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Abstract

This paper introduces a Bayesian method for unsupervised clustering of
dynamic processes and applies it to the abstraction of sensory inputs of a
mobile robot. The method starts by transforming the sensory inputs into
Markov chains and then applies an agglomerative clustering procedure to
discover the most probable set of clusters capturing the robot’s experi-
ences. To increase efficiency, the method uses an entropy-based heuristic
search strategy.
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1. Introduction

This paper presents a Bayesian algorithm for clustering by dynamics. Suppose one has a batch
of univariate time series generated by one or more unknown processes, and the processes have
characteristic dynamics. Clustering by dynamics is the problem of grouping time series into clusters
so that the elements of each cluster have similar dynamics. Suppose a batch contains a time series
of stride length for every episode in which a person moves on foot from one place to another.
Clustering by dynamics might find clusters corresponding to “ambling,” “striding,” “running,” and
“pushing a shopping cart,” because the dynamics of stride length are different in these processes.
Similarly, pathologies of the heart can be characterized by the patterns of sistolic and diastolic
phases; dance steps, hand gestures and facial expressions can be characterized by the dynamics of
movement of body parts [Johansson, 1973]; economic states such as recession can be characterized
by the dynamics of economic indicators; syntactic categories can be categorized by the dynamics of
word transitions [Charniak, 1993]; and so on.

The goal of this work is to enable mobile robots to learn the dynamics of their activities. Our
algorithm learns Markov chain (MC) representations of the dynamics in time series and then clusters
these time series by their dynamics to learn prototype experiences. For example, our robot has
learned prototype experiences that correspond to passing an object and moving toward an object.
It is important to the goals of our project that the robot’s learning should be unsupervised, which
means we do not tell our algorithm which Markov chains, clusters and prototypes to learn.

A MC represents a dynamic process as a transition probability matrix. For each experience the
robot has, we construct one such matrix for each sensor. Each row in the matrix represents a state
of the sensor, and the columns represent the probabilities of transition from that state to each other
state of the sensor on the next time step. The result is a set of conditional probability distributions,
one for each state of the sensor, that can be learned from the past experiences of the agent. After k
experiences, the robot has learned k transition matrices for each sensor. Next, a Bayesian clustering
algorithm groups experiences that produce similar transition probability matrices. Each group is
then characterized by its average or prototypical dynamics. The learned model of dynamics enables
the agent to classify its current experience by computing the probability of an experience being in
a particular cluster given sensor readings, and to predict future experiences, conditional on current
input and cluster membership.

While there are similarities between this problem and learning Hidden Markov Models (HMMs),
this problem is different and somewhat simpler. An HMM has one probability distribution for
the symbols emitted by each state, and also a matrix of probabilities of transitions between states
[Rabiner, 1989]. In our problem we fit a fully observable Markov model to each episode and then
we search for a partition of these models into clusters that maximizes the likelihood of the data.
Thus our algorithm is more closely related to other approaches to clustering by dynamics, such
as [Smyth, 1997, Rosenstein and Cohen, 1998], than it is to HMMs.

A Bayesian approach is particularly well suited to clustering by dynamics because it frames
the learning process as continuous updating rather than a batch analysis of data. Furthermore, a
Bayesian approach provides a principled way to integrate prior and current evidence. As our robot
gains more experience (i.e., as its “prior” knowledge increases) it requires proportionately more
evidence to modify or discount its prior conclusions.

The rest of the paper is organized as follows. After reviewing background material on MCs, we
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describe how to induce the transition probability matrix of a MC from sensor readings, and then
describe a Bayesian clustering algorithm to sequentially merge similar MCs induced by episodes.

2. The Robot Platform

The Pioneer 1 robot is a small platform with two drive wheels and a trailing caster, and a two degree
of freedom paddle gripper. For sensors the Pioneer 1 has shaft encoders, stall sensors, five forward
pointing and two side pointing sonars, bump sensors, a pair of IR sensors at the front and back of its
gripper, and a simple vision system that reports the location and size of color-coded objects. Our
configuration of the Pioneer 1 has roughly forty sensors, though the values returned by some are
derived from others.

