
Knowledge Media Institute

Constituencies for Users:
How to Develop them by Interpreting Logs

of Web Site Access

Michael J. Wright

KMI-TR-75

January, 1999

AAAI Spring Symposium on Intelligent Agents in Cyberspace
March 22-24, 1999, Stanford University, California



Constituencies for Users:
How to Develop them by Interpreting Logs of Web Site Access

Michael J. Wright

Knowledge Media Institute
The Open University

Walton Hall
Milton Keynes, MK7 6AA, U.K.

m.j.wright@open.ac.uk

Abstract
The number of electronic journals is growing as rapidly
as the World Wide Web on which many are published.
Readership of an electronic journal is important to
quantify, just as it is for a printed journal. In maintaining
the Journal of Interactive Media in Education (JIME), a
scholarly electronic journal open to all, we require
readership statistics more meaningful than the variations
on the theme of  "number of hits" given by many log
analysis packages. Important aspects of JIME's open
access are the decisions to not require subscription, nor
the use of hidden tracking aids such as cookies.
Readership information is acquired from the server log
of client requests. We are investigating the identification
of user sessions from such logs, and the development of
classification of sessions into constituencies of
readership. In this paper, we present the result of manual
analysis from which we are developing automatic
analysis mechanisms.

Keywords: Web Log Analysis; Classification; Electronic
Publishing; Scholarly Publishing; Recommender
Systems

1.0 Introduction

As the World Wide Web develops, the number of
quality resources is increasing; for example digital
libraries are growing in size and numbers. In addition to
libraries, specific journals are appearing on-line. One
example is the electronic Journal of Interactive Media
in Education (JIME http://www-jime.open.ac.uk/), a
scholarly journal hosted by KMi at The Open
University and only available on-line. The journal has
the same basic publication model as other scholarly
journals; submission, peer review, debate and
acceptance for final publication based on the review
process.

As part of maintaining JIME, there is a need to be
able to quantify the readership of the journal. To
characterize the use of the journal, a number of
approaches are available; from simple statistics
gathered from the Web log to sophisticated mechanisms
utilizing one or more of information, content-based and
collaborative filtering. These mechanisms, often
referred to as recommender systems (Resnick and
Varian, 1997), usually maintain profiles of the interests
of registered users in order to recommend content to
them.

As part of the design rationale of JIME, there are no
impositions placed on those accessing the journal;
anyone may visit and read free from giving any
information or receiving hidden tokens (e.g. cookies.)
As mentioned earlier, JIME is but one of many journals
appearing on the Web. As a user of JIME is likely to be
a user of many other such resources, I believe they will
not be very interested in directly maintaining a profile
of themselves on every resource site they visit. They
will find the emerging 3rd party recommender, or
broker, systems of more use for this.

This presents a problem to those developing and
maintaining a Web site such as JIME. We would like to
be able to say that of x visitors to JIME, y of them
looked at the abstract of a particular article, A, and z of
y went on to read large parts of the article. We also
want to see what collections of articles they were
interested in, and to what extent they were interested in
specialized parts of the journal. To collect such
information, we must use whatever records are
available; e.g. access logs and queries used in any site
based search mechanism. In the future, protocols to
enable the exchange of profile information at the time
of a user visit will be an additional benefit by bringing
more information; they should not be viewed as a
complete replacement for the local analysis.

The JIME site access log is a local record that can be
analyzed for the information sought. Present log
analysis tools, with their statistical output of variations
of hits per page, do not give the information on
readership patterns required. However, by analyzing the
logs in more detail, I believe we can gain insight into
the users of JIME and how they read it's contents. Such
analysis only gives results for a percentage of the actual
visitors due to browser caching and proxy use, but
should be an improvement over the present problem of
estimating the true readership of a printed journal where
estimates of readership in libraries must be made. This
information can then be combined with other
knowledge of the site (e.g. search queries used on a
local search mechanism, or an ontology describing the
site) to help understand the use of JIME and potentially
give the opportunity for the site to recommend content
to visitors.

The work in progress begins the process of looking to
identify reader sessions from log files and to be able to
classify sessions into one or more constituencies where
a constituency has a description of some actions, e.g.



2

readers who like to view demonstrations. The initial
work has been manual analysis of the JIME logs to see
that such simple constituencies can be identified. More
complex constituency descriptions require the
automation of this task. The results will be available to
improve the development and maintenance of the JIME
site. Further development of methods to automatically
correlate new visitors to constituencies will lead to
being able to recommend content to visitors.

After a discussion of related work, I will review the
basic web log file and examine what types of
information can be interpreted from such a log. A user
session is defined the implications of a user's browser
settings with respect to caching and proxy use are
discussed. We then present an initial set of
constituencies that can be seen from an inspection of
the JIME access log. Examples are taken from that log.

2.0 Related Work

The previous section introduced the project to analyze
web logs to develop constituencies of users, with a goal
of being able to recommend resources on the JIME site
to future users based on their match to one or more
constituencies. This relates to research in areas of Web
log analysis and recommender systems (Resnick and
Varian, 1997).

The need of understanding more about those visiting
an information archive (e.g. a Web site) is ubiquitous.
Much of the early Web based work has been driven by
requirements to improve navigation and caching on the
web (Tauscher and Greenberg 1997, Recker and
Pitkow, 1996). How to get the information has
generated many ideas and implementations beyond just
web log analysis as used in the previous work. Two of
the more common methods are subscription or
registration (information in exchange for access) and
the use of cookies. With these methods, a database of
access patterns of individuals to a site can be kept. I
believe the use of such tracking mechanisms has
resulted from them being a simple method to track
individuals, bypassing the more complex work of more
fully interpreting a log file. Further, their use will
probably decline at individual resource sites (except for
obvious use at specific sites e.g. E-commerce) as the
number of potential resource sites increases to where
individuals will find it impossible to maintain current
profiles at all these sites.

