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Abstract

This paper introduces a Bayesian method for clustering dynamic processes
and applies it to the characterization of the dynamics of a military sce-
nario. The method models dynamics as Markov chains and then applies
an agglomerative clustering procedure to discover the most probable set
of clusters capturing the different dynamics. To increase efficiency, the
method uses an entropy-based heuristic search strategy.
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1. Introduction

An open problem in exploratory data analysis is to automatically construct explanations
of data [5]. This paper takes a step toward automatic explanations of time series data. In
particular, we show how to reduce a large batch of time series to a small number of clusters,
where each cluster contains time series that have similar dynamics, thus simplifying the
task of explaining the data. The method we propose in this paper is a Bayesian algorithm
for clustering by dynamics.

Suppose one has a set of univariate time series generated by one or more unknown
processes, and the processes have characteristic dynamics. Clustering by dynamics is the
problem of grouping time series into clusters so that the elements of each cluster have similar
dynamics. For example, if a batch contains a time series of sistolic and diastolic phases,
clustering by dynamics might find clusters corresponding to the pathologies of the heart.
If the batch of time series represents sensory experiences of a mobile robot, clustering by
dynamics might find clusters corresponding to abstractions of sensory inputs [4].

Our algorithm learns Markov chain (MC) representations of the dynamics in the time
series and then clusters similar time series to learn prototype dynamics. A MC represents
a dynamic process as a transition probability matrix. For each time series observed on a
variable X, we construct one such matrix. Each row in the matrix represents a state of
the variable X, and the columns represent the probabilities of transition from that state
to each other state of the variable on the next time step. The result is a set of conditional
probability distributions, one for each state of the variable X, that can be learned from
a time series. A transition matrix is learned for each time series in a training batch of
time series. Next, a Bayesian clustering algorithm groups time series that produce similar
transition probability matrices.

The reminder of this paper is organized as follows. We first describe the scenario on
which we apply our clustering algorithm. The Bayesian clustering algorithm is described in
Section 3. We apply the algorithm to a set of 81 time series generated in our application
scenario and discuss the results in Section 4.

2. The Problem

The domain of our application is a simulated military scenario. For this work, we employ
the Abstract Force Simulator (AFS) [1], which has been under development at the University
of Massachusetts for several years. AFS uses a set of abstract agents called blobs which are
described by a small set of physical features, including mass and velocity. A blob is an
abstract unit; it could be an army, a soldier, a planet, or a political entity. Every blob
has a small set of primitive actions that it can perform, primarily move and apply-force, to
which more advanced actions, such as tactics in the military domain, can be added. AFs
operates by iterating over all the units in a simulation at each clock tick and updates their
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Blob Task
Primary Red 2 | retain
Effort objective Red Flag

Blue 2 | attack

objective Red Flag
Supporting | Red 1 | attack

Effort blob Blue 1

Blue 1 | escort

blob Blue 1

Table 1: The tasks given to each blob in the scenario.

properties and locations based on the forces acting on them. The physics of the world
specifies probabilistically the outcomes of unit interactions. By changing the physics of the
simulator, a military domain was created for this work.

The time series that we want to analyze come from a simple 2-on-2 Capture the Flag
scenario. In this scenario, the blue team, Blue 1 and Blue 2, attempt to capture the objective
Red Flag. Defending the objective is the red team, Red 1 and Red 2. The red team must
defend the objective for 125 time steps. If the objective has not been captured by the 125"
time step, the trial is ended and the red team is awarded a victory. The choice of goals and
the number of blobs on each team provide a simple scenario. Each blob is given a task (or
tactic) to follow and it will attempt to fulfill the task until it is destroyed or the simulation
ends (Table 1).

