy, that is, p(H|Iy).
Thus, when the null hypothesis Hy : 8 € ©( and the alternative hypothesis H; : 8 € Oy,
with @9 N O; = @, are formulated, there are prior beliefs on both of them, say p(Hy|ly) and
p(H1|1y), with p(Hy|Ip) + p(H1|Ip) = 1. By the Total Probability Theorem (applied to the
discrete case), the prior density of @ is then:

p(8|1o) = p(8|Hy, Io)p(Ho|Io) + p(8|H1, Io)p(H1|lp)
where p(@|H;, Iy) are the prior densities of 6, conditional on each hypothesis. The sample
information is then used to compute from the prior odds:

p(Ho|lo)

p(H1|Ip)
the posterior odds in favor of Hy:

p(Holl1)  p(y|Ho) p(Ho|lo)

p(H1|LY)  p(y|H:) p(Hillo)’
from which the following decision rule is derived:

if p(H0|Il) < p(H1|Il) Reject Hy
if p(H0|Il) > p(H1|Il) Accept H
if p(H0|Il) = p(H1|Il) Undecidability.

Compared to classical methods in which the sampling variability is taken into account in
the definition of the rejection region of the test (see Chapter 2), the Bayesian method
to hypothesis testing is to accept as true the hypothesis whose posterior probability is the
largest, since it is the most likely given the information available. The ratio p(y|Hy)/p(y|H1)
is called the Bayes factor, and when the prior probabilities of Hy and H; are equal, the
Bayes factor determines the decision rule. The evaluation of the Bayes factor involves the
computation of:

p(y|Ho) = [p(y|Ho,0)p(8|Ho,Io)do

p(y|H1) = [p(y|H1,0)p(6|Hy,1o)do
and hence the evaluation of the marginal densities of the data on the two parameter spaces
specified in Hy and H;. When the two hypotheses are simple: Hy: @ = 8y and H; : 8 = 64,
then the Bayes factor reduces to the classical likelihood ratio test to discriminate between
two simple hypotheses. Further details can be found in [1, Chapter 4].

12
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Example 5 Let y1,...,yn|0 be independent, identically distributed Poisson P(8) variates.
Thus
o _,
p(yi|0) = Fe_ ; 0>0 y;=0,1,2...

il
Let Hy : 6 = 6y and Hy : 0 = 6, be two simple hypotheses, with p(Hy|ly) = p(Hi|ly). The
Bayes factor is

01
and hence, since the prior odds are equal to 1, the decision rule is to accept Hy if the Bayes
factor is greater than 1.

(0_0) 2 (01 —0o)

3. Bayesian Modeling

The examples discussed in Sections 2.1-2.4 are “toy” examples used to explain the Bayesian
approach. In this section, we will focus on more realistic models in which a response variable
Y is a function of some covariates X1,..., X, € X. We begin by considering the multiple
linear regression model, in which data have a Normal distribution whose expectation is a
linear function of the parameters. We then consider Bayesian methods for the analysis of
Generalized Linear Models, which provide a general framework for cases in which normality
and linearity are not viable assumptions. These cases point out the major computational
bottleneck of Bayesian methods: when normality and linearity assumptions are removed,
there is no closed form solution to compute the posterior distribution. We will then discuss
some computational methods to approximate this distribution.

3.1 Multiple Linear Regression

We begin by considering the standard multiple linear regression model, in which data are
assumed to have the distribution

YZ|(:uZa T2) ~ N(,LLZ, T_2) (6)
conditional on y; and 72. The expectation y; is a linear function of the regression parameters
B, with coefficients that are functions of the regression variables Xi,..., X.:

p p
pi=fx)"B=0+ Bifi(xi) =B+ > Bitij.

=1 =1

The function f(-) is defined in X and takes values in 7 C RPtL. This definition allows
us to consider general regression models as polynomial regression, e.g. with ¢ = 1 and

13



Bayesian Methods for Intelligent Data Analysis

B
/‘
2 \
T ~
pn® ®
Xn
M T
s
p® X‘1 Y, n
i
®
Y, 1

Figure 3: Graphical representation of a regression model with independent observations
given 8 = (3, 72).

14
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f(z;) = (1,z;,27) we have a quadratic regression model y; = By + B1x; + Box?. The linear
model can be written in matrix form as

Y| ~ N(XB,7%I)

where X is the n x (p + 1) design matrix, whose ith row contains the coefficients f(x;) of
the regression parameters, and I, is the n X n identity matrix.

3.1.1 Parameter Estimation

The parameter vector @ is given by (3, 7%). We further suppose i(Y7,...,Y,|0), so that the
likelihood function is:

L(6) x " exp(— QZ f(x)TB)?/2).

When both 8 and 72 are unknown, the simplest analysis is obtained by assuming a conjugate
prior for @, which is specified in two steps:

(i) Conditional on 72

BlT*, Io ~ N(By, (T°Ro) ")
where 72 Ry is the (conditional) prior precision.

2

(ii) The datum precision 7 is assigned a prior distribution:

2Ty ~ X2/ (V003)

2

which corresponds to assigning the error variance ¢* an Inverse Gamma distribution

[2, page 119] with density function:

p(0?|To) o (02) (0212 exp(—103 /(202)).

The specification of the hyper-parameters vy, 03, B, and Ry allows the encoding of the
prior information Iy. For instance, the expectation and variance of 72 are respectively o 2
and 20, 1 /vo, so that the expert’s information on the variability of the data can be used
to define oy 2 while the choice of 1y may represent the expert’s assessment of his ability in
terms of size of an imaginary sample used to elicit such prior distribution [21, Ch. 9]. The
prior hyper-parameters and the distribution chosen imply that

2V§J§
(vo —2)2(vo — 4)

2
Vo,
Blo®|To) = o =5, V(e®llo) =

15
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provided that vy > 4. For 2 < vy < 4 the variance does not exists, and for 1y < 2 the mean
does not exist.