As the volume of information resources increases,
research has evolved into helping people find
information by developing systems based on
maintaining current user profiles. Recommender
systems describes an area devoted to developing
systems that help people by recommending possible
resources based on profiles of their interests. These
systems are seen as an improvement over basic query
based search engines such as AltaVista and Yahoo. If
we view the continuum from the client interface (e.g.
Web browser) to a resource location (e.g. a Web site,)
there are systems that work at various stages in this
continuum. While three areas are described and

examples given, it is inferred that some examples may
well bridge areas hence the use of “continuum”.

An example of a system that works at the client
interface is Letizia (Lieberman, 1997). Letizia
maintains a profile of the user to help present possible
alternative Web resources. We can consider the user
profiles to be “private” in that they are held at the local
client only. Referral is based on interests in the profile
matched to resources seen subject to application
constraints. Another example of a client system is
SiteSeer (Rucker and Polanco, 1997), which builds a
profile from a user's bookmarks in a Web browser.

Other systems work in the area between the client
and resource location acting as recommender (or
brokering) services. Examples of these are Firefly
(http://www.firefly.com,) PHOAKS (Terveen et al.,
1997), Fab (Balabanovic and Shoham 1997),
ReferralWeb (Kautz, Selman and Shah 1997),
GroupLens (Sarwar et al. 1998), and SOaP (Guo,
Kreifelts and Voss 1997). This intermediate area is a
popular area of research at present with each using
some form of collaborative (social) or content-based
filtering, or a hybrid of the two. They all maintain
profiles of many users and have large document spaces
from which to recommend, e.g. Fab, ReferralWeb and
SOaP draw from the Web, PHOAKS and GroupLens
from Usenet News. As users make use of the services
on a frequent basis, their profiles are kept up to date.
The user profiles are “public” in that the user has agreed
to be profiled by signing up. The level of privacy of a
profile is on the broker’s terms.

At the individual site (or group of sites) are systems
such as ArquiTec (Ferreira, Borbinha and Delgado,
1997) and Planet-Onto (Domingue and Motta, 1999).
ArquiTec keeps a user profile database of registered
users in conjunction with a digital library in Portugal.
Planet-Onto is a site that allows researchers to post
articles that are then linked to an underlying ontology.
Readers can register to be supplied updates from the
Newsboy agent (Newsboy could also be set in the mid-
area of the continuum), updates based on a profile
specified in unambiguous declarative specifications.
This is different from many of the other systems
mentioned as those often build up profiles from
watching how users deal with recommended material.
Again, the profiles are “public”.

The process of developing user constituencies from
log analysis will fit the individual site part of this
continuum where it can work in conjunction with other
site-based information. In the future, as mechanisms
develop to allow profile information to be shared with
the site from systems in the other parts of the
continuum, this will augment the local information.

3.0 Web Site Statistics - Present Practice

3.1 The Log File Format
Visitors leave a trace in a log file kept by the server.
Each record in a log is for an individual client request
received and dealt with by the server. For example, the
request for http://www-jime.open.ac.uk/ will result in



3

the document associated with the root of the server (the
file index.html in the root directory of the server
document tree) being returned to the client and an entry
placed in the server log (single line):

dhcp.open.ac.uk - -[20/Apr/1998:10:43:05+0100] GET
/index.html HTTP/1.0 200 3347

The record has the following syntax (also known as the
Common Log Format, CLF, the basic syntax of a log
record for most Web servers,) and contains the
minimum information around which a request can be
completed plus the date:

[Host] [Ident] [AuthUser] [Date:Time] [Method] [Request
Path] [HTTP version] [Status] [Bytes]

Host IP number/domain name of host requesting
Ident Not used now
AuthUser User name used in any user/password access
Date:Time Date and time the request received
Method HTTP request method

(GET, HEAD, POST, PUT, etc.)
Request Path Path to resource
HTTP version HTTP protocol version used in request
Status Result code of the handling of the request
Bytes Bytes transferred back to the client

Some Web servers can be configured to log more
information, but further information is usually based on
extra information the client’s browser may give, e.g. the
URL of the page from which the current request came
from, the “referrer page”. This information is optionally
given by the client’s browser, and may in time be
blocked by users (following recent concern over
privacy and Web access.) The current basis of analysis
is to only use the basic minimal set of information used
by the server to complete a request. Once done, the
analysis can be augmented with extra volunteered
information such as “referrer page.” Entries in the log
file accumulate over time with entries from different
clients interleaving if more than one user happens to be
browsing the server at a given time.

As we go through the discussion, we will show
examples taken from the log of JIME covering the 20th

and 21st of April, 1998. The log file for this 48-hour
period had 6,952 records (requests for files). Results
have been verified in later periods. For clarity, some
fields in records may be left out. We should also note
that the home page file, index.html, may not appear in
the log file explicitly, often appearing as just /. This is
because the JIME server is set to automatically assume
that a request to http://www-jime.open.ac.uk/ (or any
sub-directory of the server) is a request for the
“index.html” file that will be found at that location
(server configuration of default HTML files in
document directories.)

3.2 Conventional Web Statistics
In the example period chosen, 6,952 records, or “hits”,
were logged. The records show 142 distinct computers
were used (IP/host names logged) to make these

requests. Many of the web log statistics packages (both
commercial and free) give simplistic breakdowns of  the
numbers: “Web site JIME has received 6952 hits from
142 unique sites, each downloading an average 15.7
pages.”  There will be further quotes of the number of
errors, total bytes transferred, and in some cases, the
packages will sort the host names and give a list of the
files they requested most frequently (occasionally
chronologically.) These type of statistics give an
indication of the “loading” of the server, and help
identify missing pages or problems (from error reports.)
In no way do they give more useful information such as
how many are repeat users of the site, or what clusters
of information were users looking at during visit
sessions.

