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Abstract

Novel approaches talesigning or analysingystems onlypecomeuseful when
they are usable by practitioners in theefd, and not just bytheir originators.
Design technique®ften fail to make the transition from research to practice
because insufficient attention is paid to understanding and communicatisgilise
required touse them. Thigaper reports onwork to train software engineering
students to use aser-centred languagéor describing and analysing interface
designscalled the “Programmable User Model InstructionLanguage”, or IL.
Various types of data, including video, students’ IL descriptamubrief usability
reports were collected during training, and subsequently analysed. $hesghat
after 6 hours’ training, studentshave agoodgrasp of thesyntax ofthe notation,
and are starting tousenotational affordances tsupporttheir reasoning, buthat
their reasoning is still limited by a poor grasp of the underlying cognitieery. A
comparison of the analyses wéineeswith those of experts providesnageans of
developing &etter understanding of thenature of expertise in thisarea — as
comprising an understanding of theyntax and the surface semantics of the
notation, the underlying cognitivimeory, the method of conducting an analysis
and the implications of the analysis for design.

1. Introduction

When a noveHCI technique isdeveloped, one ahe importanissues to be addressed is
how the technique can b&ansferred fromthe research to the practitioneommunity.
Inevitably, as the work on Cognitive Walkthroughs has shown over the past fewlymais,
Polson,Wharton & Rieman, 1990Polsonand Lewis, 1990; Wharton, Rieman, Lewis &
Polson, 1994), this is unlikely to be a single event in which a technique, having been developed
to maturity, is then handed over to the practitioners to be instantly taken up and explated.
is an iterative cycle of activity iwvhich developer¢earn to take a practitioner-centregw of
their technique, anchdapt it in the light ofexperience, while practitioners learn about the
technique and its scope and how to apply it.

The main aim of thevork reported here is relatively modest: to investigabev trainee
software engineers uskee “PUM Instruction Language” (IL) after day’s training. Studying
trainees is necessary to develop an understanding ofacthelly happens when one learns to
use a notation such #is. Video data of traineesorking with IL allows us to addresssues
such as what concepts beginners struggle withhamd IL constructscan contribute talesign
insight. As John and Packer (1995) note, ganonly distinguish with angertainty between
the power of a technique atiite contribution of thanalyst’'s craftskills when youhavenon-
originators using a technique. Procelsda can thershow what analysts did andow they
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gained nsightsinto the design problemOne of theaims of thisstudy is to addresthese
points. Afurther issue is whether using thakes a discernible difference to tkimds of
usability assessments made. This is importgatticularly in relation taunderstanding how
much of the leverage of a particular technique derives themechniquetself, andhow much
from the skill of the analysts using it. The study also rageeericissuesabout thetransfer of
theoretically-based HCI evaluation techniques to practitioners.

To investigatehow trainees learn tose IL, wedeveloped atudythatinvolved training a
group of subjects to write IL descriptions and collecting a ranglatafrom them.The tutorial
material was developed to be suitatde delivery in one day (&iours). This materialincludes
both presentatiomaterialand student exercises based examplesystems.This time of 6
hours was chosen to be comparable to that which one might reasonably be expguted 6
delivering a tutorial at aonference, oteaching aboutiser modelling as part of a university
coursethatincludes a reasonableCl component.The trainingwas given to agroup of 16
studentstaking a course in Human-Computeteraction (HCI) at the Free University of
Amsterdam. As well as the lursallowedfor training, additional time was allocated to the
collection of experimental data, as described below (Section 2).

1.1 AFRAMEWORK FOR UNDERSTANDING THE ROLE OF MODELLING IN ASSESSING
DESIGNS

Observation(by BuckinghamShum) ofexpertHCI modellers,combined withour own
reflections onusing particularapproaches, hded us topropose a framework fothinking
about the process of modelling in relation to design and evaluatiemoas in Figure 1This
framework incorporates three key linkdich enable a modeller to move iterativélpm a
problem, to a modelling expression of that problem, to design insights and recommendations. It
allows us to break down the process of evaluation and re-design into identifiabletlsthgas
be considered separately.

LINK 1 RepresentatiorlT”\IK Insights mtJT'NK 3 Design
Design problen—® using modellin problem recommendations
formalism

? f

Figure 1: Key links to negotiate in a model-based analysis

The process of describing a design probiesimg aparticular representation (link 1) helps
an analyst to acquire a better understanding of the problem, and hence gain insights into it (link
2), which in turn can help generate recommendatidos design changeglink 3). This
frameworkcanserve two key functiongirstly, to help establish to whagxtent a modelling
approach is contributing substantively to tleasoningprocess,and secondly, tanake the
approach transferable to other analysts by encoding the process into a more systematic, reusable
form.

Link 1is the primaryfocus ofthe study reportedhere: how do trainees acquire expertise
with the IL formalism<ink 2reflects expert modellersibility to recognise theignificanceof
different notational patterns or states in a model; i)ahake the mappinfrom the formalism
back to the realvorld. Link 2 related trainingjuestiongnclude: to whaextent do the trainee
modellers negotiate Link 2, and are there any differences in the natureaofatiises reported
that can be attributed to IL as opposed to ‘craft skill'? Finaligk 3, moving from insights to
design recommendations, is whareativedesign isneeded; recommendations rarélgw
directly from modelling, as other factors that do not fall within the scope of the formalism often
come into play athis point. Drawing on modelling casstudies with designers, weave
discussed how thiink can be negotiated as modellasek tocommunicate model-based
insights to designers whare non-modellers (Bellotét al, 1995; BuckinghanShumet al,
1996). As weexplain béow, it is unlikely thatIL-beginners will gain great insight into a
problem due tolL, when they are at the sam@me learningit, so thislink was of less
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importance at thistage. Werevisit Figure 1 inour conclusions, irthe light of thestudy’s
results.

1.2 ISSUES IN TRANSFERRING THEORBASED HCI DESIGN TECHNIQUES

There are various concerns that are pertinent to transferringoaey, theory-based design
technique from the research laboratory to practitioners. One is that of understandolgstiud
the formal notation and the underlying theorysupporting reasoninginother is establishing
effective ways of encapsulating and communicating the skill of modelling.

The roles of the notation and the underlying theory

A design or analysis technique never stands as simply a notation, mettoadl dirderives
from, and encourages its user to adopt, a particular orientation to design by virtue of the domain
constructs that it addresses (such as people, work, artefacts), the terms in which i{el@es so
as informationprocessors; asocial beings; as formal or unformalisablgents),and the kind
of analysis which it facilitates. In thigspect, anotation can help tsupport or focus an
analysis. One key question which needs to be addressed iswhchwgeneral disciplinary and
method-specific training oneactually needs in order to gain sontmenefit from using a
technique.

Cognitive Walkthrough (CW; Whartoet al, 1994) is ondechnique wher¢he issue of
divorcing theory frompracticehas been important. CW is not a modelling technique, but a
structured methodology foeritiquing a user interface. It seeks weliver the power of a
cognitive model of learning (CE+Polson & Lewis, 1990) irthe form of a checklist of
principles withoutactually requiring analysts té&now about the underlyingheory. Several
studies of CW have noweenreported, whichltogether are an excellent example of dise of
empirical data to drive théesign of a technique toeet theskills of its targetusersand the
constraints ofealisticdesignpractice(Lewis, et al.,1990; Rieman, Davies, Hair, Esemplare,
Polson & Lewis, 1991; Polson, Lewis, Rieman & Wharton, 1992; Rowley & Rho&€6g).
The CW techniquéasbeen extensively revised in the light of evaluatiomsr severalears.
This work illustrates well the nature of tpeoblems faced in developingtlzeoreticallybased
technique targeted at practitioners not trained in the undertfiegry. Havingset out to
develop a cognitive science-based technitprenon-cognitive scientists,they encountered
unforeseen problems such as misconceptabwit the meaning dtasks’ and‘goals’, and
analysis at an inappropriatevel of detail. Training in the Walkthrough methodology now
includes more extensive introduction to the underlying theory weas originally thought
necessary.

One aspect of the investigation into the learnability of the IL is how dependent analysis is on
a deep understanding thfe underlying theory (notably thmeans-ends planning described in
Section 1.3) Another aspect is understanding what ftble notation itselplays in supporting
usability reasoning.Since the IL is a “semi-formal” notation that can dmeed with varying
degrees of rigour (as describeelow), anadditionalissue is how tachieve an appropriate
balance between constraining @@alysis unnecessarily, and allowing moich freedomnthat
using the notation no longer requires the discipline of rigorous analysis wdncyield insight
in tackling difficult usability issues.Within HCI and réated research,there is agrowing
recognition of the cognitive and social implications of requirusgrs tostructure their
expression of ideas in formal ways (e.g. Pedersen & Suchman, 1991; Shum, 1991; Shipman &
Marshall, 1994). Formality permits machine interpretation and manipulation of information at a
finer grain of detail, but comes at thest of a wider translation gufor humans, for whom
formal notations are an unnatufarm of expressioncompared to naturdhnguage. This
persistent cost-benefit trade-off is as relevant to IL as to any fotimealism.With respect to
the issue of where othe formality continuum onshould locate IL-usage, we consider two
perspectives: the role of rigorous formality for trainee designers, ampdatigcaldemands of a
formalism’s use for communication during design.
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Identifying and encapsulating craft skill

Anotherissue to be addressed is how developers of a teelnique can identify the
implicit skills and knowledgéhat they have graduallyeveloped, in order tbelp new users
negotiate the initial block which so often characterises, and sometimes sabotagesteaaply
to use a new formalism.