3. Markov Chains

The dynamics of a sequence of sensory values can be modeled by a Markov Chain (Mc). The sensor
X is regarded as a random variable taking values 1,2, ...,s. The process generating the sequence
T = (2o, T1,T2,-, Ti—1,Ti,-.) I8 & MC if p(X = z¢|(20, 21,22, ..., T¢—1)) = p(X = z4|21_1) for any
z¢ in z. Let X; be the variable representing the sensor values at time ¢, then X; is conditionally
independent of Xy, X1, ..., X;_2 given X;_;. The assumption of conditional independence allows us
to represent a MC by a vector of probabilities po = (po1, Po2, -, Pos), denoting the distribution of X,
(the initial state of the chain) and a matrix of transition probabilities:

X
Xt—l 1 2 T S
1 Puu P12 - Pis
P = (pl]) = 2 p21 p22 e p2s
s Ds1 Ds2 e Dss

where p;; = p(X; = j|X¢—1 = 7). By using the Chapman-Kolmogorov Equations [Ross, 1996], the
expected value of X; is poP? which, for increasing values of ¢, gives the average sequence.

4. Discovering Markov Chains

During its interaction with the world, the robot records the values of about 40 sensors every 1/10 of
a second. In an extended period of wandering around the laboratory, the robot will engage in several
different activities — moving toward an object, losing sight of an object, bumping into something
— and these activities will have different sensory signatures. Because we insist that the robot’s
learning is unsupervised, we do not tell the robot which activities it is engaging in, or even that it
has switched from one activity to another. Instead we define a simple event marker — simultaneous
change in three sensors — and we define an episode as the period between event markers. For each
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episode in each sensor, we build a transition matrix and then we cluster transition matrices with
similar dynamics.

4.1 Learning A Markov Chain

Suppose the robot has generated a sequence of values from the sensor X for one episode. This
sequences can be summarized into a sXx s contingency table that contains the frequencies of transitions
niy; = n(Xi—1 =1 — Xy = j). These counts are used to estimate the transition probabilities p;;
characterizing the dynamic process that generated the data.

An intuitive way to estimate p;; is to use the relative frequencies of transitions n;; /n;. In this
way, the probability of the transition X; ; =i — X; = j, that we will denote as i — j, is estimated
as the ratio between the number n;; of times the transition has been observed and all observations
on the variable in state ¢, that is, n; = > ;Mg This estimate is a function of the data only and
there may be other sources of information about the process. Furthermore, this method estimates
the transition probability p;; as 0 whenever n;; = 0. Thus, when the chain is observed over a
relatively short time interval, or a transition probability is small, it is very easy to conclude that
some transition is impossible. A Bayesian estimation of p;; overcomes this problem as well as using
any prior knowledge about the process. This is achieved by augmenting the observed frequencies n;;
by hyper-parameters o;; that encode the prior knowledge about the process in terms of imaginary
counts of a sample of size @. The Bayesian estimate of p;; is

. Qij + N
o g T Tty 1
Pij o; +n; ( )
where o; = Zj o;;. By writing Equation 1 as
i e T
=" % Tu T (2)

a; o;+n; Ny o+ N
we see that p;; is an average of the estimate n;;/n; and of the quantity o;;/a; with weights that
depend on ¢; and the sample size n;. Rewriting of Equation 1 as 2 shows that a;;/a; is the estimate
of p;; when the data set does not contain transitions from the state i — and hence n;; = 0 for all j
— and it is therefore called the prior estimate of p;; while p;; is called the posterior estimate. It can
be shown that the variance of the prior estimate a;;/a; is given by (ay;/0)(1 — auj/0s) /(0 + 1)
and, for fixed /0y, the variance is a decreasing function of ;. Since small variance implies a large
precision about the estimate, a; will be called the local precision about the conditional distribution
X¢|X:—1 = i and it indicates the level of confidence about the prior specification. The quantity
a = ), o; is the global precision, as it accounts for the level of precision of all the s conditional
distributions.

Equation 2 shows the trade-off between the intuitive estimate n;;/n; and prior estimate a;;/a;:
as the sample size n; becomes large, relative to a;, the estimate p;; will approach n;;/n; and the effect
of the prior input is overcome by data. However, when q; is large, relative to n;, the effect of the prior
input is dominating. Note that the variance of the posterior estimate p;; is p;;(1 — Ps;)/ (0 +n; + 1)
and, for fixed py;, it is a decreasing function of a; + n;, the local precision augmented by the sample
size n;. Hence, the quantity a; + n; can be taken as a measure of the confidence in the estimates:
the larger the sample size, the stronger the confidence in the estimate.
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Ezxample. The table below reports the frequencies of transition observed in an episode of 296
readings for the sensor vis-a-x, which represents the horizontal location of an object in the visual
field. The sensor returns continuous values in the range -140, 140. We discretized these values into
5 equally spaced bins labeled 1 to 5.