In some cases, web site managers now put their log
results into databases from which they can query for
these types of statistics. In such a case, it is possible to
query about how often a given computer (via the IP
number or host name) has come to the site. However,
this type of statistic may not indicate a true repeat user
due to the common use of dynamic IP allocation, or
shared computer use. This is discussed in more detail
later in the section about identifying a user session. To
move beyond these simple statistics requires more
interpretation of the log file for a web site,
interpretation that takes into account the structure of the
web site layout.

4.0 Log File Interpretation

In the previous section, the common types of statistics
generated from Web log files were described. These
statistics do not give information about how a visitor is
moving through the site, nor the areas of the site they
visit in a meaningful manner; e.g. the visitor came to
the home page then went to an article, read the first few
sections and downloaded the print version. This type of
information comes from closer inspection of the log
records in conjunction with knowledge of how the web
site is organized. To do this manually beyond looking at
a few examples would be impractical; however,
performing a manual analysis leads to an understanding
of the problem for an automated system.

In this section, aspects of interpretation of the log file
are presented: document clusters, user session, the
impact of caching and proxies, identifying whether the
visitor has been before. A description of a
canonicalization process based on the design of the site
is discussed, a process that can be used for faster
interpretation of visitor actions. This is all going
towards making a judgement of what the visitor is
doing.

In the next main section, the analysis discussion will
be broadened to identify classifications for
constituencies of users.

4.1 Document Clusters
The idea of viewing web documents as clusters is not
new, e.g. in work that has been directed at ways to
improve a user's browser (Pirolli, 1997, Pitkow and
Pirolli 1997). However, in this case, the documents are



4

located at a particular location, JIME. Such clusters are
site specific. A request for the JIME home page returns
a document (the file, index.html) which defines a frame
set. This frame set means further documents and
resources would normally be requested by the browser
in order to fill the frame set (exceptions are seen such as
those from certain Web crawlers which may just request
a single document, or the “HEAD” of the document for
indexing purposes.) This aspect of retrieving several
documents and resources is part of the user's browser
function to construct the web page for a user. The
documents and resources needed by the browser are
defined by the web site development. As a result, an
interaction with a web site can be viewed as collections
of log entries based on what file was initially requested.

The following list shows the set of documents
(HTML files) and resources (image files) that would be
requested by a conventional browser that requests the
JIME home page. These 16 files (the initial request of
index.html followed by 15 requests for further
documents and resources) would be requested by the
browser in order to complete the home page view. As
the browser can choose to assemble the page in
whatever way it wants after the initial request, the order
of the subsequent requests is not set.

/index.html
/jimelogosmall.html

 /contents.html
 /comments.html
 /banner.html
 /current.html

/resources/icons/jime-small-no-text.gif
 /resources/icons/kmi-button-small.gif

/resources/icons/help.gif
/resources/icons/new.gif

 /resources/icons/published.gif
/resources/icons/pre-print.gif

 /resources/icons/3-frame-icon.gif
 /resources/icons/2-frame-icon.gif
 /resources/icons/charlesworth.gif
 /resources/icons/d3e-icon.gif

This can be viewed as a single document “cluster”.
The cluster is composed of two parts; a set of unique
elements only associated with the document initially
requested, and a set of shared elements that can be used
in a number of documents. While any individual
document or resource can be requested as an individual
unit at any time, a cluster is usually requested. The
visitor will proceed through a web site using the links in
the view presented by the browser leaving log traces of
requests for the components making up a cluster. Sub-
sets of this cluster can be viewed as clusters too, e.g.
requesting the document “jimelogosmall.html” file
would result in two further files being requested (a
cluster of 3 all together):

/jimelogosmall.html
/resources/icons/jime-small-no-text.gif
/resources/icons/kmi-button-small.gif

This cluster is not interesting unto itself as it is a web
document holding two graphics. The document is used
in completing the JIME home page.

Observing document clusters in the server log file
can help interpret what a visitor was doing: looking at
the home page, then moving to another page via a link
from the home page. Some files are members of one or
more clusters (shared elements.) This is especially true
of resource files such as the small GIF images used in
many web documents. The use of shared elements can
help in identifying return visitors via the status codes
associated with them (discussed later.)

Such clusters can be condensed to save space and
allow for easier interpretation. However, as discussed in
the next few subsections, the cluster cannot be
compressed into a single entry without first inspecting
the cluster entries for information that would be lost.

4.2 User Session
As described above, the request to the JIME home page
will result in a maximum of 16 records in the log file.
Fewer records may occur due to browser cache settings,
and browsers set to not load images. The order of
records may change from request to request dependent
on the order the browser decides to request them.
However, the time between the first and last resource
will usually be a few seconds (unless the link is very
slow.) If the request is not followed by requests for the
remaining documents in a cluster, further information
about the visitor may be concluded (e.g. web crawler
activity.)

Ascertaining a user session is the first requirement to
then go on to make any judgment of what is happening.
In the early days of the Web when users were few, and
the vast majority of computers on the Internet had their
own IP number and host name, following an individual
in a log was reasonably easy. Today, that ease has
diminished and in future may well disappear. Two
things directly influence this; the use of IP allocation on
the fly (dynamic allocation), and sharing machines
(computer laboratories, cybercafes etc.) We need to
distinguish individual visitors from the log bearing in
mind these problems.

While a client’s machine is on-line, it will usually
have a specific IP number (and hostname perhaps.) This
is a unique identifier for the visitor for that present
moment. With the proliferation of dynamic IP, we
cannot guarantee that an IP (or host name) is from the
same machine if the time between records using that IP
is more than a few tens of minutes. Thus, we can only
conclude that a record is part of an ongoing visitor
session if the IP’s of subsequent records occur within a
certain time of the last record. If someone left their
machine for a while (coffee break, lunch,) then return to
carry on viewing, then this would be interpreted as a
new session.