Similarly, B, represents some expert’s belief about the regression model, while Ry is a
measure of the precision of his assessment, for a fixed value of 72. In this way, the prior
elicitation of the distribution of B can be done independently of the sampling variability.
The marginal variance of B can be easily found to be:

2
V(BITo) = B{V(BIIo,7)} + VE(BIo, )} = 22 Ry .

The joint prior distribution is known as a Normal-Inverse-Gamma prior. The elicitation
of the prior distribution in two steps and the conditional independence assumptions are
represented by the DAG is in Figure 3. The link from 72 to B represents the two-step
prior elicitation process described above, so that the distribution of 72 depends only on
the information Iy currently available, and then conditional on 72 the distribution of 3
is elicited. For consistency, the node 72 should be child of a root node Iy representing
the prior information collected from past experience. For simplicity, this node has been
removed from the graph. The links from 72 and B to Yi,...,Y; specify the sampling
model, and hence the stochastic dependence of Y on 3, via u, and on 72. The conditional
independence (Y1, ...,Y,|0) is represented by the lack of directed links among Yi,...,Y,
that can communicate only via 72 and 8. The conditional independence of the observations
given 0 is encoded by representing the associations among Y;, u; and x; on different plateaux,
one for each observation.

The quantification of the dependencies is done by associating the prior distribution
X2,/ (v003) to the root node 72, and the distribution N(By, (72Rg)~"') to the node 8. The
joint information of B and values of the covariates are summarized into the nodes py, ..., up
that represent linear functions of B with coefficients f(x;) and hence they inherit their
variability from the “stochastic” parents 3. The sampling models N(u;, 772) are attached
to the nodes Y1,...,Y,.

Data are then processed by applying Bayes’ Theorem in an order which is opposite to
the order of elicitation of the prior density, so that first there is a flow of information from
Y1,..., Y, to B and the conditional posterior distribution is found to be multivariate normal
with updated hyper-parameters:

B, 7> ~ N(By,(r*Ri)™) (7)
R = (Ro+XTX) (8)
B = R{'(RoBy+XTy). (9)

Thus, for fixed 72, the posterior precision of @ is increased by the datum precision X7 X,
that is the Fisher information matrix, and the posterior expectation is an average of prior
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expectation B, and data y. Thus, a point estimate of 3 (conditional on 72) is

E(B|I1) = R{'RoBy + R{' X"y = RT'RoBy + (Ro + X" X) ' X7y

and compared to the MLE 8 = (X7 X) ' XTy there is an adjustment to take into account
prior information. As the weight of the prior information becomes negligible compared to
the sample information, the Bayesian estimate approximates 3. By conjugacy, the marginal
posterior distribution of 72 is found to be

2|~ x2,/(vo}) (10)
vi = 1+n (11)
vior = voa+yly +BERoB, — BTR18,. (12)

in which the degrees of freedom are increased by the sample size n. Denote by y = X B the
fitted values of the classical regression model and let rss denote the residual sum of squares
(y —9)7(y —¥), so that 62 = rss/(n —p— 1) is the classical unbiased estimate of the error
variance (see Chapters 2 and 3.) Then, it can be shown [21, page 249] that

v10% = voi + rss+ (By — ;@)T(Ral +XTxX)"H~YB8, - B)
so that the expected posterior variance is

vy —2 n—p—1 , p+1
— )
vw+n-—2 +n-—2 v+n-—2

where d = (8, — B)T(Ry* + (XTX)"1)~Y(8y — B)/(p + 1). Therefore E(c?|I;) provides
an estimate of the error variance, which combines prior information E(c?|Iy), the standard
unbiased estimate of the error variance 62 and d, that is a weighted discrepancy between
By and ﬁ Thus, a large discrepancy between 3, and ﬁ represents the fact that the prior
information is scarce and hence the variance is large.

Inference on the regression parameters is performed by computing the marginal posterior
distribution of 3:

E(o?|I,) = E(o?|Ip) + d

N(0,02R[")

VX2 /m

which is a non-central multivariate t-distribution [2, page 139], and it can be used to provide
credibility regions or PHD regions. For instance, with ¢ denoting the upper «/2 quantile of
a Student’s ¢ distribution on v, degrees of freedom, the (1 — «)100% PHD interval for §; is
given by:

Bl =B+
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B £t O‘%UZ'

where v; denotes the ith diagonal element of (Ry+X7 X)~!. Further details can be found for
instance in [21, Ch 9]. Prior uncertainty can be modeled by assuming Ry =~ O, vy = —(p+1)
and o3 = 0, so that

L~ Xi_p_l/rss (13)
Blr*,I ~ N(B,(rX"X)™) (14)

and
vi=n-p-1 Ri=XTX E(B|T)=B E(o*I)=rss/(n—p-1)
In this way, the Bayesian estimates of 02 and B reduce to the classical MLE.

Example 6 (Simple Linear Regression) Suppose ¢ = 1, and that we are interested in
a simple linear regression model for Y on X. We assume that

Y|(B,7) ~ N(p=Bo + Bz, 77?%)

and the parameters are assigned the prior distribution:

721y ~ X5/ (003)

—1
[ Bo 2 7 Boo o Too To1
ﬂ_<ﬁ1>|T’IO N((ﬁm)’(T(Tm 7“11)) )

With a sample of n independent observations given 8 = (12, By, B1), the posterior distribu-
tion of the parameters is

and

1
T2|Il ~ le/(ylaf); ﬂ|T2aII ~N (ﬂla (T2R1) )

with

R — T00 + N 01 + NI
! ro1 +nZ T+ YT )

A choice Ry ~ O, vy = —2 and 08 =0 yields
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7'2|Il ~ Xi_Q/rss ﬂ|7’2,11 ~ N(ﬁ, (TQXTX)_I)

and inference on the regression parameters is based on the Student’s t distributions:

Bo — B1o B — Bu

Nt _ Nt —
rssu /(n—2) ? rssvg/(n—2) ?

where vy, vy are the diagonal elements of Ry = (XTX)~L.

The posterior distribution of the parameters can also be used to predict new cases y|0 ~
N(XB,72I,,). The analysis is based on the evaluation of the conditional

distribution of y|y, which again involves the use of a multivariate Students’ ¢ distri-
bution. Details are given for instance in [21, Ch 9], and application to real data-sets are
provided by [11]. Generalization of the approach described in this section to models for
correlated observations involve the use of “matrix-form” distributions as Wishart and can
be found in [2, 3].