One way toencapsulatesuch craft skill is through informal heuristics whicare simply
collections of the kinds of tips which an expert might give tmeginner. For examplésaining
materials for other design notations suchQ&C (MacLean,Young, Bellotti & Moran, 1991)
include heuristicshat encapsulateands-oncraft skills. Similarly, Kieras (1988) describes
work to make Cognitive Complexityrheory (Kieras &Polson, 1985), abased onGOMS
modelling (Card, Moran & Newell, 1983; John & Kierasl996), apractical user interface
design technique. Kieras recognigbat CCT and GOMS, despite theirformality, leave
decisions to the analyst which can make a significant difference to the validisetiness of
the analysis. He therefore provides some guidancguoh issues amaking ‘judgement calls’
on usercognition in the absence of relialdata, deciding whattasks to analyse, when to
conduct a GOMS task awais, and GOMS-basettiteria for evaluating and improving the
design.

Drawing onsuch experienceshe IL tutorial included a number dfeuristics. Students
were supplied with a handout listing thdssuristics, andhey were also alluded to regularly
during training. In additionthe training included a gradual introduction to the basic concepts
and techniques needédr writing and analysing an IL description, and understanding was
developed through the use of worked examples, as illustrated below.

1.3 INTRODUCTION TOPUM IL

The Instruction Language (IL)was developed as a programming languafye a
ProgrammableUser Model (PUM). The PUM is a cognitive architecture whichwhen
programmed with knowledge about a particulavice,can yield predictions about likelyser

behaviour with that device. Therefore the IL is a language for describing the knowledge about a

device that a prospective user needs. The details ¢tlié are reported elsewhere (Youat
al, 1989; Blandford and Young, 1995). The IL is presented beldwprocess otonducting
a full IL analysis can be broken down into 5 stages, as follows:

1. The first stage is to identifycandidatetask scenarios; thesare ideally frequently
performed tasks, or tasks that the analyst informally anticipates might be problematic.

2. The second stage is to identify conceptual objects and operations that the user will need to

work with in performing the tasks.

3. The third stage is texpress this knowledge abjects and operations in terms of the
Instruction Language. At this stage, a correspondindel of the devicehould also be
constructed. Difficulties are frequently found at this stage: it mayebe hard to express
the user’'s knowledge oinconsistencies between thser’'s knowledgeand thedevice
representation may beund. If great difficulties argfound, analysismay finish here,
with a report back on inconsistencies or on knowlatigeiser needshat isnot readily
available.

4. If a satisfactory consistent description legn produced thetine analystproceeds to
hand-simulate the modelled behaviour of thieractivesystem; thismay help identify
further sources of difficulty.

5. Finally, if required, and if the model is sufficiently specified aatomatic simulation can
be run to identify likely user behaviours with the system.

Whenused as a programmirignguage to generateranning model, as in Blandford and
Young (1993, 1995), the IL has to leitten rigorously and formallyWhenused as #ool to
aid thinking, for a lesdull and formal analysis in whiclthe processof constructing and
reasoning with the IL description is more important thanpttoeluct,the IL description can be
less formal. Inthe study reportedhere, we focusedttention onstages 2-4; foall examples,
stage 1 (problem definition / task statement) had already been done as thartpoparation
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work, and we did not aim to develop running models withstudents. Therefore, weained
the students to use a semi-formal version of the IL.

Here, wegive an introduction to thélL, and anexample ofits use, to support the

discussion of method and results that follows.

Summary of Instruction Language

The IL is a declarative languader describingthe knowledge usersieed to achieve any

task with a deviceThe IL analyst’s job is to describe whiie user needs tenow, and how
any necessary information isade available to theser, sathat theusercanboth perform the
task and know when the goal has been achieved.

The IL description consists of three parts:

» a set of declarations, listing
— theconceptuabbjects that the user is manipulating whesrking with the device (listing

all object types, and maybe enumerating named objects), and

— relationships between those objeatsthe form of functional relations between objects of

namedtypes and also predicatdsat mayhold truefor objects of named type$or all
relations,the analysshoulddeclarewhether or not theaisercanfind out values of the
relation by looking at the display.

a description of the user’s knowledge, consisting of

— conceptual operation&ee below),
—the user’s initial knowledgen terms of functions and predicatbst are declared toold

true (note: this is the user’s knowledge, not necessarily the device state), and

—the user’dask in terms of functions and predicates that should hold true in the goal state.

a device description, listing

—thedevice commandbat are available, in terms of thay the device state changes as a

result of the user issuing each command,

— theinitial device statgin terms of functions and predicates that hold true in that state, and
— what information is displayed to the user.

One aspect of this description — that of conceptual operations — merits fexgreansion.

Each operation is defined in terms of:

the types of the objects involved in the operation dtigementsof the operation).

the reason that a user would select this operation, in terms of functions and predicates the
operation is relevant for achieving. This is tlser-purposef the operation.

conditions that must hold true before the operation caie\azits user-purposeand that
the user would try tomake true so thathis operationcan beinvoked. These are
preconditiondor the operation. As discussed below, preconditions are conditianthe
user might adopt as sub-goals, so for every precondiiene must be another operation
which has that condition as its user-purpose.

conditions, called filters, that must hold true before this operation is considered for
addressing itsiser-purposeThis includes conditionthat theusercannot change (those

for which there is no operation having that condition asstr-purpose)and conditions

that theuser would notmake truesimply to invoke this operatiorkzor example, in the
Mailtool examplediscussed irmore detail belowpne of the operations is to highlight a
particular mail message in the current folder. For the tasks being considered, it would not
make sense for the userrtiove a message to this folder just in order to highiigtgo

the condition that the message is in the current folder is a filter, not a precondition.

any effects of operationthat usersare expected to mentally tradke. predict, or
anticipate, without necessarily checkititat the effecthas been achievedvhen the
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correspondinglevice command isssued). As ageneral heuristic, tracked effects are

those that are predictable to the user and that match the user-purposepar#tien. (So
side-effects are not generathacked, andheither are the effects of operatidos which

the user does not have enough information to predict the effect on the device.)

 the correspondindevice command

One of the important consideratiofts the analyst constructing an IL description is how
users knowall thethings they need tknow in order to achievéheir goals with this device.
There are thresources ofinformation: facts that theiser knew athe beginning of the
interaction and that do not change (élg user of amutomated teller machimaust know the
relevant personabentification number), informationthat is availablefrom the display and
information that must be tracked to keown. Inmanycases, amnalysisthatfocuses just on
this concern will highlight many ahe usabilityproblems with a device. In some instances,
additional insights might be gained from hand-simulating problemsolving and external
behaviour of the modelled user. Such hand-simulation can also be a good way to validate the IL
description.

The simplest modelled behaviour mseans-ends problem solvirthat takes account of
changes in the device state. The user identifies operations to perform asihef‘selection
by purpose” — by identifying operations whose user purpoatches the current goal and
whose filters are satisfied. If any preconditi@me notsatisfied,they are adopted as subgoals.
When an operation with satisfied preconditions is seletitedjser issueshe corresponding
device command and theser's knowledge dathe device state changesr@sponse tdracked
information and perceived changes to the destaege. Thissimplified account of the modelled
user’s cognition is sufficient to validate the IL descriptions produced by subjectssiutiye It
is too simple for modelling more complex behaviours.

Example of using IL

To illustrate the use of the, we take a brief exampl&om the training materigbresented
to students. Thigxamplewas designed tmtroduce various IL concepts arideir use. It
concerns a chocolate vending machine. This machine offers a choice of three diifeteruf
chocolate bar. First the user puts in the maia®p), thenshe pressesne of threebuttons to
choose the kind of bar she wants, then she takes the bar.

To encode this situation, we need to consider what the hungry user needs to know in order
to satisfy her goal of eating a bar — say a Venus bar.

The IL description is built around tlsenceptual objectand operations i.e. the things and
actions that the user knows about. The relevant things are chocolate bars, coins, and so on. We
classify each object as being of a partictype and then we can start writing:

OBJECTS
coin: 10p, 20p, 50p, ...
chocolate-bar: venus-bar, mars-bar, pluto-bar

To describe where the objects are, what they are like,theyrelate to eacbther,and so
on, we writepredicatesandfunctionsthat describe whathe user knowsabout a situation, e.
about named relationships holding between parti@bgcts. In thigarticularcase,the most
important relationships ai@l expressed as predicates. For each, we silgehow the user
knows whether or not a predicate holds:

PREDICATES
user-has(chocolate-bar) -- detected by looking
in-machine(chocolate-bar) -- (assumed always true)
user-has-cash(coin) -- detected by looking
money-paid(coin) -- (must be tracked)

inside-user(chocolate-bar) -- detected by feeling!
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We can now talk about the user’s knowledge of the initial state:

INITIAL-STATE
user-has-cash(50p)

There is roonfor someinformality in thisdescription. For exampldhe assertionuser-
has-cash(50p) might mean that the user knows she (@sctly) 50p of cashthatshe hasat
least 50p of cash, othat she has a 50p coin. As long t® user has whatever coins the
chocolate machine needs, the meaning can be left imprecise.