A given IP may be for a computer used in a common
area (library, shared office, computer lab, café etc.). In
this case it must be assumed that the user conducts a
session over a period of time and that subsequent
records occur within a certain time of the last record
from that IP before having to conclude that there may



5

be a new user. The same conclusion can be drawn if a
hidden cookie is used – it only indicates the computer
has been used before to connect to the site.

Proxy machines are another problem for the idea of
distinct IP's per user. A proxy is a computer that acts as
a go-between between a client’s browser (machine) and
the actual server on which the web page resides. Proxies
are becoming more common where “firewall” style
security is in place, and in large networks (schools,
colleges, business) where caching is often performed by
the Proxies.

In past work (Manley and Seltzer, 1997), session
time limits have been set to a few tens of seconds as the
investigations were looking into server performance and
caching. One log analysis package (WebTrends
http://www.webtrends.com/) now gives a count of user
sessions based on a time set by the user of the analysis
package (the results are still defined in terms of the
conventional statistics described earlier.) The time set
must be determined from the type of site in use; a large
search site such as a Yahoo or Alta Vista may consider
a time of one or two minutes as a user session. In our
journal, 20 minutes appears a reasonable starting point,
a time ascertained from manual examination of random
sections of the JIME log.

4.3 Browser Caching and Proxies
Most web browsers now in use have the ability to keep
copies of pages recently visited locally in a “cache”. If a
browser is using caching, it will first look to see if the
page the user requested is in it’s own cache. If it is, it
looks at the date the page was stored there, then sends a
request to the server including the date of it’s cached
version. If the copy of the page on the server has not
been modified (or updated) since the date of the cached
version, the server will tell the client to use it’s local
copy (the status code 304 appears in the web log.) If a
newer version is on the server, the server copy is sent to
the client (status code 200 in the web log.) Thus, the
occurrence of a status code 304 can indicate that the
client browser has been used before to visit this site.

However, there are caveats. Browser caching can be
set to check once per session (cached material will only
be compared once in the current application session –
quit the application and start again to get another
check,) checked each time, or turned off. No caching
means all records show for every user action with a 200
status code. Once per session means 304 codes may
appear, and some actions won’t appear at all making it
appear the visitor jumps around the site (as they may go
back to a page already checked once, so no further
check occurs.) The browser is usually set to have a
cache size, so less frequently visited pages will
eventually be removed from the user’s cache. The time
to removal depends on how big the cache allocation is,
and the amount of use the browser gets. Once removed
from the cache, the interaction with the server will look
like a new request. This will be a problem for
infrequent visitors.

The use of the “back” button, history lists, and the
“Reload” button on browsers also has similar effects.
The back button and history list usually leaves no

record (even if caching is set to “every time” in
Netscape.) The use of these can result in what appears
to be a jump in the log record for a given visit session.
Adding various “buttons” to the web page may only
help (if they’re used) in the no cache set, or cache set to
“every time” states.

The use of a Proxy server by a user can also present
problems in that the record may only show the IP or
host name of the proxy server. This could result in
confusing session records if two or more local users of
the proxy server were viewing the web site at the same
time. The proxy server will pass along “last modified”
requests to see if it has to update it’s own version and if
it’s set to check at each local request. They can also be
set to only look after certain periods of time, though this
is not usually the case.

The example log trace shown in figures 1, 2 and 3
illustrates how the use of the cache in the browser
affects the records put into the log file (commas are
used instead of white space as the field separator in this
example.) The browser is set to check once per session.
In this trace, the visitor works from the home page to
visit two articles (noted “murray” and “fischer”) and
download the PDF file of each article. This is an
example of a user interested in hardcopies. In figure 1,
the 16 records associated with the home page request
are shown.

In figure 2, the visitor moves to the “murray” article.
The user has their cache set to “once per session” as a
number of the files, e.g. “jimelogosmall.html”, do not
appear in the set of files requested even though it’s
required to form the article page. Thus the files are now
held in the visitor’s browser cache. After receiving the
11 records associated with the “murray” article page,
the visitor moves to the PDF page, a cluster of 3
documents.
 In figure 3, the visitor now does the same process to
get the “fischer” article PDF file. The jump from
“murray.pdf” (end of figure 2) to “fischer.html” (start of
figure 3) is a result of the user going back to the home
page via the history list in the browser. Notice again the
GIF files that came with the “murray” set of downloads
are not present in the “fischer” set even though they are
used in rendering the various “fischer” pages; they are
in the cache. After downloading this cluster, the visitor
goes on to the PDF page resulting in another cluster of
4 entries (note the htmlicon.gif file appears again –
sometimes the browsers don’t get it right!)



6

IP,-,-,[21/Apr/1998:21:45:11+0100],GET,/jime/,HTTP/1.0,200,3347
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/banner.html,HTTP/1.0,200,311
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/comments.html,HTTP/1.0,200,256
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/contents.html,HTTP/1.0,200,1093
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/current.html,HTTP/1.0,200,16391
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/jimelogosmall.html,HTTP/1.0,200,513
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/3-frame-icon.gif,HTTP/1.0,200,303
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/help.gif,HTTP/1.0,200,686
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/jime-small-no-text.gif,HTTP/1.0,200,2193
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/kmi-button-small.gif,HTTP/1.0,200,1825
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/new.gif,HTTP/1.0,200,72
IP,-,-,[21/Apr/1998:21:45:12+0100],GET,/jime/resources/icons/pre-print.gif,HTTP/1.0,200,571
IP,-,-,[21/Apr/1998:21:45:13+0100],GET,/jime/resources/icons/d3e-icon.gif,HTTP/1.0,200,1341
IP,-,-,[21/Apr/1998:21:45:13+0100],GET,/jime/resources/icons/published.gif,HTTP/1.0,200,543
IP,-,-,[21/Apr/1998:21:45:15+0100],GET,/jime/resources/icons/2-frame-icon.gif,HTTP/1.0,200,327
IP,-,-,[21/Apr/1998:21:45:16+0100],GET,/jime/resources/icons/charlesworth.gif,HTTP/1.0,200,10736