3.1.2 Model Selection

Our task becomes more challenging when we are interested in discovering the statistical
model best fitting the available information. Let M = {My, My,..., My} be the set of
models that are believed a priori to contain the true model of dependence of y on X1, ..., X,.
For instance with ¢ = 1, the set M can contain the nested models:

My:p = Do
My :p = Bo+ bz
My:p = o+ pBiz+ Bz’

Each model induces a parameterization M; — 8 = (ﬂ(i), 7?), e.g. 8O = 5, gV =
(Bo, B1)T, B? = (Bo, B1, B2)T in the example above. Prior information I allows the elici-
tation of prior probabilities of My, ..., M,,, and, conditional on M;, of prior distributions
for 6. Graphically, this is equivalent to assuming a further node corresponding to M in
Figure 3, with links towards 72 and ﬂ(i), and the parameterization induced by each model
is represented by a different plateau, as in Figure 4. Note that the parameters ﬂ(i) are con-
ditionally independent given M and 72. Suppose that we wish to use the prior and sample
information to select a regression model M; from M. We can use the sample information
to compute the posterior probability of M; given the data and the prior information Ij:

p(M;|1o)p(y| M;)

p(M;| 1) = v |L)
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Figure 4: Graphical representation of a regression model with independent observations
given 00 = (B, 72), conditional on a model.
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and then we choose the model with the largest posterior probability. When the comparison
is between two rival models M; and My with p(M;) = p(M>), this is equivalent to choose
M if the Bayes factor:

p(y|M1)

p(y|Ma)

is greater than one. The quantity p(y|M;) is the marginal likelihood (marginal with respect
to @) of the data given the model M;, which is computed as:

p(y|M;) = /p(ylﬂ(“,72)p(ﬂ“),72|10)d,@(i)d¢2

and the integral has a closed form solution:

det(RY1/2 (1y02)0/2T (1, /2
det(R)1/2(102)1 /2T (g /2) /2

where the indexes 0 and 1 specify the prior and posterior hyper-parameters of B% and 72.
A complete treatment of this problem can be found in [21, Ch 9].

When the inference task is limited the prediction of future cases, a weighted average of
the models in M can be used instead of one single model [15].

3.2 Generalized Linear Models

Generalized Linear Models (GLM) provide a unified framework to encompass several sit-
uations which are not adequately described by the assumptions of normality of the data
and linearity in the parameters. The components of a GLM are (i) the linear predictor
n = f(x;)T B, (ii) the link function g(u) = 7, relating the expectation of the data u given
the parameters to the linear predictor, and (iii) the distribution of Y'|@ which belongs to
the exponential family (see Chapter 3). The parameter vector is made up of @ and of the
dispersion parameter ¢. The problem with a Bayesian analysis of GLMs is that the posterior
distribution of @ cannot be calculated exactly, since the marginal density of the data

p(¥I10) = [ p(r1To, 0)p(61To)d8
cannot be usually evaluated in closed form, as the next example shows.

Example 7 (Logistic regression) Suppose that, conditional on the vector of parameters
0 = 3, data have a Binomial distribution with p(Y = 1|08) = u. The dispersion parameter
is ¢ = 1. The logit function is the canonical link (see Chapter 3)

9(ui) = log 7 ljim = = f(x:)"B.
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Let p(B|Iy) be the prior density. With a sample in which n cases, corresponding to n
combinations of values of the covariates and supposed to be conditionally independent given
B, are observed, the likelihood function is

L eniyi

n
=m0 -m =1l

i=1

and the marginal density of the data solves

/H 1612%,, (B|1h)dB (15)

To date, there are no known prior distributions which lead to a closed form solution of (15).

Numerical integration techniques [21] can be exploited to approximate (15), from which a
numerical approximation of the posterior density of 3 can be found. The basic idea is to
select a grid of points and replace the value of the integral by a weighted sum of values of
the integrand function evaluated in the grid points {84,...,8,}:

L NijYi
/H T3 o P(Blo)dp =~ Zw]H liem] p(B;|1o).

However, as the dimension of the parameter space increases, numerical integration becomes
infeasible, because it is difficult to select a suitable grid of points and it is hard to evaluate
the error of the approximation [8].

3.3 Approximate Methods

When numerical integration techniques are no longer available, we are left with two main
ways to perform approximate posterior analysis: provide an asymptotic approximation of
the posterior distribution or use stochastic methods to generate a sample from the posterior
distribution.

3.3.1 Asymptotic Posterior Distributions

When the sample size is large enough, posterior analysis can be based on an asymptotic
approximation of the posterior distribution to a Normal distribution with some mean and
variance. This idea generalizes the asymptotic approximate distribution of MLEs when their
exact sampling distribution cannot be found or it is too difficult to be used (see Chapter
2.)

Berger [1, page 224] mentions four approximate Normal distributions, which differ in
the way the mean and variance are computed and return approximations of decreasing
accuracy:
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1. 6|1, is approximately N(81,V(8|I1)), where 8, and V(8|I,) are the exact posterior
mean and variance of 8.

2. 8|1, is approximately N(8y, (I(81|I))~!), where 8, is the GMLE of 8, i.e. 8, maxi-
mizes the augmented likelihood L(8)p(8|1y) = p(y|@)p(8|Iy) and the matrix I(8;|I;)
is the & x k (k is the dimension of the parameter vector) matrix having element 3, j:

9% log{p(y|0)p(0|1s)}
96;06,

1(0:1)ij = —

6,

evaluated in the GMLEs.

3. 8|1, is approximately N (8, (I(8y))~!), where 8 is the MLE of 0, i.e. & maximizes the
likelihood L(#) = p(y|@) and the matrix I(@y) is the observed Fisher information
matrix, i.e. it is the &£ X k£ matrix having element i, j:

9% logp(y|6)

I(é|y)ij == 90.90.
100;

0

evaluated in the MLEs.

4. 0|1, is approximately N (8, (I(8))!), where the matrix I(8) is the expected Fisher
information matrix, i.e. it is the &£ X £ matrix having element i, j:

9%logp(y|9)

I(6);; = —E
(0): 00,;00; ‘0

evaluated in the MLEs, and the expectation is over the conditional distribution of the
data given 6.