Just as wecan use predicates to describe thatial situation, wecan also usethem to
describe the desired situation. We encode the user’s goal of wanting tedt@velenus bar
as:

TASK
inside-user(venus-bar)

We turn now tathe conceptual operatiotisat describe whathe usercando. Inthis case,
we consider three operations: paying for, selecting and then eating a bar:

OPERATIONS
pay-for-bar()
user-purpose: money-paid(50p)
filter: user-has-cash(50p)
tracked: money-paid(50p)
device-command: insert-money(50p)
select-bar(chocolate-bar: C)
user-purpose: user-has(C)
precond: money-paid(50p)
device-command: press-button(C)
eat-bar(chocolate-bar: C)
user-purpose: inside-user(C)
precond: user-has(C)

device-command: chomp-chomp!

For eachoperation, wehave specified what itpurpose is and whahe corresponding
device command is. Since te&-bar operation does not involve interaction betwésnuser
and the machine, we give it a jokey “commariedr two ofthe operationssgélect-bar  and
eat-bar ), we have specifiegpreconditions which are conditionghat must hold before the
operation can achieve its purpose. For the thugfor-bar ), we have specified fiter; this
is also a condition which must hold before the operation can achieve its purpose, buh#é one
cannot be achieved within the closed world of this analysis, because we do not specify how she
might go about obtaining any cash.

We have also specifieitiat themoney-paid is tracked by theuser. This meanghat the
predicate is remembered by the usafter this operatiorhasbeendone,the userthenknows
that the money has been paid. This is important, be¢haseesndingmachinedoes not visibly
change state in anway — for example, it does ndiave a counter displayingow much
money it has received — so if the user did tnatk the informationshe would noknow that
the money had been put into the machine, and perhaps might put 50p in again, ... and again ...

~ We have described the device informally; we needhéde thatdescription slightly more
rigorous:

INITIAL DEVICE STATE
in-machine(venus-bar)
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in-machine(mars-bar)
in-machine(pluto-bar)

DEVICE COMMAND

insert-money
has effect that machine is ready to dispense one bar. Device state
does not change visibly.

press-button(C)
has effect that the machine dispenses bar of type C. Bar is visible.

We arenow in a position tdraceout by hanchow the specified model wilbehave. The
model has two core principles that drive its behaviour:

Selection by purpoself the user has a goal G, and if there is an operation O with a user-
purpose that matches G and whose filters are satisfied, then the model will choose
O — or one of those operations, if there are several.

Precondition subgoalingif the model has chosen an operation O, and if it has
precondition(s) P that are not satisfied, then the model stays committed to executing
O but first sets up the goal(s) of achieving P.

Figure 2 illustrateshow the modelleduser acquires goals and commitments, selécts
actions to achieve goals. Starting at the top-left and malomgn, the figureshows howgoals
and commitments get adopted by matching preconditionsusedpurposesOnce theuser
becomes committed to an operatigray-for-bar) whose preconditiorsse satisfied,the user
can start acting (shown in ovals), and through tracking and visible effieaiser’'s knowledge
of the state of the device is updated until (top right) the goal of the task is achieved.
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state: state:
user-has-cash(50p) inside-user(venus-bar)

goal:
inside-user(venus-

[ goal matches user
purpose of operation state changes
eat-bar(venus-bar) (felt)
committed:
eat-bar(venus-bar) eat-bar(venus-bar)
peration has precondition
ser-has(venus-bar) »
precondition
now satisfied
goal ] ]
user-has(venus-bar) === 3 state:
oal matches user purpose user-has(venus-bar)
f operation
elect-bar(venus-bar)
committed:
select-bar(venus-bar) state changes
operation has precondition (visible)
money-paid(50p)
select-bar(venus-bar)
( goal: ]
money- pald(SOp) precondition

oal matches use ose now satisfied
f operation pay-for-ba
state:

money-paid(50p)

state
user-has-cash(50p)
goal:
inside-user(venus-bar)
user-has(venus-bar)
money-paid(50p)
committed:
eat-bar(venus-bar)
K select-bar(venus-bar) precondition
pay-for-bar() user-has-cash(50p)
satisfied

pay-for-bar()

Figure 2: modelled behaviour for the vending machine example.

Constructing an IL description

As illustrated in the example above, familiarity with the syntax alone is not enoeghlite
novices to write useful lldescriptions. For exampl#éey need to understaritbw to reason
with preconditions and filters, and to trace what the modelledkmnssrs. The ability toassess
their own descriptionscritically is also neededThe page of heuristics given ttudents
summarised the important points regarding the process of writing a description (e.g. that it is an
iterative activity)and thesyntax(e.g. thatone wayusersgain knowledge othe state of the
device is bytracking the effects of operationshat theuser model might select an operation
whose preconditionswere not satisfied, and would sub-goal toiedh a precondition, but
would notselect that operation if filter was unsatisfied)These heuristics focused on the
process of constructing an IL descriptigather than hand-simulation or reasoning with the
description to analyse usability difficulties.
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2. Method

The study was based around 6 hours’ trainidgljvered to agroup of 16 HCI students.
Most of them(13 out of 16) were @iineesoftware engineerghe other 3were psychology
studentsParticipants received free lunches avete given courseredit for attending.There
was no drop-out; all subjects who attended the training contributed also to the data collected.

Subjects were asked to work (self-selected) pairfor much of the time, and thegairs
were each allocated, aandom, toone of twogroups. Thesegroups worked omlifferent test
examples. Befordhe training, subjects discussed one tbé test examples in paj then
individually wrote brief usability assessmentdiwdt example. Followinghe training, subjects
wrote IL descriptions (in pairs) and brief usabiligsessmenténdividually) of the other
example. Finally, studenfidled in feedbackforms indicating theirviews onthe IL and the
training. This design is summarised in table 1.

Approximate Pairs1-4 Pairs5- 8 Data collected
duration
20 minutes pre-training analysef pre-training analyses| pre-training reports
of “Windows” of “Mailtool” example
example
6 hours taining on IL training on IL
1 hour write IL description | write IL description | videos of 2 pairs in
of “Mailtool” example| of “Windows” each group working.
example IL descriptions
collected
10 minutes post-training analysggost-training analysep post-training reports
of “Mailtool” example| of “Windows”
example
15 minutes debriefing & feedbagk debriefing & feedbdack videos of 2 pairg]in
each group (those nqt
videoed earlier) being
debriefed.
Completed feedback
forms

Table 1: training timetable and data collected

The training examplesvere designed to introduce students graduallyth® important
features of thénstruction Language. Students were introducethéssyntax ofthe language
and to the idea of hand-simulating the user’s changes in goals and knowledge. Discussion also
covered the process of writing the IL and the choice of representation.

We also covered three important but subtle poititat the same device action can
correspond to two or more different conceptual operations (i.e. that users ttensdmne thing
for different reasons), that the same device object can correspond to information about different
things, andthat when there are alternativevays by which usersan know somethingthey
might select one rather than tbther. In particular, usemmight sometimes incorrectly predict
(“track”) the effects of actions analssumethat the actionhas the predicted effect without
explicitly checkingit. This can be important if there are aspects ofdbsignthat usersmight
predict incorrectly, as discussed below in the context of the Mailtool example.

2.1 THE TEST PROBLEMS

The test problems were chosen to strike a balance between ease of writing an IL description
and likelihood of that analysis yielding insights into the usability ofdinace. Inthe hands of
an experienced analyst, most of thsigihtsinto usability difficulties with adevice comdrom
the exercise of trying to write an IL and failing to do it irc@npleteand consistentvay.
Novices would be unable to distinguish between difficuliiiegwere due to theimexperience



Training Software Engineers in a Novel Usability Technique 12

and difficulties that were due to real design problems. Sincen#firequestion being addressed
in this researchwas how effectively students could write IL descriptiorefter oneday’s
training, the devices selected for analysis were mature, consistent and usable enoaglegor
IL writers to be able to write an IL description.

The “Windows” example

The “Windows” example involves describingthe task of resizing awindow on the
Macintosh so that a complete picture cansben,and then returning it to its original size
(Figure 3). Studentwere toldhow windowsare moved and resized on th&cintosh. They
were asked to consider a scenario in which someone is compaeirgpntents of the two
windows and wants to temporarily view the whole of a big pictuthehower window by re-
sizing that window to about three-quarters of the scresight, andthen restoring it to its
present state.

® File Edit UView Insert Format Font Tools Window
um_wp24

Fredicted different from intended.
Dioes it matter?
How to modify design?