Figure 1: The 16 records resulting from the Home Page request

IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/banner.html,HTTP/1.0,200,501
IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/bubble.html,HTTP/1.0,200,687
IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/contents.html,HTTP/1.0,200,2448
IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/murray-01.html,HTTP/1.0,200,1816
IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/murray.html,HTTP/1.0,200,1230
IP,-,-,[21/Apr/1998:21:45:25+0100],GET,/jime/98/murray/references.html,HTTP/1.0,200,6330
IP,-,-,[21/Apr/1998:21:45:26+0100],GET,/jime/resources/icons/large-bubble.gif,HTTP/1.0,200,1616
IP,-,-,[21/Apr/1998:21:45:26+0100],GET,/jime/resources/icons/next.gif,HTTP/1.0,200,415
IP,-,-,[21/Apr/1998:21:45:26+0100],GET,/jime/resources/icons/pdficon.gif,HTTP/1.0,200,224
IP,-,-,[21/Apr/1998:21:45:26+0100],GET,/jime/resources/icons/printer.gif,HTTP/1.0,200,2211
IP,-,-,[21/Apr/1998:21:45:27+0100],GET,/jime/resources/icons/feedback.gif,HTTP/1.0,200,1227
…..
…..
…..
IP,-,-,[21/Apr/1998:21:51:03+0100],GET,/jime/98/murray/murray-pdf.html,HTTP/1.0,200,705
IP,-,-,[21/Apr/1998:21:51:18+0100],GET,/jime/resources/icons/htmlicon.gif,HTTP/1.0,200,187
IP,-,-,[21/Apr/1998:21:55:44+0100],GET,/jime/98/murray/murray.pdf,HTTP/1.0,200,56693

Figure 2: A request for “murray” follows, then the request for the PDF.

IP,-,-,[21/Apr/1998:22:01:08+0100],GET,/jime/98/fischer/fischer.html,HTTP/1.0,200,1205
IP,-,-,[21/Apr/1998:22:01:09+0100],GET,/jime/98/fischer/banner.html,HTTP/1.0,200,521
IP,-,-,[21/Apr/1998:22:01:09+0100],GET,/jime/98/fischer/bubble.html,HTTP/1.0,200,690
IP,-,-,[21/Apr/1998:22:01:09+0100],GET,/jime/98/fischer/contents.html,HTTP/1.0,200,3587
IP,-,-,[21/Apr/1998:22:01:09+0100],GET,/jime/98/fischer/fischer-01.html,HTTP/1.0,200,2341
IP,-,-,[21/Apr/1998:22:01:09+0100],GET,/jime/98/fischer/references.html,HTTP/1.0,200,13965
……
……
……
IP,-,-,[21/Apr/1998:22:01:16+0100],GET,/jime/98/fischer/fischer-pdf.html,HTTP/1.0,200,834
IP,-,-,[21/Apr/1998:22:01:16+0100],GET,/jime/resources/icons/colour.gif,HTTP/1.0,200,1306
IP,-,-,[21/Apr/1998:22:01:16+0100],GET,/jime/resources/icons/htmlicon.gif,HTTP/1.0,200,187
IP,-,-,[21/Apr/1998:22:01:32+0100],GET,/jime/98/fischer/fischer.pdf,HTTP/1.0,200,280414

Figure 3: Next, the request for “fischer”, then the associated PDF.



7

4.4 Status Codes – What Do They Indicate
In the earlier description of the syntax of a record in the
log file, the status code was described as the “result
code from the server on completing the request.” There
are a number of code numbers returned which are
specified in the HTTP protocol. Some denote errors,
others redirects. They will not be discussed here. For
the particular need to trace visitors, two codes are of
interest: 200 meaning the request was accepted and the
file returned, and 304 which means the request was
accepted, but the browser already has a copy of the file
to use (see the earlier section on caching.)

As noted in the previous section, if a browser uses
caching, and a copy of the requested file is in the cache,
the browser will send an "if-modified-since date"
request to the server. If the server copy of the file is
newer, the file is sent back and a status 200 logged. If
the server copy is as old as the cached version, a 304 is
returned so the browser can use the local copy. One
problem this highlights is the fact the use of the "if-
modified-since" request results in a 200, web servers do
not automatically log the fact the "if-modified-since"
request was made. This is unfortunate due to the fact
that if the request was made, it is an indication that the
user has visited the web site before.

There are a number of conclusions that can be
deduced from the log entries and their status codes for a
given cluster:

1. A 304 status code within a cluster can indicate   if
the visitor has been to the site before. Some resources
are common to a number of web pages and even if the
visitor appears to be new to the current session or
request, the appearance of the 304 on a common file
indicates that other parts of JIME have been visited in
the past.

2. A 304 along with some files not appearing in the
list (or 200 code with files missing as in the cache
section example earlier) would indicate the browser has
caching set to “once per session” and the
pages/resources not requested are already cached. Thus
a record of what proportion of all the files associated
with a record set were requested is useful.

3. At each main transition (home page to article,
article to home page etc.,) if all the records are present
and the status codes are 304’s, the browser is set to
check the cache version against the server “every time.”
Thus if 304’s are recorded and all the required files
were downloaded at every main transition (the previous
two checks above,) we have a cache set to “every time”.

4. One browser setting that can affect such judgments
is if “image loading” is turned off. If no GIF files are
requested during a session where the related HTML
pages are all status 200 (or a mix of 304 and 200), it can
be concluded that image loading is off. (One odd case is
the reload in Netscape – the first reload of a page will
bring all HTML and GIF files. A second and any
subsequent reloads produce a set of requests for just the
HTML files.) So, in order to know if the “image
loading” is off, we need to check if all the GIF files are
requested for each web page cluster. If they’re not

requested over the whole session, then image loading is
probably off.