The first approximation is the most accurate, as it preserves the exact moments of the
posterior distribution. However, this approximation relies on the computation of the exact
first and second moments [21, Ch 8]. When exact first and second moments cannot be
computed in closed form, we must resort to the second approximation, which replaces them
by approximations based on the maximization of the augmented likelihood. Hence, the prior
information is taken into account in the calculations of both moments. As the sample size
increases and the prior information becomes negligible, the second and third approximation
become equivalent. The fourth approximation is the least accurate and relies on the idea
that, for exponential family models, expected and observed Fisher information matrices are
identical, since the matrix of second derivatives depends on the data only via the MLEs.
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Asymptotic normality of the posterior distribution provides notably computational ad-
vantages, since marginal and conditional distributions are still Normal, and hence inference
on parameters of interest can be easily carried out. However, for relatively small samples,
the assumption of asymptotic normality can be inaccurate.

3.3.2 Stochastic Methods

For relatively small samples, stochastic methods (or Monte Carlo methods) provide an
approximate posterior analysis based on a sample of values generated from the posterior
distribution of the parameters. Posterior analysis requires the evaluations of integrals:

(8|11)) /9 (8|11)d

For instance, for g(6) = 6 we compute the posterior expectation. If exact integration
is not possible, Monte Carlo methods replace the exact integral E(g(0|11)) by >, 9(8i)/s
where 64, ...,60; is a random sample of size s generated from @|I;. Thus, the task reduces
to generating a sample from the posterior distribution of the parameters. Here we will
describe Gibbs Sampling (Gs), a special case of Metropolis-Hastings algorithms [12], which
is becoming increasingly popular in the statistical community. GS is an iterative method
that produces a Markov Chain, that is a sequence of values

{69, 9 9@}

such that 8019 ig sampled from a distribution that depends on the current state ¢ of the
chain. The algorithm works as follows.

Let 90 = {0 0,(60)} be a vector of initial values for the parameter vector 8 and
suppose that the condltlonal distributions of 6;|(61,---,6;_1,0;11,- - -, 0x) are known for each

3. The first value in the chain is simulated as follows:

0%1) is sampled from the conditional distribution of 01|(0§0), e ,0,(60), y);

6" is sampled from the conditional distribution of 6,(6{",6”,--- 6 y)

6" is sampled from the conditional distribution of 8|(6{",6",---,6" y)

Then 6© is replaced by 6" and the simulation repeated to generate 0(2), and so forth.
In general, the ith value in the chain is generated by simulating from the distribution of @
conditional on the value previously generated 80—, After an initial long iteration, called
burn-in, of say b iterations, the values

(60+1) g(b+2) gv+3) 3
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Figure 5: A simple BBN.

will be approximately a sample from the posterior distribution of 8, from which empirical
estimates of the posterior means and any other function of the parameters can be computed
as

where s is the total length of the chain. Critical issues for this method are the choice of the
starting value 6, the length of the burn-in and the selection of a stopping rule. The reader
is referred to [13] for a discussion of these problems. An implementation of Gs suitable for
problems in which the likelihood function satisfies certain factorization properties is the
program BUGS [27]. The program manual [25] contains several interesting illustrative
examples.

4. Bayesian Networks

The graphical models that we have used to represent dependencies between data and pa-
rameters associated with the sampling model can be further used to describe directed asso-
ciations among sets of variables. When used in this way, such models are known as Bayesian
Belief Networks (BBN) and they result in a powerful knowledge representation formalism
based on probability theory widely use in Artificial Intelligence. In this section, we will
outline the foundations of BBNS and we will describe how to use BBNS to analyze and model
data.

4.1 Foundations

Formally, a BBN is defined by a set of variables Y = {Y1,...,Y7} and a DAG defining a
model M of conditional dependencies among the elements of Y. We will consider discrete
variables and denote by ¢; the number of states of ¥; and by y; a state of ¥;. A conditional
dependency links a variable Y; to a set of parent variables II;, and it is defined by the
conditional distributions of Y; given each configuration m;1, ..., mq, of the parent variables.
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The directed graphical structure encodes the assumption that a variable Y; is conditionally
independent of all the variables {Y1,Ys,...,Y;_1} given its parents, and hence, it yields a

factorization of the joint probability of a set of values y; = {y1x,-.-,yrx} of the variables
in ) as
I
p(yx) = [I p(yir|mi;), (16)
i=1

where ;; denotes the configuration of states of II; in yy.

Example 8 (A simple BBN) Consider the BBN in Figure 5, in which the set Y is {Y1,Y2,Ys}
and ¢; =2 for i =1,2,3. The graph encodes the marginal independence of Y1 and Ya, which
in turn are both parents of Ys. Thus

I, =1, =0, I3 = (Y1,Y3).

Note that 113 takes four values m;; corresponding to the four combinations of states of Y1 and
Ya. We will denote these four states as w31 = (y11,Y21), 732 = (Y11,Y22), 733 = (Y12,Y21)
and 734 = (Y12, Yy22)- The joint probability of a case yr = {y11, Y21, Y32} can then be written
as

p(yr) = p(y11)p(y21)p(y32|y11, y21) = p(y11)p(y21)p(Ys2|T31)-

If Y3 has a child variable, say Yy, then the separation of Yy from Y1,Yo implies that
i(Ys, (Y1,Y2)|Ys), and the joint probability of yir = {yik, Yok, Y3k, Y4k } factorizes into

p(yr) = p(y1x)p(Y2r)p(y3k|735)p(yar | 7a5)-

Thus, the graphical component of a BBN provides a simple way to describe and communicate
stochastic dependencies among variables. There is a tendency, see for instance the review
in [15], to interpret the directed links in terms of causal association between variables, al-
though risks related to this interpretation are well known. The conditional independence
assumptions encoded by a BBN have the further advantage that computations with probabil-
ities are greatly simplified, so that tasks as prediction, explanation, classification, decision
making can be done very efficiently, as shown in the next two examples.