In this domain, retaining requires the blob to maintain a position near the object of the
retain — the Red Flag in this example — and protect it from the enemy team. When an
enemy blob comes within a certain proximity of the object of the retain, the retaining blob
will attack it. Escorting requires the blob to maintain a position close to the escorted blob
and to attack any enemy blob that comes within a certain proximity of the escorted blob.
Attacking requires the blob to engage the object of the attack without regard to its own
state. These tactics remain constant over all trials, but vary in the way they are carried
out based on environmental conditions such as mass, velocity and distance of friendly and
enemy units. To add further variety to the trials, there are three initial mass values that a
blob can be given. With four blobs, there are 81 combinations of these three mass values.
At the end of each trial, one of three ending conditions is true:

A The trial ends in less than 125 time steps and the blue team captures the flag.
B The trials ends in less than 125 time steps and the blue team is destroyed.

C The trial is stopped at the 125" time step and the blue fails to complete its goal.
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State # | State Description Notes
(F1, FFR+, CFR+) | Strong Red
(F1, FFR+, CFR-)
(F1, FFR-, CFR+)
(F1, FFR-, CFR-)
(F2, FFR+, CFR+) | Strong Red
(F2, FFR+, CFR-)
(
(
(
(
(
(

F2, FFR-, CFR+)
F2, FFR-, CFR-) Strong Blue
F3, FFR+, CFR+)
F3, FFR+, CFR-)
F3, FFR-, CFR+)
F3, FFR-, CFR-) Strong Blue

el
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Table 2: Univariate representation of the scenario.

To capture the dynamics of the trials, we chose to define our state space in terms of the
number of units engaged and force ratios. There are three possible engagement states at
each time step. Red has more blobs “free” or unengaged (F1), both blue and red have an
equal number of unengaged blobs (F2), or blue has more unengaged blobs (F3). In each
of these states, either the red team or the blue team has more unengaged mass (FFR+ or
FFR- respectively). In each of the six possible combinations of the above states, either red
or blue has more cumulative mass (CFR+ or CFR- respectively). Altogether there are 12
possible world states, as shown in Table 2. The table shows states 0 and 4 to be especially
advantageous for red and states 7 and 11 to be favorable to blue.

In the next section, we represent this set as the states of a univariate variable X,
and show how to model the dynamics of each trial and then cluster trials having similar
dynamics.

3. Clustering Markov Chains

We describe the algorithm in general terms. Suppose we have a batch of m time series,
recording values of a variable X taking values 1,2,...,s. We model the dynamics of each
trial as a MC. For each time series, we estimate a transition matrix from data and then we
cluster transition matrices with similar dynamics.
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3.1 Learning Markov Chains

Suppose we observe a time series = (g, -1, T2, --., Ti—1, Lj, ..). LThe process generating the
sequence z is a MC if p(X = =z¢|(zo, z1, T2, ..., xt—1)) = p(X = z¢|zs—1) for any z; in z [3].
Let X; be the variable representing the variable values at time £, then X; is conditionally
independent of Xg, Xi,..., X;_o given X;_;. This conditional independence assumption
allows us to represent a MC as a vector of probabilities py = (po1, P02, ---, Pos ), denoting the
distribution of X (the initial state of the chain) and a matrix of transition probabilities

X
X1 1 2 ‘e 8
1 P11 P12 - DPis
P = (pij) - 2 P21 P22 - Daos
S DPs1 Ps2 - Dss

where p;; = p(Xy = j|X¢—1 = ¢). Given a time series generated from a McC, we can estimate
the probabilities p;; from the data and store them in the matrix P. The assumption that
the generating process is a MC implies that only pairs of transitions X; | =1 — X; = j
are informative, where a transition X; | = ¢ — X; = 7 occurs when we observe the pair
X; 1 = i, Xy = j in the time series. Hence, the time series can be summarized into an
s X s contingency table containing the frequencies of transitions n;; = n(i — j) where, for
simplicity, we denote the transition X; 1 = ¢ — X; = j by ¢ — j. The frequencies n;; are
used to estimate the transition probabilities p;; characterizing the dynamics of the process
that generated the data.