1 2 3 4 5
110 0 O 0 0
2(0 0 0 0 0
310 0 2280 2 0
40 0 1 50 2
50 0 0 1 11

With a prior global precision @ = 25 and a uniform prior probability distribution, the learned tran-
sition matrix is:

1 2 3 4 )
0.20 020 0.20 0.20 0.20
0.20 020 0.20 0.20 0.20
0.00 0.00 0.99 0.01 0.00
0.00 0.00 0.02 0.93 0.05
0.02 0.02 0.02 0.09 0.86

Gt LN

This matrix represents (to those of us familiar with the robot and its activities) an episode in which
an object was in the visual field but not near the robot (the values 3, 4 and 5 represent the range
-28,140.) The high confidence on the distributions of transitions from state 3 and 4 (respectively
230 and 53 derived from the sample sizes ng and n4) essentially rules out the possibility that either
states 1 or 2 can be reached from 3 and 4. However, the small number of transitions observed from
state 5 (ns = 12) does not rule out the possibility of transitions from 5 to either 1, 2 or 3, and the
lack of information about transitions from states 1 and 2 results in these transitions getting uniform
probabilities with a large uncertainty.

A summary of the induced McC is in Figure 1 in which dotted paths represent rare transitions
and the dashed paths from states 1 and 2 represent unknown transitions.

4.2 Clustering

The second step of the learning process is an unsupervised agglomerative clustering of MCs on the
basis of their dynamics. The available data is a set S = {5;} of m episodes (not necessarily of the
same length) for each sensor and each episode is supposed to be generated by a MC. The task of
the clustering algorithm is two-fold: find the set of clusters that gives the best partition according
to some measure, and assign each MC to one cluster. A partition is an assignment of MCs to clusters
such that each episode belongs to one and only one cluster.

The novelty of our approach is to regard the task of clustering MCs as a Bayesian model selection
problem. In this framework, the model we are looking for is the most probable way of partition
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Figure 1: Markov Chain induced from data. Dotted lines represent rare transitions and dashed lines
unknown transitions.

MCs according to their similarity given the data. We will use the posterior probability of a partition
given the data as scoring metric to assess its goodness of fit and we will select the most probable
model, that is, the model with maximum posterior probability given the data.

There is then the problem of mapping each episode to one cluster. We regard a partition as
a hidden discrete variable C, where each state of C represents a cluster of MCs. The number ¢ of
states of C' is unknown, but the number m of MCs to be clustered imposes an upper bound, as ¢ will
never exceed m. Each partition identifies a model M.. Let p(M,) be the prior probability of M..
By Bayes’ Theorem, the posterior probability of M., given the sample S is

o p(Mc)p(SlMc)

p(S)
The quantity p(S) is the marginal probability of the data. Since we are comparing all the models
over the same data, p(S) is constant and, for the purpose of maximizing p(M.|S), it is sufficient to
consider p(M.)p(S|M.). Furthermore, if all models are a priori equally likely, the comparison can
be based on the marginal likelihood p(S|M.), which is a measure of how likely the data are if the
model M, is true.

The quantity p(S|M.) can be computed from the marginal distribution (pg) of C and the condi-
tional distribution (pgi;) of X¢|X¢—1 = i,Cy — where Cj, represents the cluster membership of the
transition matrix of X¢|X;_; — using a well-known Bayesian method [Cooper and Herskovitz, 1992].
Let ngi; be the observed frequencies of transitions i — j in cluster Cy, and let ng; = 3 ; ki be
the number of transitions observed from state i in cluster C,. We also define m; to be the num-
ber of episodes that are merged into cluster Cy. The observed frequencies (ng;;) and (my) are the

p(Mcls)
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data required to learn the probabilities (pg;;) and (pi) respectively and, together with the prior
hyper-parameters ag;;, they are all is needed to compute p(S|M,) as

p(S|M.) = p(S|C)p(S|X¢, Xi—1,C)

where

p(S1C) =

(a)
Ia+m)

c I'(ag + my)
1;[ Fk(ak)

k=1
and

S Dlaw) v T(ahij + nij)
S|X,, X,1,C) =
P(SIXe, Xeon, ©) kl;[“l;[l F(aki+nki)j1;[1 T'(arij)

where I'(-) denotes the Gamma, function. Once created, the transition probability matrix of a cluster
Cj — obtained by merging my episodes — can be estimated as