__ )
E%designer's inmended procedure
predicted procedures .\
//_‘ e

analysis of possihble
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itle bar

1
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=== um_w
[Ira—

e ]
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i
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Dioeg it matter?
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S -
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analysiz of possible amlysis Wi,

hehavionss 3

T 1 Vit
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Resize box

nun nodel
{F3 52 [Normal

Figure 3: “Windows” example

For this scenario, the window can only be enlarged if it is moved first, and it must then be
made smallebefore being returned to its original position (because othemweseesize box
disappears offthe bottom of thescreen).Our model answer includesthree conceptual
operations: to resize the window, to move it so that it can be resized, and to move it to get it to a
particular location on the screen (fggpendix). In this casall the nformationusersneed is
available to them from the screen, so they do not need to trackfanyation. However, the
“task” consists of two tasks, to laehieved inrsequence. Fahefirst (enlargingthe window),
the user needs to move the window beforait be resized; therder constraint is imposed by
the device. For the second (reducingsitz), the user mustesize thevindow before moving
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it, otherwisethe resizebox disappears ofthe bottom of the screen; as theder is not
constrained by the device, users may make order errors.

The “Mailtool” example

The “Mailtool” exampleinvolves describinghe task of sortingmail messages from two
folders into a thirdone. Atany time, some folder hdseen “loaded” into théool, and the
headers of the messages it contains are displayed in a scrollable lisseFban load a folder
of messages anthn move a messa@@m the currently loaded folder tsome otherfolder.
The toolhas a slohamedFolder which canhold the name of aingle folder (see Figure 4).
Students were toldow a usercan load dolder, move amessageand highlight a particular
message.

( ] ( It [ ] Folder: folders <@—————"Folder"
window showing|( 1 C ¢ 1( ] (MoveV) (1 fIGa@SA | slot
headers o 1 James 30 Oct meeting Frida folderl

; i iday
(r:TﬁrS:r?tgf%ISdlgr 2 Paula 31 Oct Assay exercise folder2 pull-down
3 Lisa 31 Oct lunch tomorrow Amanda «}menu of
..... Brian folders to
curren [ fold_er5 J | load
message Project X
folder8

contents of | From: Lisa
current —' Date: 31 Oct
message Subject: lunch tomorrow

Daniel is coming over tomorrow and would like to discuss
arrargements for a seminar wittou. Doyou fany meetirg for lunch?

Figure 4: example “Mailtool” screen

Students were asked to analyse a scenario in which avasesorting messagesglecting
some of the messages from two different folders and moving them to a third folder.

Students writing IL descriptions of this scenario were prompted to considecases:
where the user looks at the screemtmintainknowledge ofthe state of thélevice, and where
the user mentally tracks the effects of some operations without checking the display.

This task is more complex thame Windows one. Firstlythere ardwo ways toachieve
loading a folder and moving a message (“quickly”, if tiaene of theequired folder is already
shown inthe “folder” slot, and “slowly”, explicitty naming thdolder, otherwise)the user
would select these operations in differ@imcumstances, which should bpecified in the IL.
Secondly, there is one location tre displaythat contains thename of a folderthis might be
the folder that is currently loadeat, the one to which messages are bemmayed. The user has
to track which folder is currently loaded, has to track which folder messagasovedo, but
can look at the screen to see which folder name is displayed on the screen. This is a case where
one displayitem serves two purposes. Thirdly, tiie user does notely on the screen for
information, but tracks the namestbg “from” and“to” folders thenrshemay makeerrors by
failing to note that the “to” folder name has changed when she only intended to chamgaehe
of the “from” folder. A detailedanalysis of thiexample ispresented by Blandford & Young
(1996).
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2.2 THE DATA COLLECTED

To addressthe main gestion, howeffectively students could beaught to write IL
descriptions after a day’s training, the data collected were:

» the IL descriptions of the Mailtool and Windows examples.

» video recordings of half othe pairs (2 for each examplexonstructing their IL
descriptionsThe pairs were those wheolunteered; the main consideratis@as how
comfortable they, as non-native English speakers, felt about woekimgly in English
for this session.

» video debriefings of the remaining pairs, in which they were aské&alkithrough how
they had constructed their IL descriptions.

» feedback forms on which the students were asked to givevibeis ofthe qualities of
the training, and which concepts they found easy or hard to grasp.

To assesshe subsidiary question, whether usitige IL makes a discernible difference to
the kinds of usability assessments the students makedinesources of information were the
pre- and post-training written usabilisssessments, whidhe students wrote individually.
Video data was also used to establishae detailedinderstanding of howhe writing of the
IL influenced the assessments.

Finally, in order to asseswhether other individual factors might have influenced the
results, students were askedptovide brief details of theiacademicbackgrounds and prior
experience with computer systems of the types used in the test examples.

2.3 METHODS OF ANALYSIS

The tutors devised a marking scheme for the IL descriptions by agreeing acs&triafon
which to mark,weighting thosecriteria to reflect their relative importan@e the views of the
tutors), then allocating a mark to each IL descriptiasing ascale of0-4 for eachcriterion.
Criteria covered both appropriatesse of syntax and broader concerns such as consistency,
completeness and accuracy of thiescription. The tutors independentiassessedhe IL
descriptions produced bothguantitatively and qualitatively, identifyingomissions,
misconceptions, inappropriate use of the syntax, etc. The assessaumjist onthe basis of
the students’ written outputvas verified against thecorresponding videalata and also
information from the students’ feedback forms.

The pre- and post-training usabiligssessmentsritten by thestudents were analysed in
terms of all the statements made by th&udents.These were assigned to one thfee
categories: design recommendatiofsiggesting howthe design might be modified to
overcome any problems identified); usabiigguesthat would notemerge as a result dbing
an IL analysis; and usabiliftgsuesthat could emerge asrasult of doing an IL analysis. The
allocation of statements to categoness verified by thesecond tutor assigningtatements to
the three categories blind.

Points of contrasbetween the pre-training and post-trainimggorts were established. As
explained earlier, it was not anticipated that students would gain substantial design insights as a
result of writing IL descriptionshecause thdesignsselectedor analysis were chosen to be
clearand consistent enough for students to be able, in principlerit® IL descriptions of
them; therefore, they had few outstanding knowledge-basaaility problems. However, we
wished to compare the types of usability points raisatiapre- and post-training in terms of
both content and the way the issues were expressed.

The video data was also analysed. The framework in Figure 1 motthatedleoanalysis,
focusing ourattention on phenomena that finemework'sfirst two modelling links highlight
as underpinning the modelling process: the skills required to tratistedesign problemto
the IL notation, and evidence of whether or not IL helgeedients to understartide problems.
These providedhe initial categories tdegin classifying segments dfie verbal transcripts
produced fromthe videos (as presented Bection3.3). Additional categoriesnvere created
during analysis to reflect emergent themeslissussed in Section 4.
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3. Results

In our presentation ofesults, weaim todraw out points ofjeneralinterest, inrelation to
training practitioners in the application of semi-formal user-certieetiniques, raer than
points that are specific to the IL.

In thefollowing sectionsdirect quotationgrom students’ reports and video protocols are
used to illustrate particular points. The students are labelled according t@‘dait®ol” pairs
are numberedl-4, and “Windows” pairsare 5-8), with individuals in each pair labelled
A and B.

3.1 HOW WELL DID STUDENTS LEARN TO WRITHL?

To address this question, we looked at the maltksated to thestudents’ IL descriptions,
and also the tutors’ qualitative assessments of those descrifti@n&ottom line’ quantitative
marks for the students’ IL descriptions ranged from 52% to 89%,thatlaverage beingl%.
Obviously, there are no strong claims that can be made abofigthis, beyond ibeing some
measure that most students wrote syntactically good IL descriptions andbletegrasp the
main principles of the IL.

The real interest comes in the aspects of the ILdtuatents consistentfailed to attend to,
or consistently misused (e.g. using categories inappropriately):

» students produced high standard descriptions of objégtgtions/predicates and
conceptual operations. They showed a good understanding of basic concepts.

e manystudents simplypmitted several othecategories, such as definimgtial states,
tasks or device effects, from their descriptions.

e most students did not specify detailwhat users would knownd how, orwhat the
effects of an operatiowould be andhow the device statevould change. In some
instances, studenfailed to make an adequate distinction betweenuter description
and the device description.

» similarly, aspects ofhe IL descriptiorthat depended on thstudents hand-simulating
the modelleduser’'scognition were not welattendedto. So, forexample, there were
several instances where students specified preconditions that could not be satisfied.

In summary, students wesable toproduce IL descriptionthat were largelysyntactically
correct but theyomittedaspects of the problerthat aredescribed primarily tsupport hand-
simulation.

3.2 DOES USING THHL MAKE A DISCERNIBLE DIFFERENCE TO THE KINDS OF USABILITY
ASSESSMENTS THE STUDENTS MAKE

As already discussed, the test material was such that users were not going tonagoitify
usability problems as a result of writing IL descriptions. Also, the students had aleeadsed
a goodbasic training in usability analysis, as part of tleeiurse onHCI. Consequently, the
differences between theg and posttraining analyses were fairly subtldie main point of
interest was how the analyses differed qualitatively.

Windows

Most pairs working on this problem did nmamplete their ILdescriptions. Procesiata of
pairs working shows that the main reason is that they had difficulties debmlndgo represent
window locations and sizes, and how to describe the user’s task.