Example 9 (Representation) Consider the BBN in Figure 6, in which the variables are
all binary. Directed links identify parent-child dependencies, and hence:

I, =0 I, =Y,
I3 =Y, Il =Y,
II5 = (Y3,Yy) IIg = (Y3,Y5)

The graph encodes the following conditional independence assumptions:
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Figure 6: A BBN with 6 binary variables.
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Thus, the joint probability of one case

Y = (yla Yok, Y3k, Yak,> Ysk» yﬁk)

can be decomposed into a set of independent parent-child contributions as:

p(yx) = (1) (vor Y1) (ysk Y2k )P (Yar [Yor) P (Ysk | Y3k, Yar )P (Yer | Y3k Ysk)-

The advantage of this description is that the joint probability of the 6 variables would require
26 — 1 = 63 independent numbers, that are reduced to 1 +2+ 2+ 2+ 4 4+ 4 = 15 when the
conditional independence assumptions 1-4 are exploited.!

This graphical representation provides a compact and powerful formalism to efficiently
extract information of interest from a statistical (graphical) model (see Chapter 3.) In
a more general sense, BBNS provide a knowledge representation and a reasoning method
for problem solving based on probabilistic information. Using BBNS, we can easily make
predictions about the value of a variable in a given situation by computing the conditional
probability distribution of the variable of interest given the values of a set of some other
variables in the network describing the situation at hand. Suppose, for instance, that we
are interested in the value of variable Yg when the variables Y3 and Yy are observed to be in
the states ys1 and y41. By the Total Probability Theorem

!Since the variables are binary, each conditional distribution is identified by one number, and hence 1+
2+ 2+ 2+ 4+ 4 is the sum of conditional distributions defined by the parent configurations.
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p(yerlyst,ya1) = D p(yer,ysslys1, yar)
F

= > p(ys;lyst, ya1)p(ye1|ys;, ys1)-
J

Thus, the conditional probability of interest is expanded to include all variables between the
conditioning variables Y3 and Yy, and Yg, and then factorized to account for the condi-
tional independence assumptions encoded by the DAG. Within this framework, the marginal
probability p(ye1) that would be computed by marginalizing the joint probability:

p(We1) = > p(Ye1, Y55, Yam, Y3k: Y2m, Yir)
ijkmnr
turns out to be nothing but the conditional probability of ye1 given the empty set, and it can
be computed as:

plye1) = D pWeilysi ysk) D Ps;|ysks yam) Y P(Yskly2n)p(Yam|y2n) X

ik m n

> p(yanlyir)p(y1r)

r

by taking advantage of the locality structure of the parent-child configurations.

A network structure of particular interest for data analysis is displayed in Figure 7 and
it is known as the Naive Bayesian Classifier.

Example 10 (Naive Bayesian Classifier) The BBN in Figure 7 represents a Naive Bayesian
Classifier, in which a set of mutually exclusive classes is represented as the root node, and
the attributes of the objects to be classified depend on this variable. The simplifying as-
sumptions made by this model which brings it the name of "naive” are that the classes are
mutually exclusive and that the attributes are independent given the class. The meaning of
this assumption is that, once we know the class to which an object belongs, the relations
between its atiributes become irrelevant. In the example depicted in Figure 7, the root node

Y1 represent the set of mutually exclusive classes and the leaf nodes Yo and Ys are the at-
tributes. As the model assumes i(Ya2,Y3|Y1), the joint probability distribution is decomposed
into

(Y1 Yok, Ysk) = P(Y1k)P(Yor|y1e) P (Ysk | y1x)-

Although the underlying structure is so simple to be termed “naive”, this model performs
extremely well in classification problems with a large number of attributes [9] in which the
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Y;

Y; Y

Figure 7: A Naive Bayesian Classifier.

task is to classify a unit presenting a combination of attribute values into one of the states
of the variable Y.

The conditional independence assumptions represented by the model allow the classifi-
cation to be performed in a very efficient way. Suppose that a unit with attributes yo; and
ysi 18 to be assigned to one of the states of the variable Y1. The solution is to compute
the posterior probability p(yii|y2j, yak) for all i, and then the state with the largest posterior
probability is chosen. Thus, the problem reduces to computing p(yii|y2;, ysk) which is given

by:

p(y1iluag yor) — P(y1:)p(y2;1y1:) P(ysk|y1i) .

32 P(y25ly10)p(y1r) 220 P(ysklyrr)p(yir y2;)
The factorization into terms that depend on the associations Y1,Ya, and Y1, Y3 is an advan-
tages of Bayesian methods described in section 1. We first have a flow of information from
Y> to Y1 by applying Bayes’ Theorem:

p(y1i)p(y2;|y1s)
22 Py24ly10 )0 (Y11
After this first updating, the probability distribution of the class node is P(Y1|yo;), and this

is used as prior distribution in next step, to process the information incoming from node
Y3:

i p(Y1ily25)-

p(yskly10)p(yrily2;)
> p(ysk|y1r)p(Yir [y2;)”
This can be clearly extended to the case of several attributes, and the computation of the
conditional probability of Y1 given a combination of attribute values is found by processing
the information incoming from one attribute node at a time.

In this special case, the network structure allows an efficient computation of the pos-
terior distribution of the variable of interest, in linear time with respect to the number of
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attributes. Unfortunately, this is not the case for any DAG. Nonetheless, more general (but
less efficient) algorithms are available to compute a conditional probability distribution in
a generic DAG. The interest reader can find a review of some of these algorithms in [22, 6].

4.2 Learning Bayesian Networks From Data

In their original concept, BBNS were supposed to rely on domain experts to supply the
required information: their conditional independence assumptions, when coupled with the
subjective assessment of the conditional probability distributions associated to the depen-
dencies, produces a sound and compact probabilistic representation of the domain knowl-
edge. However, the statistical roots of BBNS soon led to the development of learning meth-
ods to extract BBNS directly from databases of cases rather than from the insight of human
domain experts [7, 5, 16], thus turning BBNS into a powerful tool for the analysis of data.