In principle, we just need a search procedure over the set of possible partitions and the posterior
probability of each partition as a scoring metric. However, the number of possible partitions grows
exponentially with the number of MCs to be considered and, therefore, a heuristic method is required
to make it feasible. The solution we propose is to use a measure of similarity between estimated
transition probability matrices to guide the search process. The algorithm performs a bottom-up
search by recursively merging the closest MCs (representing either a cluster or a single episode)
and evaluating whether the resulting model is more probable than the model where these MCs are
separate. When this is the case, the procedure replaces the two MCs with the cluster resulting
from their merging and tries to cluster two other MCs. Otherwise, the algorithm tries to merge the
second best, the third best, and so on, until the set of pairs is empty and, in this case, returns the
most probable partition found so far. The rationale behind this ordering is that merging closer McCs
first should result in better models and increase the posterior probability sooner. Note that the
agglomerative nature of the clustering procedure spares us the further effort of assigning each single
episode to a cluster because this assignment comes as a side effect of partitioning process.
For each sensor X;, the algorithm applies the following procedure:

Input: A set S of sensor readings episodes.
Output: A set of clusters and cluster assignments.

Initialization: Initialize as follows:

MATRIX ESTIMATION: For each episode S; € S, estimate the transition probability matrix j 22
as described above and define the set T, = {F;} of all transition probability matrices.
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LikeLIHOOD: Compute the marginal likelihood p(S|M.), where M, represents the model in
which each episode is generated by a different Mc, and set B = p(S|M,.). Note that, in
this initial step, c =m = |§|

DisTANCE: Create the set D of the pairwise distances between each transition probability
matrix in T, according to some measure.

SORT: Sort the set D in descending order.

Iteration: Iterate until B does not increase any longer, then return T:

CLUSTERING: Create the cluster Cj by summing the transition frequencies corresponding to
the two closest transition probability matrices P; and P Estimate the resultlng transition
probability matrix B,. Create the set T!, by replacing P, and PJ by P,,. Create the set
D’ by inserting each distance between Pk and each other Pi in T, in the ordered set D
and by removing the distances involving either B or Pj.

LikeLIHOOD: Compute the marginal likelihood p(S|M.), where M, represents the model in
which the episodes S; and S; are supposed to be generated by FPj.

CrosuURE: If p(S|M,.) > B, set B = p(S|M.), replace T, by T/, D by D' and iterate. Otherwise,
remove the first element of D and iterate on T.

The distance measure guiding the process can be any distance between probability distributions. Let
P, and P, be matrices of transition probabilities of two MCs. Since they are both a collection of s
probability distributions, and rows with the same index are probability distributions conditional on
the same event, a measure of similarity can be an average of the Kulback-Liebler distance between
corresponding rows. Let py;; and pa;; be the probabilities of the transition ¢ —+ j in P and P,. The
Kulback-Liebler distance of these two probability distributions is

D(pri, p2i) = me log P,

j=1 P2ij

The average distance between Py and P is then D(Py,Ps) = ), D(p1i,p2i)/s. Note that this
distance becomes 0 when P, = P, and it is otherwise greater than zero.

We conclude this section by suggesting a choice of the hyper-parameters ag;;. We can use
uniform prior distributions for all the transition probability matrices considered at the beginning
of the search process. The initial m X s X s hyper-parameters ay;; are set equal to a/(ms?) and,
when two MCs are similar and the corresponding observed frequencies of transitions are merged,
their hyper-parameters are summed up. Thus, the hyper-parameters of a cluster corresponding to
the merging of my, initial MCs will be mya/(ms?). In this way, the specification of the prior hyper-
parameters requires only the prior global precision a, which measures the confidence in the prior
model. An analogous procedure can be applied to the hyper-parameters ay associated with the prior
estimates of pr. We will denote by o’ the global prior precision associated to pg.
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Figure 2: MC representing the first cluster.

5. Prototypical Dynamics

In an experimental trial lasting about 30 minutes, the robot’s activities were divided into 42 episodes
by the following criterion: An episode ends when three or more sensors’ values change simultaneously.
The data include 11,118 values for each sensor. Qur prior hyper-parameters are computed by
uniformly distributing the global prior precision, where & = 5 and o = 42.

Figures 2 and 3 depict the MCs representing the two clusters learned for the sensor vis-a-x, the
horizontal location of an object in the visual field.