4.5 Canonicalization
In the discussion on document clusters above, it was
stated that a set of log file entries could be condensed to
an entry representing a document cluster. However, as
the discussions on user sessions, proxies and status
codes illustrate, there is further information that can be
extracted from interpretation of the log entries for a
document cluster, information that should be retained in
any canonicalization process. This process is a form of
protocol analysis (Anderson et. al. 1984). Thus, an
automated canonicalization process needs to be able to
interpret document clusters for a given web site.

The canonicalization is unique to a web site as it is
determined by the clustering of documents based on
knowledge of the site layout. An automated agent
performing the canonicalization process in an
autonomous way would need initial cluster information,
and input about new clusters not seen before (when new
pages area added to the site.) It will need an interface
such that the web site manager can impart such
knowledge. If a knowledge base exists that describes
the main features of the web site, then the
canonicalization agent may well be able to derive the
information it needs on how to cluster based on that
knowledge.

While we could argue that we don't need a
canonicalization step if we fully automate log file
interpretation, it does give us an intermediate form that
is understandable to the human reader and against
which fully automated interpretation can be compared.
It also provides a human readable view of navigation
through the site that can be used in identifying problem
areas in the site; e.g. highlighting where navigation
options on a page are not being used.

5.0 Constituencies for Users

Discussions in previous sections have covered the
interpretation of a web site log file with specific
examples from the JIME log. While the discussion has
been limited to the JIME log, the approach would apply
to any information repository at which a trace of
interaction (a log) is available. The next step is to
identify higher packets of information associated with
the trace of interactions. This is the identification of
constituencies to which users can be associated during
their visit. The following examples show some
constituencies identified from the JIME log. As these
come from a manual analysis, they are simple to start
off with.

Based on these examples, one can go through the
web log for JIME and classify many of the user sessions
to one, or more, of these constituencies. Note the "or
more" as a visit may appear in one constituency at first,
but as the session progresses, the visitor's actions may
well place them into a new constituency. Constituencies
themselves can overlap, or even be sub-sets of others.
While the examples indicate constituencies of actions, it
is hoped that the integration of identification with



8

knowledge of the content of the site will produce
further constituencies. Once identified, the goal is to
develop mechanisms that will allow new visitors to be
matched to a constituency profile by their navigation of
the site, and site features or content recommended to
them as a result, effectively producing a recommender
system.

5.1 Androids (Robot Check)
The web has many crawlers scouring the web for
documents to index into search databases, e.g.
AltaVista, Yahoo. They often have crawlers checking
for updated materials. Some of these crawlers can be
recognized as automated robots thus coming under this
heading, but others may appear more “user” like and be
classified in another way e.g., as “Anything New?”.

The examples below from JIME are derived based on
the interpretation discussed earlier. Some examples of
robot action are requests for the robots.txt file held on
the server:

superewe.searchuk.com,-,-,[21/Apr/1998:12:04:17+0100],
GET,/robots.txt,HTTP/1.0,200,94

These “robots” may also download other files to update
their databases. The robots.txt file contains a list of
directories the robot should not bother with (helps
search engines be guided on a site,) but some people (a
very small number) do use them to then check what
they can get to. There are also those automated systems
that use the “HEAD” HTTP request method. This asks
the server to send back just the HEAD section of an
HTML file where keywords may be stored for indexing.
This also allows the requester to get the date of the file
to see if it needs to update it’s local version (automated
proxy system.)

What is common to these entries (both HEAD and
requests to robots.txt) is that they are usually single line
entries in the log (at least single line with long time
periods before another appearance.)

Others can be recognized from the way requests are
made. The following (scooter3.av.pa-x.dec.com) is one
of the crawlers for the AltaVista search engine. Here,
we can see that it usually requests just one, or perhaps
two files at a time with quite long periods of time
between these short requests. The requested files will
not always be in the same document cluster, and
connected files are not requested soon after. These
crawlers act in this manner to keep their impact on web
sites to a minimum.

scooter3.av.pa-x.dec.com,-,-,[20/Apr/1998:20:32:23+0100],
GET,/jime/03/demo/slides-simple.html,HTTP/1.0,200,8020

scooter3.av.pa-x.dec.com,-,-,[20/Apr/1998:20:32:46+0100],
GET,/jime/02/java/isvl-1.html,HTTP/1.0,200,4613

scooter3.av.pa-x.dec.com,-,-,[20/Apr/1998:22:01:53+0100],
GET,/jime/me-sim/me-sim-16.html,HTTP/1.0,200,3151

5.2 Anything New?
Visitors who come to the site home page only and
download the document cluster associated with the
home page and do nothing further. The JIME home

page contains the “current.html” file that is a list of the
articles available. Thus a visit to just the home page
only may indicate someone checking for new articles,
or a request from a broker service to see if their clients
need notification of an update to the page. The
occasional request for the HEAD of the current.html is
a way to check the date of the file for it’s last update
and to collect any metadata that may be in the header of
the file.

5.3 What’s JIME then? (New visitor)
The first-time visitor to JIME will often look at the
pages about JIME itself; the aims page, background,
designers, etc. They may go to look at some abstracts
just before or after looking at these pages. This reader
often looks like an “abstract reader” except for the
jumps into these JIME description pages.

5.4 Abstracts Only
These readers will often visit one or two articles usually
just requesting the main (abstract) page of the article
(reached from the home page.) They may move to the
first section of an article, the introduction in most, but
will then move back to the home page or to another
article, perhaps spending only seconds on some
abstracts and longer on others. Having come to JIME
out of general interest, they are now searching for more
specific interest items.