Most pairs focused on the enlarging task (for which the usability difficulties are very minor)
and paidessattention to thesecond (makinghe window smaller)task, for which wemight
have expected more of themdpot the potentialorder error (of movinghe window before
resizingit). Some paironly considered thérst task, so werainlikely to spot aspects of the
design that were pertinent only to the second.
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Most subjects, in botlthe pre-training and theost-training,outlined the sequence of
actions the user would have to perform thieee thetasks.These descriptions varied iheir
user-centredness, in terms of the reasoning they gave, or impligke fassertion. At one end
we have the prescriptive:

[S.1A, pre-training]: | don’t really see the big problem. You can solve it by 4 to 5 operations on the
lower window:
#1: move lower window in upper direction
#2: resize lower window
#3: resize lower window to a size smaller than its original size
#4: move the lower window back to its original spot
#5: resize the lower window so its bottom side is back at the bottom side of the screen.

At the other, we have statements such as:

[S.8A, post-training]: A window cannot be resized any further than the bottom of the window.
When the user is resizing and she hits the bottom of the screen, the window can no
longer be resized. When she wants the window to be bigger, she has to move the
window up first and then continue the resizing.

For this example, both pre- and post-training subjects were in a position to identifgithe
problems, as shown in Table 2. The main points of contrast were as follows:

« while all of the pre-training reports included design recommendati@fisways to
modify thedesign to reéve theproblem), fewer ofthe post-trainingeportsincluded
such recommendations.

» the pre-training students made a wide range of usabbisgrvations. Of these,ere
pointsthat we mightreasonably have expected to emerge as a resdibinfy an IL
analysis, and the other 6 were usability points that were not IL related. So, for example,
general comments about sequences of fewer actions being easier to learn, cdnatnents
relate to screen layout, and speculations about the mouse not working woefdengé
directly from an IL analysiswhereas comments about ordemors andthe user
knowing how big to make the window can be related directly to an IL analysis.

» the pre-trainingsubjects achieved better balance than the post-trainisgbjects in
considering the two sub-tasks (make the window bigger, then make it smaller). (In table
2 the first 4 of the IL-related usability poimalate to thdirst task,and the remaining 4
to the second; in thpre-training, 9 commentelate to thefirst task and 11 to the
second; in the post-training the split is 13BYidence fronthe IL descriptions and the
video data suggesthatthis is because most tfe post-trainingubjects focusetheir
attention on the first task, and did not consider the second properly.

» the two IL-related usability pointsiade bymost ofthe pre-trainingsubjects referred to
the sequence of actions theer wouldhave to perform tcachieve thetask. Post-
training subjects are less prescriptive.
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WINDOWS pre-training subjects post-training subjectq
Design recommendations 1A|1B|2A[2B|3A|3B| 4A[4BJ5A|5B|6A| 6B| 7A| 7B|8A|8B
hide tool-bars /add zoom facility or scrollbar t XX X| X
compensate for small screen size

you could ‘lock’ functionality, so that botH X | X

windows automatically scroll together

there should be multiple resize buttons / move-| X | X| X | X | X | X | X| X X| X X
the resizeoperation should continue if youreach X

the bottom of the screen

don’t allow window to be partly off-screen

there should be a function to go back pgeeviou§ X
position and size

non-lL-relevant usability issues

One window may obscure another X XX X|X

It might be confusing that theser canclick/drag X
anywhere on the titldbar to move the window, b
specifically has to click the bottom righthang
corner to resize

If the usercannot resize aindow because itvould total: 10 X total: 5
otherwise fall off the screen, thesermight think
the mouse isn’'t working or that there $esmethin
wrong with the program

It is not user-friendly to expect users to do | X X | X X

steps to achieve one goal

sequences of fewer actions are easier to learn X

the userhas to know thepossible operations| X X X

make up a strategy

IL-relevant usability issues

When making thewindow bigger, theuser mus] X | X| X | X | X | X | X| X | X X X X
move then resize

The user does not know how big théndow shoulg X X| X
be for the picture to fit in

window cannot be enlarged if size box isbattton X[ X X|X|X|X
of screen

The usermight not understand why she needs X
move the lower window before resizing it .

If the resize box is off the screen, thiser mus total: 20 X total: 21 X | X
move thewindow beforeresizing / Awindow ca
only be resized if the resize button is visible

To restore thevindow toits present state thase| X | X X | X| X[ XX X
must resize thewindow then move it back(the
maybe adjust the size again)

The usercannot properly define the desiredsize X X| XX X X
before moving it back
Order error: usemight try to move titlebar to ol X X

position and resize it to fit screen, buthis ig
impossible because the resize box then falls of
screen

Table 2: usability points made by subjects in pre- and post-training reports on the Windows example

In summary, this task was one where it was easy to spot the difficulties. These students had
a goodgeneralHCI training prior tothe IL training dayso, not surprisingly, they could all
describe the problem. There is a trend away from prescription (on the user — “the user must do
this then this then this to lsieve the goals” — and on the device “the way to fix this is to
have multiple resizéoxes”) towards an analysis basedtba user's knowledgde.g. “The
user does not know...” or “The user might not understand...”).

Mailtool

All pairs working on the Mailtool example produced descriptions that were syntactically of a
high standard. However, all included two functions that corresponded to
loaded-folder()=folder and selected-folder()=folder . That is, rather than
distinguishing folders in a way that was relevant to the user’s tasks (i.e. which folder messages
are being movettom and which theyare being movedb), they made a more device-oriented
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distinction (which folder idoaded, and which appearsthre “folder” slot). This made itless
likely thatany ofthemwould identify one particular usability problemtkhat usersmight lose
track of which foldewasloaded and whicimessages were being moved and hence move
some messages to the wrong place.

MAILTOOL pre-training subjects post-training subjectg
Design recommendations 5A|5B|6A|6B|7A|7B|8A| 8BJ1A|1B|2A[ 2B 3A|3B|4A|4B
allow user to move multiple messages at one tif X | X| X | X X X

it should be possible to delete / copy / editcfol| X | X X | X

through messages

it should bepossible tocreate anew folder [ X[ X total: 9
duplicate a folder

better message headers X| X

introduce another folder slot X | X|X X[ XXX X
clear folder slot when you change functiomalWway X X X|X

have to specify destination (no quick move) total: 19

use drag-and-drop to move messages X X
non-lL-relevant usability issues

A lot of nasty things happen when you can't fi X|X|X
certain message

The operation of the buttons issomewha X X X XX
confusing

You don’t know if the folder you want to move to X| X

going to be loaded total: 4 total: 7

It's easy to move multiple message to ofwther X

folder

IL-relevant usability issues

The ‘folder’ slot does not always display the na XX X[ XIX|X]|X]| X XX

of the folder of which the messages are shown.
The user has to track which folder is open

If you click on the MOVE button while a folder | X XX X
name is already in the folder slot, the message
be moved to the folder it is already in.

It might be confusing that there are two ways of] X X X
loading and/or moving.

In the task there was only one folder to which y X X
had to move messages. So in this task there w| total' 8
a problem of tracking the slot value. : total: 1

if you had to move messages to two files then t
default thing would cause problems.

the user might lose track of which folder is the X|X|X|X
move-to folder

before you can select a message, the folder it's XX
has to be open

Table 3: usability points made by subjects in pre- and post-training reports on the Mailtool example

Identification of this problendepends on recognisinigat theusermight rely on tracking
information that is actually available on the screen, with the qualifying statement thatigethe
always relies orthe screenshe should notexperienceproblems. Some othe students
recognised that there might be a problem in this arealg@ae 3), but did notarticulate itvery
clearly. The main points of contrast are as follows:

» while all of the pre-training reports included design recommendatsuggestingvays
to modify thedesign to riieve identified problems)he post-trainingeportsincluded
fewer such recommendations.

« although many of the pre-training subjects suggested introducing anothesfotgene
post-training subjects stated more clearly why this is required.

» the post-trainingstudentamade IL-related usabilitpoints with higher frequencthan
pre-training subjects.

In summary,thereis, asnoted abovefor the windows examplegvidence of a move
towards a more user-centred way of expressing their insights.
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Statistical analysis

Table 4 summarises the numbers of different points made by subjects in their pre- and post-
training reports on the two examples.

Windows Mailtool
pre- post-test pre- post-test
Design 14 8 19 9
recommendations
Non-IL issues 10 5 4 7
IL-related issues 20 21 8 18
TOTAL 44 34 31 34

19

Table 4: number of points made by subjects in their reports.

Linear modelling of the datshowsthat there is no main effect of problem typ®indows
vs. Mailtool), nor of training (pre-test/s. post-test), nor adubjectgroup (Windows first vs.
Mailtool first), thereby indicating that there are mawanted differences betwegmnoups or
problems,andthat there is no overall effect of the training on the totahber of comments
made by thestudents. Howevelthere is a significant effect (p <€05) of the interaction
between category type (desigecommendatiorvs. IL-related usability point) andraining,
indicating that the trainindoesseem to have an effect on tkied of commentshat students
make.

The interactiorwas examined in more detail hyjeans of chi-squared tests applied to the
datafor the Windows andMailtool examplesseparately. As is apparent from inspection of
table 4, the tests confirm that for th&iltool example there is significant tendency (p <02)
for the students to shift from making design recommendations before the training to making IL-
related usability points after the trainingor the Windows example (table), there is a slight
shift in the same direction, but it is not significant=(ib).