The first cluster captures the sensor dynamics when the robot is not close to an object. The
transitions are limited to states 3, 4 and 5 that correspond to the range -28, 140. The initial state 1
can be reached from state 5, which represents the fact that the object appears and disappears from
the visual field. However, since the estimate of the probability of transitions 5 — 1 and 1 — 5 are
derived from only two cases observed in all the episodes merged into cluster 1, the confidence in
these estimate is very low. The second cluster, on the other hand, represents the sensor dynamics
for an object not far from the robot, since transitions are essentially limited among the first 4 states.
The prior specification does not rule out the possibility that either state 1 or 5 be reached from state
4. However, in the 12 episodes merged to create cluster 2, the transitions 4 — 5 and 4 — 1 were
never observed, while state 4 was reached only once from state 3.

Our analysis can be extended to provide the robot with tools for recognizing the cluster it is in,
given sensor data. Suppose the robot sensor related to vis-a-x records the new transition 1 — 2.
It can infer cluster membership by applying Bayes theorem. The first cluster is obtained by merging
30 episodes. Since the global precision adopted is o’ = 42, we can estimate that, conditional on the
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Figure 3: MC representing the second cluster.

data, the probability of C'; — i.e. that cluster membership is 1 and hence the object is not near the
robot — is 0.7. Hence, the probability that C = 2 — i.e. that cluster membership is 2 and hence
the object is not far from the robot — is 0.3. The probability of observing the transition 1 — 2
when C = 11is 0.05, and becomes 0.013 when C' = 2. A simple application of Bayes Theorem returns
p(C =1]0.2 = 0.4) = 0.90 so that the robot is able to detect that, conditional on this new observed
transition, it is more likely that it is in cluster 1.

Clustering by dynamics involves two levels of abstraction. First, the transitions in an episode are
summarized in a transition matrix (MC); second, episodes are grouped into clusters, and the Mcs for
clusters are averages of the constituent episode McCs. Both operations lose information. The log-score
of a transition helps us evaluate these losses [Hand, 1997]. Let s¢ i; = —logpr:; be the score of the
transition ¢ — j observed in an episode e. This score penalizes an episode MC by assigning large
values to observed transitions when the MC assigns them small probabilities. We sum this score over
all transitions in an episode, and sum again over all episodes, to get a score for the loss incurred
by summarizing the time series of episode transitions into episode McCs. Now, instead of computing
losses for episode e based on the episode MC, we can compute them based on the MC for the cluster
to which e belongs. We let s 3;; = —logprs; be the score assigned to the transition ¢ — j observed
in an episode that belongs to cluster Cs. As before, we sum s ;; over the transitions within an
episode, and sum again over episodes.

Finally, if episode e belongs to cluster Cy, we can ask how much predictive accuracy would be
lost by using a randomly selected cluster to predict the episode transitions. This amounts to a test of
whether clusters retain any predictive power at all: if not, then a randomly selected cluster will incur
the same losses as cluster C}, for episode e. The score s, 3;; = —logPri; is given to transition § — j
observed in episode k but predicted by a random cluster. Once again, these scores are summed over
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transitions in an episode and over episodes. We have now described three cumulative scores, se, S,
and s,, which, for the dataset described earlier, have values s, = 120.5, s, = 212.2 and s, = 449.5.
The loss is least for episode McCs, intermediate for cluster MCs and highest for randomly-selected
cluster MCs. Apparently, the MC for episode e does a better job of predicting transitions in e than
does the McC for cluster C}, to which e belongs, and both are better than using a randomly selected
cluster MC to make predictions.

Sign tests can tell us whether s, = 120.5, s, = 212.2 and s, = 449.5 are significantly different. Let
85,kij = Se,kij — Sc,kij De the difference in scores assigned to episode and cluster MCs for the transition
t — 7 in episode k. Under the null hypothesis that the episode and cluster MCs make equally lossy
predictions, half these differences should have a positive sign, half negative. In fact, 1567 differences
are positive, 9950 are negative. We can compare cluster predictions with randomly-selected cluster
predictions in the same way; 2799 differences are positive, 4445 are negative, and 3993 are zero. The
sampling distribution for the number of positive differences is binomial and is well approximated by
the normal distribution for this sample size. We find that episode MCs are significantly less lossy
than cluster MCs, which are themselves significantly less lossy than randomly-selected cluster MCs.

6. Conclusions

This paper describes a new approach to discovering the dynamics of prototypical sensory experiences
as a Bayesian unsupervised clustering problem. The method represents the dynamic processes
resulting from the interaction between the robot and its environment as MCs, and then groups these
MCs into prototypical experiences. As described, the method uses first order MCs and univariate
distributions but it can be easily extended to higher order MCs and multivariate distributions.
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