Suppose we are given a sample of nn cases y = {y1, ..., yn} from which we wish to induce
a BBN. Note that the sample is now multivariate, since each case in the sample

Vi = Yiks---» Y1)

corresponds to a combination of states of the I variables. Thus, y is a n x I matrix. Two
components of a BBN can be learned: the graphical structure M, specifying the conditional
independence assumptions among the variables in Y, and, given a graph M, the conditional
probabilities associated to the remaining dependencies in the graph. We first suppose the
graphical structure M given and we focus attention on the second task. The selection of
the graphical model M will be considered later.

4.2.1 Parameter Estimation

Given a DAG M, the conditional probabilities defining the BBN are the parameters 8 =
(0ijr), where 0;;1 = p(yix|mij, @), that we wish to estimate from y. We shall denote by
0i; = (0ij1,---,0;jc;) the parameter vector associated to the conditional distribution of
Y;i|mij, to be inferred from y. Graphically, we can expand the BBN by adding, to each
variable Y;, new parent variables representing the parameters that quantify the conditional
distribution of Yj|m;;.

Ezample 8 (continued). The BBN in Figure 5 can be expanded into the BBN in Figure
8 by adding the parameters that quantify the dependencies. Thus, six parameters 8 =
(01,02,031,039,053,054) are needed. Since the variables ¥; and Y3 are binary, their marginal
distributions are defined by two parameters: 6; = p(y11|0) and 62 = p(y21]6). From the two
distributions of Y] and Y5, we can define the joint distribution of the parent variable Il3.
The distribution of II3 is specified by 6, and 6y as p(m31|0) = 01602; p(732|0) = 61(1 — 62);
p(ms3]0) = (1 — 61)82 and p(m34|0) = (1 — 61)(1 — 62). Finally, each parent configuration
m3; defines a conditional distribution Y3|7s;. Since Y3 is binary, each of these conditional
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91

\/ “
AN

Figure 8: A Simple BBN augmented by parameters.

distributions is identified by one parameter: 631 = p(ysi|m3;,80) for j = 1,2,3,4. From
these parameters, we obtain the parameter vectors 8; = (611, 1 — 611) associated to the dis-
tribution of Y1, 02 = (021, 1-— 021) associated to the distribution of 1/2, 031 = (0311, 1- 0311)
associated to the distribution of Y3|ms1, 832 = (0321, 1 —032;) associated to the distribution of
1/3|7T32, 033 = (0331, 1—0331) associated to the distribution of Y3|7T33 and 034 = (0341, 1—0341)
associated to the distribution of Y3|m34. We have assumed mutual independence among 6;;,
although by no means this is a necessary condition. Mutual independence, however, leads
to a great simplification of the estimation procedure.

The standard Bayesian method to estimate @ uses conjugate analysis. Let n(y;|m;;) be
the frequency of (y;x, 7;;) in the sample, and let n(m;;) = > n(yik|mi;) be the frequency of
mij- The joint probability of a case yj; can be written as a function of the unknown 6;;;; as

yk|0 H Hz_yk;

and hence, if cases are independent, the likelihood function is

q4i €4

L(6) = [ p(yxl6) = H I1 I1 6veeima).
k=1

i=1j=1k=1
Thus, p(y|6) factorizes into a product of local parent-child contributions:

9 ¢

I T e

j=lk=1
and each of these terms is itself a product of terms that depend on the parent configurations:

]._.[ yzk|7"z])
k=1 Z]k
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A common assumption [26] which matches the factorization of the likelihood into parent-
child contributions and leads to local computation is that the parameter vectors @;; and
0/ ; associated to different variables Y; and Yj are independent for ¢ # i’ (global indepen-
dence). If the parameters 8;; and 8;; associated to the distributions of Y;, given different
parent configurations 7;; and 75 (§ # j'), are further assumed to be independent (local
independence), then the joint prior density p(@|Iy) factorizes into the product

p(8|1o) o« [] p(8i;T0)-
ij
If the sample y is complete, and hence there are not entries reported as unknown, local and
global independence induce an equivalent factorization of the posterior density of 6:

p(8111) o< [[{p(8:5110) [T 655"}
ij k=1

and this allows us to independently update the distribution of 8;;, for all 4,5. A further
saving in computation is achieved if, for all ¢ and j, the prior distribution of @;; is the
conjugate Dirichlet distribution with hyper-parameters {cuj1,- - -, oije; } with oy, > 0. We
use the notation

0| Io ~ D(aiji, - - -, ije;)-

In this case, the prior density of @;; is, up to a proportionality constant,
ijk—1
p(63|1o) < [ 637"
k

which is conjugate. Note that the density function generalizes that of a Beta distribution
in Example 1, and indeed a Beta distribution is a bivariate Dirichlet. The prior hyper-
parameters c;j; encode the observer’s prior belief and, since c;j; — 1 plays the role of
n(Yijk|mi5) in the likelihood, they can be regarded as frequencies of imaginary cases needed
to formulate the prior distribution. The quantity oy; —¢; = >3 | (ovjx, — 1) represents the
frequency of imaginary cases observed in the parent configuration 7;; and hence o;; is the
local precision. The effect of the quantities a;j;;s is to specify the marginal probability of

(yir|mi;) as

i
E(0ijx|Io) = —2

and the prior variance is

E(0;x){1 — E(eij)}.
;5 + 1

V(051 1o) =
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Note that, for fixed E(0;;1), V(i) is a decreasing function of «;;, so that a small value
of aj; will denote great uncertainty. Furthermore, o = 3_;; a;; is the global precision on 8.
The situation of initial ignorance can be represented by assuming o, = o/(c;q;) for all 4, j
and k, so that the prior probability of (y;x|7;;) is simply 1/¢; [10]. An important property
of the Dirichlet distribution is that it is closed under marginalization, so that if

0U|IO ~ D(aijl, ... ,aijci)
then any subset of parameters (6;;1, ... ,8;js, 1 —>_3—1 0ijx) will have a Dirichlet distribution
D(aj1, - - -, 0455, i — >7—1 Qji)- In particular, the parameter 6;;; will have a Beta distri-

bution with hyper-parameters o, c;; — ;5. Thus, marginal inference on parameters of
interest can be easily carried out. Spiegelhalter and Lauritzen [26] show that the assump-
tions of parameter independence and prior Dirichlet distributions imply that the posterior
density of @ is still a product of Dirichlet densities and

0i;| 11 ~ D(cvijr + n(yi1|mi5)s - - - Qije; + 1 (Yic;|T35))

so that local and global independence are retained after the updating. The information
conveyed by the sample can be therefore captured by simply updating the hyper-parameters
of the distribution of @;; by increasing them of the frequency of cases (y;;i, mi;) observed in
the sample. Thus, the sample information can be summarized into the contingency tables
representing parent-child configurations. The posterior expectation of 8;;:

i + n(yin|mij)
E0;x|11) = Z]aij - n(;ij)“

and the posterior mode is

it + n(yik|mi) — 1
a5 + n(mij) — ¢
The posterior variance is given by:
E(0ijx11){1 — E(0;x|11)}
o5 + n(miz) + 1
with a local precision on 8;; which is increased by the frequency of parents observed in the
configuration m;;.