Giventhatstudents had juseceived intensivexposure tdhelL, it is hardly surprising
that theirpost-test results show a shé#tvay from design recommendations to IL-informed
usability insights. In some cases thigght be seen as a negatagset (new design solutions
being of more value than a deeper understanding of a problem — particuletythat
understanding depends on time-consuming analysis). Bnenmanycases in whictthe costs
of analysis outweigtihe benefits, butthere arealso casege.g. Bellotti, Blandford, Duke,
MacLean, May & Nigy, 1996) in which @eeper understanding tfe problem can help the
designer generate workable solutions to it. PUM analysis doagsplategood craft skill, but
is a technique that can bevoked when appropriate. This study did not addtesautility of
modelling, but was concerned with the development of modelling skill; this result indicattes
such a skill is being developed.

The views of students

As well as conclusions we can draw frdne data, we alstave theviews ofthe students
on the role of the IL in informing their usabiliggssessmentsThey were asked: “In the
exercises, to what extent did using the IL gyesl insightsinto the interfacelesign problems,
or help you to spot the problems more easily?”

Seven students wrote comments similar to the following three:

Anon:  helpful - keep in mind that users are liable not to track effects

S5.3B: ... Without the IL, I'd probably say too easily “just move this file” without thinking about
subgoals.
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S.4B:  the main useful aspect was the process you had to do to model the situation in IL. While
trying to model the situation, many design problems will be found just by doing the
modelling. Group discussions often went like this: try to model —> hey this is a problem
—> solution could be —> OK let’s go back to modelling.

Although the framework in Section 1 was not presenteiitdents, thisast commentery
clearly describeshe links presented there (iterating frodesign representation to problem
insights and design recommendations). This indictitaisthis student’'s view othe role of
modelling matches that presented in Section 1.

Three students were less positive about the usefulness of IL. Their comments included:

S.6A: IL seemed more a way of modelling a problem after you identified one

S.6B:  specifying everything is problematic; tracking information and filters sometimes
produced useful insight. Is it worth the trouble for the designer??

This suggests general perception that the IL may haseme benefit, in encouraging
people to consideuser knowledge and user behaviourniore detail than thewould do
otherwise. Howeverafter such a short exposure the technique,the assessments are
inconclusive.

Summary

Overall, themain points of contrast betweehe pre- and post-training results were not in
the number of usabilitpoints raisedput in the justifications givefor them. Forexample in
the pre-training we have:

S.1B [Windows]: Problems: to make the lower window larger, the user had to move the window
upwards. When restoring the window it's impossible for the user to get the right size, so
the user makes it smaller than its original size, places it back and then re-sizes again.

S.68B [re. folder slot in Mailtool]: How did I diagnose this? Two operators have side effects on the
same variable: bad computer science karma.

This can be contrasted with some of the justifications given in the post-training, such as:

S.5A [Windows]: The task is essentially about resizing the lower window. The user might not
understand why she should need to move it first. This was the main problem in writing
out the IL: to make explicit the relation between resizing and moving.

S.2B [Mailtool]: The user has to track which folder is open. After you have moved a message the
slot contains the name of the destinations slot. And you’ve lost the name of the “open”
folder.

Whereas the pre-training justifications tended to refer to general principigpdfdesign,
or to the action sequenceauser wouldhave toperform, post-trainingustifications weremore
likely to refer to how the user would know things, or misconceptions the user might have.

3.3 HOW DO TRAINEE SOFTWARE ENGINEERS USIE AFTER ONE DAY'S TRAINING?

In this section, we look dhe process of using IL teackle design problems, drawing
mainly on processdata captured owideo. Howdid students reason withe formalismwhen
analysing the problemBid using the notationdraw attention to relevanissues, orprovide
insight into user cognition? Although the present data are drawn from novice performance, such
guestions are, of coursetitical for assessinghe longerterm potential of IL as a tool for
reasoning in real design. The video data was gathered to provide insigteiptocessof IL-
use (as opposed to analysing justgheductat the end of the session).

Characterising the overall process of using IL

One aspect of the cognitive load on IL beginners is rememberinghabk&b be addressed
for an IL to be complete in a grammatical sense; clearly it can be used in a rresgefiective
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way. The students were provided with a single sheet summary of IL disd ef heuristics
giving guidance on how to write it. The summary sheet was observed toaheabletemplate
for them when they came to construct tleim IL specificationscueing them to the elements
they had to consider in order get going.This templatewas followed in a looselserial
manner, starting withObjects then Functions followed by Predicates and then the
Operations In the videoedxercise, students were observedremorise the structure at the
level of Operations which have a micro-structure dflots to befilled (user-purpose,
precondition, filter, tracked-information, device-commgargbme pairdearned to writedown
this template from memory as soon as they began to specify a new operation.

The overall IL authoring process is best described as loosely serial. Stielelated some
obvious ObjectsPredicates and Functions basedtlo® problem scenaridescription,then
revised,deletedand added to these as they reasoned in deiegl about specificoperations.

The iterative nature of liconstruction had also beetressedepeatedly in the teaching and
class exercises. This is consistent with studies on design and programming cognition (Siddiqui,
1985; Guindon, 1990; Visser, 1990) whiclmave reportedhat opprtunistic strategies are
overlaid on textbook top-down design and programming methodologies.

Another well-documented approachdesign reasoning ithat of reasoning about specific
scenarios of system or user behaviour (Young Bathard, 1987 Karat & Karat, 1992;
Carroll, 1995) Scenario-based reasoning is, in a sense, embedded in IL. For instance, walking
through a user task shedight on how Objects, Predicates and Functionshould be
(re)expressed from a user point of view. Similarly, in order to specifystiepurposeor what
information istrackedfor a particular operation, one must reason explicitly aboutaaggnition
by imagining theuser performinghe task in question—whyare theydoing this,and what
information must they keep track of? Developing an IL specification encousajeegare
engineers to construct user-centred scenarios.

Reasoning with IL constructs

One important role for any notation is to alert analysts to particular issues. The students’ use
of IL could be observed in the video transcripts, as in the following examples.

Reasoning about user-purpose

In the following example (taken from the Windows problem), the requirement to specify the
user-purposedor the resize-windowoperation leads theubjects to an insight about enlarging
and reducing windows—that the user purposes of dem@nd hence theriteriafor judging
whether a window is small or large enough, are very different.

Pair 7 - Windows:

[they discuss: do we need to specify that the user-purpose of resizing is to enlarge or to
reduce?]

S.7B  The user-purpose of enlarging is to see the contents of that window, and the
user-purpose of reducing is to make another window visible

S.7A  becomes very complicated - two resize functions - confusing.

S.7B resizing one window to see another window - that's complicated. First let’s try
enlarge.

[First operation “resize-window” is changed to “enlarge-window”]

S.7A [gesturing on screen shot of windows] So to enlarge you click on resize box and
drag away [gestures dragging down and to the right]

S.7B  ordrag down

S.7A  and then it becomes bigger
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S.7B  now | see the importance of moving the window - you cannot resize this [lower]
one

S.7A  yes that's what | meant - you can't resize that

This extract also illustrates how the needtvaw functions to express resizitgghlighted a
possible source of user confusi@mdhow walking througtthe task highlightedhe fact that
the design of Macintostwindows means that théower one cannot be resized without first
moving it.

Reasoning abouttracked information

At one point, Pair 4 discusséadckingfor all the operations. They returned to this issue 23
minutes later when considering a more expert user:

Pair 4 - Mailtool:

S.4A so you don't see what is selected - | don’t see the problem - you're already tracking
things, but not the selected folder... we said it was a side-effect

S.4B [finds their IL, and notes that the move-to-folder operation has an entry for
tracking the active folder and that the selected folder side-effect is visually
detected. S.4B notes that in the new situation]—

The user can see it, but won't - he tracks it now - he remembers it.

There are three features of intereste. Firstly, it is a goodxample ofhow an ILcan be
used as a cognitive resource to assist reasoning tdeodesign.Initially, the tracked  slot in
the Operations  schemaprovides achecklist of thingghe designer must consider; while one
could simply tell designers td'think about whatthe user mustbear in mind”, the more
structured IL representation seems to be a richer resource irespisct. The students co-
ordinate their discussion by moving systematically around the IL from one operation to another.

Secondly, in the above extract, the IL acts as a resource to help answer a ‘what if’ question:
what if the user does not look at the screen? The studerablar® interprethis newscenario
relative to the current state of the IL, by going to the relevant IL elemeRing ).

However, and this isthe third point, this particular pair do not dedudhat non-visual
tracking in thenew scenarionay lead tgproblems (theusermay fail to trackwhich folder is
active). What this demonstrates is appropriate internal use of IL (within the closed wiad of
but failure to identify the external problem.

Reasoning aboutpreconditions

In IL, before aparticular operation caaddress itsiser-purposeits preconditionsmust be
satisfied. Forthe analystusing IL, this is an opportunity to assess whettie user can
reasonably be expected to know what these are, and how to satisfy them.

In the extract below, Pair 6 explain the problems which they anticipate for the @isensn
of preconditiongo operations which must be satisfied, and also with respéoe taformation
which must be mentalliyacked

Pair 6 - Windows debriefing

S.6A  atthe end we had some problems with locations and sizes.
we had 2 operations for move-window ... and we had resize-window to size:S

S.6B and somehow we wanted to relate these two, because it was similar to the other
problem where in order to resize the window you have to move it, but how is the
user going to know this?