5.5 On-Line Reader
In figure 4, an example of an on-line reader is given.
These visitors start out like an abstract reader, but will
then move on to further sections of an article, and may
move between non-adjacent sections (using the table of
contents rather than the next-previous buttons.) They
usually are around for quite a while overall, and may
jump back and forth between two or three articles.

In the record shown in figure 4, some of the lines
associated with document clusters have been removed
to make it easier to see (the start of canonicalization.)
Initially, the reader jumps between a few articles only
going to one or two sections (like an “abstract reader”.)
Later on, they visit the East/West special issue editorial,
and then start to move between two articles
(“repenning” and “fischer”) plus the editorial over a
period of about an hour. Thus the reader is spending
time on sections of the articles comparing perhaps,
along with jumps back to the editorial. The total time of
the session is about 1.5 hours.

5.6 Demo Fiend
A visitor to the JIME site who seems to have a
particular interest in looking at the on-line
demonstrations. Visits may come via the home page, or
direct to an article with a demonstration, and sometimes
directly to a demonstration. Coming directly to the
demonstration would probably be the result of using a
bookmark, a recommendation. It is interesting to
observe visitors fitting this grouping, perhaps the
embedding of interactive components into a journal
article intrigues them.



9

IP,-,-,[21/Apr/1998:19:30:05+0100],GET,/jime/,HTTP/1.0,200,3347
…. Requested home page…
IP,-,-,[21/Apr/1998:19:32:02+0100],GET,/jime/98/fischer/fischer-t.html,HTTP/1.0,200,1369
…. Moves to article by “Fischer”…
IP,-,-,[21/Apr/1998:19:32:33+0100],GET,/jime/98/fischer/fischer-03.html,HTTP/1.0,200,7406
…. Moves to section 3…
IP,-,-,[21/Apr/1998:19:33:21+0100],GET,/jime/me-sim/me-sim-t.html,HTTP/1.0,200,1179
….Moves to article “me-sim”… (and views sections 3 and 4 – omitted)
IP,-,-,[21/Apr/1998:19:34:56+0100],GET,/jime/02/jime-02-t.html,HTTP/1.0,200,1392
….Move to article 02 “isvl” … (and views sections 2 and 7 – omitted)
IP,-,-,[21/Apr/1998:19:35:59+0100],GET,/jime/www-structure/www-structure.html,HTTP/1.0,200,1026
….Moves to “www-structure” article.. (and views sections 2 and 3 – omitted)
IP,-,-,[21/Apr/1998:19:37:10+0100],GET,/jime/98/repenning/repenning.html,HTTP/1.0,200,1249
….Moves to “repenning” article..
IP,-,-,[21/Apr/1998:19:38:46+0100],GET,/jime/98/repenning/repenning-02.html,HTTP/1.0,200,10399
….section 2..
IP,-,-,[21/Apr/1998:19:40:36+0100],GET,/jime/98/repenning/repenning-03.html,HTTP/1.0,200,7313
….section 3..
IP,-,-,[21/Apr/1998:19:43:57+0100],GET,/,HTTP/1.0,200,3347
….back to the home page..
IP,-,-,[21/Apr/1998:19:46:02+0100],GET,/98/bondaryk/bondaryk.html,HTTP/1.0,200,1237
….to the “bondaryk” article..
IP,-,-,[21/Apr/1998:19:46:44+0100],GET,/conferences/icde97/icde97.html,HTTP/1.0,200,11342
….conference report..
IP,-,-,[21/Apr/1998:19:48:33+0100],GET,/jime/98/repenning/repenning-02.html,HTTP/1.0,200,10399
….back to “repenning”, section 2..
IP,-,-,[21/Apr/1998:19:56:40+0100],GET,/jime/98/ew-editorial/ew-editorial.html,HTTP/1.0,200,1260
….and to the East/West editorial..
IP,-,-,[21/Apr/1998:19:59:01+0100],GET,/Reviews/get/repenning-reviews/26/2.html,HTTP/1.0,200,8550
….Moves to a review comment in “repenning” (so went back to “repennning” again)..
IP,-,-,[21/Apr/1998:19:59:08+0100],GET,/Reviews/get/bondaryk-reviews/3/1.html,HTTP/1.0,200,8907
….And then to the review debate for “bondaryk”…
IP,-,-,[21/Apr/1998:20:00:26+0100],GET,/jime/98/ew-editorial/ew-editorial-10.html,HTTP/1.0,200,3457
…. returning to the editorial
IP,-,-,[21/Apr/1998:20:00:43+0100],GET,/Reviews/get/ritter-reviews/8.html,HTTP/1.0,200,8156
….then a look at “ritter” reviews (suggested via the editorial)..
IP,-,-,[21/Apr/1998:20:01:08+0100],GET,/jime/98/fischer/fischer.html,HTTP/1.0,200,1205
….then returning to “fischer”...
IP,-,-,[21/Apr/1998:20:02:53+0100],GET,/jime/98/fischer/fischer-02.html,HTTP/1.0,200,3714
….section 2..
IP,-,-,[21/Apr/1998:20:11:44+0100],GET,/jime/98/fischer/fischer-11.html,HTTP/1.0,200,17841
….section 11..
IP,-,-,[21/Apr/1998:20:12:03+0100],GET,/jime/98/fischer/fischer-12.html,HTTP/1.0,200,3655
….section 12..
IP,-,-,[21/Apr/1998:20:13:51+0100],GET,/jime/98/repenning/imgs/paper506.gif,HTTP/1.0,304,-
….now a check of “repenning” again (via a single image request)..
IP,-,-,[21/Apr/1998:20:16:14+0100],GET,/Reviews/get/ritter-reviews/8.html,HTTP/1.0,200,8156
….check that “ritter” review again..
IP,-,-,[21/Apr/1998:20:16:35+0100],GET,/98/repenning/repenning-11.html,HTTP/1.0,200,6641
….and back to “repenning”...
IP,-,-,[21/Apr/1998:20:16:47+0100],GET,/jime/98/ew-editorial/ew-editorial-06.html,HTTP/1.0,200,9631
….then back to the editorial…(and so on for another 40 minutes.)