V(0ijx|11) =

Ezample 10 (continued). Data in the contingency table 1 are extracted from the British
General Election Panel Survey (April 1992). The frequencies are displayed according to
Sex (Y2: 1=male and 2=female), Social Class (Y3: 1=low, 2=middle and 3=high), and the
class variable Voting Intention (Y;: 1=Conservative, 2=Labour, 3=Liberal Democrat and
4=O0Other). The task is to classify the voters into these four mutually exclusive classes of
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Y,
Y, 5| 1 2 3 4
1 1 28 8 7 0

2 183 114 53 14
3 20 31 17 1
2 1 1 1 0 1
2 |165 86 54 6
3 30 57 18 4

Table 1: Data from the British General Election Panel Survey. Voting Intention (Y1), Sex
(Y2), Social Class (Y3).

voting intentions on the basis of their attributes (Sex and Social Class). For this purpose,
we can therefore define a Naive Bayesian Classifier similar to the one displayed in Figure 7
and estimate the conditional probability distributions associated to its dependency.

Let 81 = (611, - - - ,014) be the parameter vector associated to the marginal distribution of
Y1, and let @95 = (0951, 0252) and @35 = (0351, 0352, 03;3) be the parameter vectors associated
to the conditional distributions of Y5|y1; and Ys|yi5, § = 1,...,4. A global prior precision
o = 12 and the assumption of uniform prior probabilities for yy, yor|y1; and ysx|y1; induce
a prior distribution D(3,3,3,3) for the parameter 6y, prior distributions D(1.5,1.5) for
0,;, and D(1,1,1) for the parameters 83;. The frequencies in Table 1 are then used to
update the hyper-parameters, so that after the updating, the posterior distributions of the
parameters are:

1|1, ~ D(400,300, 152,29
021|I; ~ D(202.5,197.5) @3|I; ~ D
02|11 ~ D(154.5,145.5) @35|I; ~ D(10,201,89)
023|1, ~ D(78.5,73.5) 6331, ~ D(8,108, 36)
024|I1 ~ D(16.5,12.5)  @34|I; ~ D(2,21,6)

from which the probabilities of yix |11, yor|y15, 1 and ysi|y1;,[1 are computed as posterior
expectations, and are reported in Figure 9. It is worth noting that the so defined BBN,
when coupled with the classification procedure defined in Example 10, turns out to be a
complete classification system: we can train the network with the data using the procedure
just described and then classify future cases using the algorithm described in Example 10.
Using the same procedure, we can also calculate the distributions of Y1 |ya;, ysx, I1 as shown
in Table 2,thus discovering that the fundamental attribute for classification turns out to be
the Social Class (¥3): high and middle class intend to vote for the Conservative party, while
the lower social class has a clear preference for the Labour party.

30,319, 51)

N~ e~
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1

Y,
2

3

4

0.45 0.34 0.17 0.04

® °
Y, Y3
;| 1 2 i | 1 2 3
1 |0.51 0.49|| 1 [0.07 0.80 0.13
2 |0.52 0.48 || 2 | 0.03 0.67 0.30
3 10.52 0.48|| 3 [ 0.05 0.71 0.24
4 |0.57 0.43|| 4 |0.07 0.72 o0.21

Figure 9: The BBN induced by the data in Table 1.

P(Yi|y2j, Y3k, 11) Classify as

Y, V3 1 2 3 4

1 1 059 0.20 0.16 0.05 1
1 2 049 031 0.17 0.03 1
1 3 028 0.49 020 0.03 2
2 1 061 0.20 0.16 0.03 1
2 2 050 031 0.16 0.03 1
2 3 028 049 0.20 0.03 2

Table 2: Classification of data in Table 1 using the BBN in Figure 9.
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4.2.2 Model Selection

Suppose now that the graphical model M has to be induced from the data. As in Section
3, let M ={My, Mi,..., Mp} be the set of models that are believed a priori to contain the
true model of dependence among the variables in Y. For instance, let Y = {Y1,Y>,Y3} and
suppose that Y1,Y> are known to be marginally independent, and that they can be both
parents of Y3, but Y3 cannot be parent of Y7, Ys. These assumptions limit the set of possible
models to be explored to M = {My, M1, M2, M2} which are given in Figure 10.

Each model in M is assigned a prior probability p(M;|Iy). Let 6Y) be the parameter
vector associated to the conditional dependencies specified by M;. The sample information
is used to compute the posterior probabilities p(M;|I;) from which the most probable model
M can be selected. By Bayes’ Theorem, we have

p(M;|Io)p(y|M;)

m

ZP M;|Io)p(y|M;)

p(M;|IL) =

where p(y|M;) is the marginal likelihood of M;. Since the denominator is constant for
different models, in the comparison between rival models M; and M;, M; is chosen if

p(M;|Lo)p(y|M;) > p(M;|1o)p(y| M;).