S.6A so we didn’t know how to express that there was no room to resize the window
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S.6B  so what we asked in the end was: is it sensible for the user to know the
preconditions and the tracking information and everything, and we decided no,
it's not sensible to require the user to know where he’s going to locate the window
in order to resize it.

The IL hasgiven thestudents a vocabularfpr reasoningabouthow users know things
about the device, and where that knowledge comes from.

4., Discussion

As stated in thentroduction, the aims of thework reported here have beealatively
modest: to establishow trainee software engineers ubke “PUM Instruction Language” (IL)
after a day’s training. We have explored tise ofdifferent types ofdata collection in helping
us assess the level of understanding students acquire in this time. In the course oftthig we
also used the study to develop a better understanding of the nature of expedisg .. We
now re-visit issuesraised earlier about the role fdrmality, the centrality of the underlying
theory, and the nature of craft skill.

4.1 THE ROLE OF FORMALITY

As discussed above, a groundingtli®e theory and systematic application of a particular
formalism equips a designer withcanceptual framework witlvhich to examineproblems,
which can then lead into moreigorous application ofthe formalism if the problem is
particularly complex. For example, using IL sensitisg®e to ‘tracked information’, and in
cases where tracking seems to be significant the analyst can do a fuller investigation to establish
what the consequences of usdracking information mighbe. As discussed iBection3.3,
students were observed to be using the notation as a resource to thguporasoning in this
way.

As expert analysts, the tutors would not normally write a full IL description of all aspects of

a substantial design; rathehey would identify important aspects of theesign, generate
interesting candidate scenarios, and sketch out important bits of IL description at a suitable level
of detail—from fairly informal as aoughtool for reasoning, to aompleteportion of IL code
generating a runningiodel. Novices do ndtave the experience to enable them tdrds, or

might do it inappropriatelyi-or examplePair 4 introduced anew categoryside-effeGtwhich
expressed something they wanted to say (thaicaonhas a side-effect, whide user needs

to be aware of), but also served to obscure some difficulties that users might experience.

Another factor that determines thgour with which a formalism isised is itsrole as a
vehiclefor communication betweetesignersThe video datashows several incidents where
partnersinitially usedthe same terms to mean differehings; it was aghey moved from
generaldiscussion to IL descriptiothat theyrecognised and resolved these ambiguities and
reached a common understanding of ghablem. In thissensethe formalityserved tareduce
ambiguities in their communication with each other.

Although there were no overall measurable differences in performiaatecould be
accounted for by students’ different backgrounds, orteegbsychology students commented,
unprompted, that a semiformal language was a good way to bridge between computer scientists
and psychologists, since it gave them a vocabulary they could both work with:

S.2A:  maybe because of being a psychology student I'm not (very) used to using this formal
language (it looks a bit like programming to mel) ...
It's a very nice way to communicate with other people (especially computer science
students) since it's very structured

In contrast, some of theomputer scientists noted on their feedbfrkns that theywould
have preferred a more formal presentation of the syntax of the IL:

S.5B:  [IL could perhaps be] more formal so you know what commands etc. may be used.

An understanding of how knowledge is useithin a runningmodel providesthe most
useful guide to whashould be expressed the IL (asthe analystenvisions howthe user



Training Software Engineers in a Novel Usability Technique 24

knowledge wouldaffect the behaviour of aunning model), but this understanding is not
available to novices.

There is a tension between the requirement to allow the languageusethélexibly as a
tool to aid theanalyst's thinking, andhe requirement to gain leverage on the problem by
exploiting the constraints of the language and the undergegry. However, it is chly not
possible for students @ppreciatehis difference, oacquire deep theoretical knowledge, in a
matter of hours.

4.2 CENTRALITY OF THE UNDERLYING THEORY

As discussed by Blandford and Young (1996), there are some issues fortiveharmmalysis
can bedone simply in terms ofisers’ knowledgeand others for which various depths of
understanding ofhe underlying cognitive theory is necessary. The test examples differ
significantly in terms of the role played by the underlying theory in guiding the at@alyetds
insights.

For the Windows examplethe main insights are gainetirough the experience of
describing the task scenario in termsla# Instruction Language. For example, specifying
that having the resiz&ox visible is a preconditiorior being able to resize th@indow, and
therefore having to specify an operatishose purpose is tmake thebox visible,the analyst
has to make an explicit statement that there are different reasons for mevimgosv, and that
if the window has to be both moved and re-sized theght beorder constraints on these two
operations Most students whaspecified such operations ithe IL were able todraw the
appropriate inferences about the real world consequences of their IL descriptions.

In contrast, foiMailtool the main inghts comefrom hand-simulatinghe modelleduser’s
cognition. For example, the means by which the modelled user knows things (by looking or by
tracking) is central to the awyals. If student analysts do not interpret their IL descriptions in
terms of theconsequences of different descriptionstba modelleduser’'s knowledgethey
cannot gain the main insights. Students made several usability poihespiost-test reports —
e.g. “the user might lose track ofwhich folder isthe move-to folder” — that reflect an
IL-informed understanding dhe problem, butomitted pointsthatwould have emerged from
extended hand-simulatioiThe greater dependence of the Mailtpobblem on model-based
reasoning (as opposed to simply representggproblem in a particular notation) probably
accounts for the greater shift from design recommendatiotsrédated usabilitypoints when
compared to the Windows problem (see Section 3.2).

The question of howmuch theory novice analysts need to understand before they can
exploit ausermodelling techniquénas been faced by the developers of otlieeory-based
approaches; thanswer which seems to benerging in relation t?UM andthe IL is that it
depends orthe issuethat is beingmodelled. Profound insightare not cheap; the better an
analyst’'s understanding tiie underlyingheory,the more likely it is that the modelling will
achieve useful results. Interms of selecting traininggxamples,the depth of theoretical
understanding needed to identify usability difficulties is one important dimension on which to
base selection.

4.3 IDENTIFYING AND ENCAPSULATING CRAFT SKILL

Whilst HCI design formalisms offethe designer moregigorous ways torepresent and
reason about a design, their effective application often assumes a significant degree of informal
craft skill. All too often, papers focus ahe relationship betweendesign formalism and the
domain to be represented, stopping short of addrefisngrucialissue of its use ipractice:
are designers able to use the formalism effectively by making appropriate connections between
the formal description and the domain implicati¢keather, 1993)? Formalisntennot be
meaningfully evaluated if their application in practicegisored. There aresubstantial, hidden
skills involved in making a design formaligonactically useful, and for avariety of reasons
(e.g. deriving fromthe traditional engineering and science cultures) tekis often remain
unarticulated Bowers,1991; Subrahmaniarkonda, Levy, ReichWesterberg & Monarch,
1993).
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As is widely recognisedhe development of training materials can help experts to identify
some aspects of their skithe requirement to produdesuristics,templates and examples can
all help the expert to articulate essentiaimponents of thekill. However, inpractice,there
was little evidence in the video protocols of students referring to the list lnédkistics. It was
much more common for them to refer to teeplate thaspecified the ILsyntax, or toone of
the trainingexamples, ta@heckhow the IL hadactually beerused there. This suggedtsat
while there is a value in making heuristics explicit, particularly as &dodhe trainer,they are
less useful as a resource for studéimés the template thaummariseshe notation and also
other examples, from which they extrapoldthis, in turn, suggesthat the role of examples
in encapsulating and communicating craft skill needs to be further developed.

There are certain aspects of craft skill tvare found tacause particular difficulties in the
study. The first is reasonirexplicitly with the cognitive theorye.g. inhand-simulation) and
using an understanding tfe theory to determine whether a particular notational relaxation is
appropriate onot, as discusseabove in relation to ide-effects’. Twoother difficultiesthat
emerged weréghat of identifying an appropriate level détail for description, andnaking a
clear distinction between the device state and what the user knows about that state.

Specifying IL at the right level of detalil

One of the hardest decisions when using r@pyesentational technique is to analyse at the
right level of detail. Difficulties with this have been observed in studies of desigaengg to
use new design formalisms, such argumentativedesign rationale (BuckinghamShum,
MacLean, Bellotti & Hammond, 1997), &ognitive modelling expert system (Buckingham
Shum & Hammond, 1994a) and a notation for describliegntology of a system (Blandford
& Green, 1997). This also proved to be a difficult issue for some of the students learning IL.

The excerptbelow illustratesthe issue oflevel of description with respect to whether
preconditionsneed to includdevice commands

Pair 1 - Mailtool

S.1B should we have as a precondition that move is selected? And here (indicates
other operations) that the relevant buttons are selected?

[they check a training example to see how this was done]
S.1A do preconditions include physical actions?...
we’'d have to have move mouse, press button, drag it... too low level— leave it!

The generahnswer tahe question, “Do heed to specifiX...?” is “It depends on what
you're analysing”. However, choosing the level of description is difficult for beginners because
it requires considerablamiliarity with the notation tcknow how itcan beused indifferent
ways. Of courseanalysing at the righlevel is partly dependent ohuman factors skill
independent of IL expertise. That being tase, however, it woulstill be useful fortrainees
to see examples of lworking atdifferentlevels, withthe rationale laicbut explicitly for the
way in which it haseenused.Armed with these different examplethey would then have a
greater awareness of the representational options available to them.