Figure 4: The movement of an on-line reader.



10

5.7 Traditional Paper Reader
This visitor comes to the site, finds an article of interest,
and then downloads the PDF file of the article and
leaves. The example in section 4 shows how a visitor
went to the PDF download area for two papers,
“murray” and “fischer”. This is important to observe in
JIME as it gives an indication of someone wanting to do
more reading. Of course, we now loose the information
related to how they read the articles.

6.0 Summary

The present methods of web log analysis produce very
limited information about the use of a web site. In many
cases, more information about the type of use is desired,
yet to extract such information requires much work in
log interpretation. Little appears to have been done in
this area as efforts have gone into work helping
individuals use the Web more effectively. For those
designing, organizing and maintaining a web site, there
is little to help beyond getting various "hits" style
analyses.

In this paper, I have presented a pathway to analyzing
a web log that can give more useful information for
those maintaining a site. The canonicalization process
described is used to observe navigation of the archive. It
can also help highlight design flaws, problems with the
interface where parts are not used.

Automation of the canonicalization process requires
knowledge of the site layout being available to the
automatic process. An autonomous system doing
canonicalization needs information to determine the
clustering needed. The information can come from the
administrator or from other site systems, e.g. from a
knowledge base about the site. An agent that works on
canonicalization with interfaces to qualitative and
quantitative outputs can help in administering a site.
Part of the automation would be to link it to knowledge
about the site to reduce the amount of time needed to
work directly with a site administrator.

At a higher level is the identification of
constituencies of users from the observation of use of
the site. Again, this is tied into knowledge of the layout
of the site, and the content of documents. Once in place,
the goal is to have a system that can observe a visitor,
make a judgement to what constituency they may
belong (at any given moment,) and present other items
on the site that may be of interest to a user fitting the
constituency profile. This can be viewed as a
recommender system based on constituency profiles
and knowledge of the site layout and content.

In the introduction it was noted that JIME does not
maintain individual user profiles. With the increase in
broker services, the exchange of user profile
information will probably become an important area for
users of the Web. At the individual site where profiles
are not kept, receiving information with a request would
augment the processes outlined in this paper.

References

Anderson, J.R.,; Farrell, R.; and Sauers, R. (1984). Learning
to Program in LISP. In Cognitive Science 8:87-129

Balabanovic, M.; and Shoham, Y. (1997). Fab: Content-based,
Collaborative Recommendation. In Communications of the
ACM, 40(3), 66-72, ACM Press.

Domingue, J.; and Motta, E. (1999). A Knowledge-Based
News Server Supporting Ontology-Driven Story Enrichment
and Knowledge Retrieval. Submitted to 1 1

th
 European

Workshop on Knowledge Acquisition, Modelling, and
Management (EKAW ’99).

Ferreira, J.; Borbinha, J.L.; and Delgado, J. (1997). Using
LDAP in a Filtering Service for a Digital Library. In ECRIM
Workshop Proceedings No. 98/W001 of the 5

th
 DELOS

Workshop on Filtering and Collaborative Filtering. The
European Research Consortium for Inormatics and
Mathematics.

Guo, H.; Kreifelts, T.; and Voss, A. (1997). SOaP: Social
Filtering through Social Agents. In ECRIM Workshop
Proceedings No. 98/W001 of the 5

th
 DELOS Workshop on

Filtering and Collaborative Filtering. The European Research
Consortium for Inormatics and Mathematics.

Kautz, H.; Selman, B.; and Shah, M. (1997). ReferralWeb:
Combining Social Networks and Collaborative Filtering. In
Communications of the ACM, 40(3), 63-65, ACM Press.

Lieberman, H. (1997). Autonomous Interface Agents. In
Proceedings of CHI 1997, 67-74, ACM Press

Manley, S.; and Seltzer, M. (1997). Web Facts and Fantasy. In
Proceedings of the 1997 USENIX Symposium on Internet
Technologies and Systems, Monterey, CA.

Pirolli, P. (1997). Computational Models of Information
Scent-Following in a very large browsable text collection. In
Proceedings of CHI 1997, 3-10, ACM Press

Pitkow, J.; and Pirolli, P. (1997). Life, Death, and Lawfulness
on the Electronic Frontier. In Proceedings of CHI 1997. 383-
390, ACM Press

Recker, M.; and Pitkow, J. (1996). Predicting Document
Access in Large Multimedia Repositories. In ACM
Transactions on CHI, 3(4):352-375, ACM Press

Resnick, P; and Varian, H.R. (1997). Recommender Systems.
In Communications of the ACM, 40(3), 56-58, ACM Press.

Rucker, J.; and Polanco, M.J. (1997). SiteSeer: Personalized
Navigation for the Web. In Communications of the ACM,
40(3), 73-75, ACM Press.

Sarwar, B.M.; Konstan, J.A.; Borchers, A.; Herlocker, J.;
Miller, B.; and Riedl, J. (1998). Using Filtering Agents to
Improve Prediction Quality in the GroupLens Research
Collaborative Filtering System. In Proceedings of Computer
Supported Cooperative Work (CSCW98), 345-354, ACM
Press

Tauscher, L.; and Greenberg, S. (1997). Revisitation Patterns
in World Wide Web Navigation. In Proceedings of CHI 1997,
399-406, ACM Press.

Terveen, L.; Hill, W.; Amento, B.; McDonald, D.; and Creter,
J. (1997). PHOAKS: A System for Sharing
Recommendations. In Communications of the ACM, 40(3),
59-62, ACM Press.