In order to select the most probable model, it is therefore sufficient to compute p(y|M;) as

p(yIM;) = [ P69 |M;)p(y16)d8 (17)

where p(8)|M;) is the prior density of 8 and p(y|@\)) is likelihood function.
It is shown in [7] that (17) has a closed form solution when:

1. The sample is complete, i.e. there are not cases reported as unknown;
2. The cases are independent, given the parameter vector 09) associated to M;;

3. The prior distribution of the parameters is conjugate to the sampling model p(y|0(j)),

and hence Og) ~ D(ajt, ... ,04jc;) and the parameters are locally and globally inde-
pendent;

and the marginal likelihood of Mj is:

o1 [ 1 D10 ff Dl + noaimy) (18)

im1 jor Tedg +n(mig)) = NG
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Y1 Y, Yi Yo
° ° ® ®
° \

)

Y3 Ys

My M
X X Y; Yy
) ) ‘\ / ‘

0/ o

X3 Y;

M, Mo

Figure 10: A set of possible models.

where I'(-) is the Gamma function [29]. When the database is complete, (18) can be
efficiently computed using the hyper-parameters o, + n(y;z|mi;) and the precisions o;; +
n(m;;) of the posterior distributions of 6;;.

Example 11 (Discrimination between two models) Suppose we have two categorical
variables Y1 and Yo, and a random sample of n cases. Both Y1 and Yo are binary variables,
and it known that Y1 cannot be parent of Yo. This assumption leaves us with two possible
models to be explored:

Model My specifies that the two variables are independent and, conditional on My, we can
parameterize p(y11|0(0)) =011 and p(y21|0(°)) = 091 where 8 is the parameter vector
associated to M.

Model My specifies that Y is a parent of Y1, so that the induced parameterization is p(yz |0V)) =
651 and p(y1|y2ja 0(1)) = 0.711'

We assume that, given My, 02 = (621,622) ~ D(2,2) and 61 = (611,612) ~ D(2,2), and
they are independent. Given M, we assume that 051 = (0j11,0;12) ~ D(1,1), and they
are independent. Thus, a priori, the marginal probabilities of yo;, yir and yix|ye; are all
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Y

Y, 1 2 Total

1| n(yiilyer)  nlyielyar) | n(yer)

2 | n(yulye) n(yizlyze) | nlyz2)
Total n(yi1) n(y12) n

Table 3: Contingency table.

uniform and are based on a global prior precision 4. Suppose we collect a random sample,
and we report the summary statistics in the contingency table given in Table 3.
With complete data, the marginal likelihood under models My and My are found by
applying Equation (18) and are:
L(4)T(2 + n(y2;))
My = T J :
p(y|Mo) ]._.[_7_1 T(d +n)T(2) Hk 1" T(a+n)L(2)

)
SRR S S S (Yo

Thus, the model choice is based on the value of the ratio

p(My|Io)p(y|Mo)
p(My|Io)p(y| M)’

from which the following decision rule is derived: if r < 1 model My is chosen, if r > 1
model My is chosen, and if r = 1 then the two models are equivalent.

Unfortunately, as the number of variables increases, the evaluation of all possible models
becomes infeasible, and heuristic methods have to be used to limit the search process to a
subset of models. The most common heuristic search limits its attention to the subset of
models that are consistent with a partial ordering among the variables, so that ¥; < Y; if ¥;
cannot be parent of Y;. Furthermore, the fact that (18) is a product of terms that measure
the evidence of each parent-child dependence can be exploited to develop search algorithms
that work locally. This heuristic method was originally proposed by Cooper and Herskovitz
[7]: they describe an algorithm which uses this heuristic to fully exploit the decomposability
of (18). Denote the local contribution of a node Y; and its parents II; to the overall joint
probability p(y|M;) b

T I(cvij) o Dl + n(zi|mi;))
9, Ih) jl;llr(aij +n(7fij))kl;[1 T(cvijr) ' 19)

For each node Yj, the algorithm proceeds by adding a parent at a time and computing
9(Y;, II;). The set II; is expanded to include the parent node that give the largest contri-
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Ys
Y, Yo| 1 2
1 1| 2 10
2 | 5 3
2 1|6 3
2 |10 2

Table 4: Artificial sample.

bution to g(¥;,II;), and stops if the probability does not increase any longer. In the next
example we use synthetic data to show the algorithm at work in a simple application.

Example 12 (Model Search) Let Y = {Y1,Ys2,Y3} and suppose that Y3 < Yo < Y1 and
they are all binary. Suppose further that all models consistent with this ordering have the
same prior probability, and that the parameterization induced by each of these models is
based on a global precision o = 6 which is then distributed uniformly across the parameters.
Data collected are reported in the contingency table 4.

The algorithm starts by exploring the dependencies of Y3 as child node, and results are

s =0 logg(Ys,II3) = —29.09044
H3 = Y1 IOg g(Y3, H3) = —26.92774
I3 =Y, logg(Ys,I3) = —27.56373

so that the node Y1 is selected as parent of Ys. Next, both nodes Y1,Ys are linked to Y3
and log g(Y3,(Y1,Y2)) = —26.46519. Since this value is larger than -26.9277}, this model of
local dependence is selected. Then, the node Yo is chosen as child node, and the dependence
from Y1 is explored:

I, =0 logg(Ys,IIy) = —29.34088
H2 = Y1 IOg g(YQ, ]._.[2) = —29.79732

and since the model with Yo independent of Y1 gives the largest contribution, the model
selected is Y1, Yo independent, both parents of Ys.

4.3 Advanced Topics

In the description of learning BBNS from data, we have made the assumption that the sample
is complete, that is there are not cases reported as unknown. When the sample is incomplete,
each missing datum can be replaced by any value of the associated variable. Therefore,
an incomplete sample induces a set of possible databases given by the combination of all
possible variable values for each missing datum. Exact Bayesian analysis requires computing
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the posterior distribution of the parameters 8 as a mixture of the posterior distributions of
all these possible databases. Clearly, this approach becomes infeasible as the proportion of
missing data increases and we must resort to approximate methods. Popular approaches
use either asymptotic approximations based on the use of the MLEs or GMLEs, that can
be computed using iterative methods as the EM-algorithm, or stochastic approximations as
GS (see [15] for a review.) The Bound and Collapse method by [24] provides an efficient
deterministic algorithim to approximate the posterior distribution of incomplete samples
which can be further used for model selection [23].

In this chapter, we have limited our attention to BBNS with discrete variables. Methods
for learning and reasoning with BBNS with continuous, or mixed variables can be found in
[20] and a recent review is reported in [4].
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