Distinguishing between device state and user knowledge

One of the central tenets of tR&JM approach{Young, Greerand Simon, 1989) ighat a
language like ILshould besufficiently similar to a conventional higlevel programming or
specification languagér softwareengineering skills tdaransfer, withminor adjustment, to
user-centred analysis. Preconditions and end-states are familiar concepts to ceongmniists.
However, this familiarity with languages for specifyingevice behaviour is a double-edged
sword. Whilst it may enable designers to tissr existing expertise taeason aboutisers in a
new way, itmay also havethe unfortunate side-effect of leaditftem back into their more
familiar device-centred mode dlinking, because it is so similar to what thaye used to
doing.
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Students hadittle difficulty in writing syntactically correct ILdescriptions. For example,
they madesureall variables werdound,and definitions of objects, functions apdedicates
did not present a problem. Thtisey seemed able to exploit their general programming
expertise in writing ILdescriptions. Howeverransfer of this expertise is not without its
problems.

For example, for Mailtool, all pairs of students defined just one
selected-folder()=folder . Some of them alsdefined aoaded-folder()=folder . This
identifies folders in terms of which one is loaded and which one is displaythe iffolder”
slot—i.e. still reflects the device representation. This contrasts with a task-oriented description,
usingselected-from  andselected-to  folders,the task being to “movenessagefrom this
folderto that one”. Thdact thatstudents splithe world up in a subthdifferent way accounts
for the fact thanone ofthem clearly articulatesvhat we had identified athe main problem
with this device.

Their computer sciencebackground appeared to influence ompair's choice of
representation more extremely, leadthgm todescribe andeal device thatlid notmatch the
description they wergiven. Reference to the video datar this pair suggestghat the main
reason fortheir producing amnaccurate descriptiowasthat theywere thinking of messages
and folders as being similar, stey provided similar operationse(ect-message  and
select-folder ) to manipulate them.

S.1A: Do we need an operation “select message”? — because we don’t have an
operation “select folder”

This would appear to be motivated by a general HCI principle, and good design practice, of
being consistent, but fails to describe the essential features of this device in this situation.

Students were clearly aware of this difficulty, and several expresediew that
distinguishing between the device state and the user’s knowledge of that state was:

S.7A:  quite hard, because most of us were looking at the problem from an implementer’s point
of view

Making the conceptual shift required to adopt a user-centred perspective is not something
which IL as a notation on its own can enforce, but which it can encourage. The examples above
illustrate both advantages and dangersilo$ intentional similarity to computer science
languages.

4.4 AREVISED FRAMEWORK FOR UNDERSTANDING THE ROLE OF MODELLING IN DESIGN
EVALUATION

In Section 1 we presented a framewtwk understanding model-basedability analysis.
We can relate the results of this study backh&aframework. Figure 5 is a revised version of
Figure 1, adding further links to suppdine discussion here. In particular, imave divided
Link 2 to include an explicistep of model-based reasoning (applyting underlying cognitive
theory) and added Link O, which represents craft-based insights.

LINK O
LINK
. LINK 3
LINK1 RepresentationLINK 2a Model- LINK 2b Insights into Design
Design problem—pp-using mocellin based problem recommendatlons
formalism reasoning

1‘ by ot

Figure 5: Links to negotiate in a usability analysis

The pre-training usabilityeports (Sectior8.2) can be characterised akowing students
traversing Links 0 and 3, usirggaft skill to identifyvarious usabilityissues (“insights”) and
propose design solutions. In contrake post-trainingeports, which followedhe generation
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of IL descriptions (Link 1) focused more @xpressing insights antthe rationalefor them
(relating them to the modelling representation), with fewer design recommendations. Traversal
of Link 3 was not emphasised in the training.

We can look at links 1 and 2 and asskes® easy it was fothe novices to traversgaem.
For the students working othe Windows examplethere wereclear difficulties intraversing
Link 1, because of their difficulty in finding an appropriate representation ofdésggn
problem, but when arappropriate representatiowas found, traversal of Link 2 was
unproblematic. Traversing Link 2 depended largely on exploiting the notatitioedances of
the IL.

The students working on the Mailtool example had little difficulty with Link 1 or wattk
2 — with using the surface features of the representation to yield mode8ights. However,
the aspects of the probletimat demanded more explicitodel-based reasoning (such as hand-
simulation) gave difficulties. This is largely becausgng the representation to gainsights
actually involved applying thBUM cognitive theory in avay thatthey, as novices, were not
yet equipped to do. This is an example of a design profdenvhich it ismore appropriate to
split Link 2 into two components (Links 2A and 2B) to describe the role of the cognitive theory
in supporting reasoning.

5. Conclusions

Design and evaluation formalisms need tousable. It isthe responsibility ofthose
developing such formalisms to understand and encapsépeocess skills required tpply
them effectively in design. It can be as hard to articulate these skills as it iprimyrammer to
appreciate how a new system will be used by a beginner.

We have presented a cagady oftraining software engineering studentsusethe PUM
Instruction Language, arelvaluated the degree of IL expertise acquired incthase of one
day’s training.

Results indicate that 6 hours was long enough for students to gain a good understanding of
the surface syntax othe IL and torelate theirdescriptions to usabilityssues,but not to
comprehend the significance of their Hescriptions in casethat depend on a deeper
understanding of the theoretical model (requiring hand-simulation).

As is widely recognisedhe process ofleveloping and delivering trainingaterialforces
one to reflectupon andencode methodological and other infornpmbcess skills (such as
heuristics) whichare regularly deployed inosing the formalism. Wehave alsoshown how
empirical studies ofthe approach iruse can expose aspects dhe approachwhich were
assumed orthe part of theexpert, but were not ehrly communicatedFor example, the
different demands imposed by different design problems had not been octarfynised.
Video dataalso showed howhe formal representation could hedfudentsreach a common
understanding othe problem(serving as avehicle for communication betweestudents).
Anotherissuehighlighted by analysis othe data is thelanger of relaxing the formalism in
inappropriateways. While it may be tempting tpresent a technique as being flexible and
informal, sothat it is apparently easier tese, this can result in uncertainty abouthat the
limits on that flexibility are, and in inappropriateise ofthe notation. By analogy with the
discussion of tool use by Winograd and Flores (1986), a tool used by anaxpedused so
seamlessly you hardlgotice it; when it is inthe hands of anovice you can seehow it is
operating, and what properties of the tool are achieving what.

This empirical study of trainee modellers has forced to the surface many of the inagiicit,
skills involved in turning a formalism into @actical toolfor reasoning, antielped to identify
many of the contributing skills in what otherwise remains a vague notion of ‘expertise’.
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Appendix: IL description of Windows example

OBJECTS
window: window1, window?2.
size: full, half, three-quarters, one-quarter.
location: at-top, at-three-quarters, at-half, at-quarter, at-bottom.
screen-object: resize-boxl, resize-box2, ....

We have chosen a representation that only considers vertical size, and ignores width.

FUNCTIONS
size-of(window) = size.
loc-of-top(window) = location. } detected by looking
resize-box-of(window) = screen-object. }

PREDICATES
on-screen(screen-object) -- detected-by-looking

OPERATIONS
operation move-window (window:W, location:Newloc)
user-purpose: loc-of-top(W) = Newloc
device-command:move-window-command(W, loc-of-top(W) = Newloc)

operation expose-resize-box (window:W)
user-purpose: on-screen(resize-box-of(W))
device-command:move-window-command(W,on-screen(resize-box-of(W)))

operation resize (window:W, size:Newsize)

user-purpose: size-of(W) = Newsize
precond: on-screen(resize-box-of(\W))

& wiill-be-on-screen(resize-box-of(W))
device-command: resize-command(W, Newsize)

There is no clear way to state the requirements that the sizing box must be on screen both before
and afterwards.The objectively correct condition is: loc-of-top(W) > Newsize.

The difficulty in expressing this condition is an indication of the problem users might have
estimating where the re-size box will be at the end.

USER KNOWS INITIALLY
We do not need to specify anything here, as everything is on the display.

TASK
First
1. size-of(window2) =three-quarters.
then
2. size-of(window2) = half.
loc-of-top(window?2) = at-half.

There are two tasks to be performed in sequence: first making the bottom window bigger, then
making it smaller again

DEVICE COMMANDS
resize-command (window:W, size:Newsize).
The user can drag the resize box of a window until the window is in some desired
size. The resize box has to be on the screen throughout this process.

move-window-command (window:W, criterion: C).
The user can drag the title-bar of a window until the window is in a position such
that some criterion is met. The criterion C has to be evaluable by visual means.

Note. The resize box will be on the screen provided that: size-of(W) < loc-of-top(W), not allowing
for any overlaps of windows.
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INITIAL DEVICE STATE
size-of(windowl) = half.
loc-of-top(window1) = at-top.

size-of(window2) = half.
loc-of-top(window2) = at-half.

DISPLAYED
Various parts of a window, such as the resize-box, are displayed on the screen, or
hidden off-screen, as the window is moved around.
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