However, the observed transition frequencies n;; may not be the only source of informa-
tion about the process dynamics. We may also have some background knowledge that can
be represented in terms of a hypothetical time series of length e+ 1 in which the « transi-
tions are divided into c;; transitions of type ¢ — j. This background knowledge gives rise to
a s X s contingency table, homologous to the frequency table, containing these hypothetical
transitions c«;; that we call hyper-parameters.

A Bayesian estimation of the probabilities p;; takes into account this prior information by
augmenting the observed frequencies n;; by the hyper-parameters «;; so that the Bayesian
estimate of p;; is

1)

where o; = 3 a5 and n; = 35 nj;. Thus, o; and n; are the numbers of times the variable
X visits state ¢ in a process consisting of « and n transitions, respectively. By writing
Equation 1 as
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Qij Y Mij T (2)
we see that p;; is an average of the classical estimate n;;/n; and of the quantity o;;/c,
with weights depending on «; and n;. Rewriting of Equation 1 as 2 shows that «;;/c;
is the estimate of p;; when the data set does not contain transitions from the state 1 —
and hence n;; = 0 for all § — and it is therefore called the prior estimate of p;;, while
Pi; is called the posterior estimate. The variance of the prior estimate o;;/cy; is given by
(05 /o) (1 — o5 /) /(e + 1) and, for fixed oy;/cy;, the variance is a decreasing function
of a;. Since small variance implies a large precision about the estimate, ¢; is called the
local precision about the conditional distribution X¢|X; 1 = ¢ and it indicates the level of
confidence about the prior specification. The quantity o = >, o; is the global precision, as
it accounts for the level of precision of all the s conditional distributions.

When n; is large relative to «;, so that the ratio n;/(c; + n;) is approximately 1, the
Bayesian estimate reduces to the classical estimate given by the ratio between the number n;;
of times the transition has been observed and the number n; of times the variable has visited
state 4. In this way, the estimate of the transition probability p;; is approximately 0 when
n;; = 0 and n; is large. The variance of the posterior estimate p;; is p;; (1 —ps5)/ (0 +n;+1)
and, for fixed p;;, it is a decreasing function of «; +n;, the local precision augmented by the
sample size n;. Hence, the quantity «; + n; can be regarded as a measure of the confidence
in the estimates: the larger the sample size, the stronger the confidence in the estimate.

Dij =
o o t+ng o ng o t+n

3.2 Clustering

The second step of the learning process is an unsupervised agglomerative clustering of MCs
on the basis of their dynamics. The available data is a set S = {S;} of m time series.
The task of the clustering algorithm is two-fold: find the set of clusters that gives the best
partition according to some measure, and assign each MC to one cluster. A partition is an
assignment of MCs to clusters such that each time series belongs to one and only one cluster.
We regard the task of clustering MCs as a Bayesian model selection problem. In this
framework, the model we are looking for is the most probable way of partitioning McCs
according to their similarity, given the data. We use the probability of a partition given the
data —- i.e. the posterior probability of the partition — as scoring metric and we select the
model with maximum posterior probability. Formally, this is done by regarding a partition
as a hidden discrete variable C, where each state of C represents a cluster of MCs. The
number ¢ of states of C' is unknown, but the number m of available MCs imposes an upper
bound, as ¢ < m. Each partition identifies a model M., and we denote by p(M,) its prior
probability. By Bayes’ Theorem, the posterior probability of M., given the sample S, is

_ p(Mc)p(S|Mc) )

p(Mc|S) p(S)
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The quantity p(S) is the marginal probability of the data. Since we are comparing all the
models over the same data, p(S) is constant and, for the purpose of maximizing p(M,|S),
it is sufficient to consider p(M,)p(S|M.). Furthermore, if all models are a priori equally
likely, the comparison can be based on the marginal likelihood p(S|M.), which is a measure
of how likely the data are if the model M, is true.

The quantity p(S|M.) can be computed from the marginal distribution (pg) of C and the
conditional distribution (pg;;) of X¢|X;—1 = ¢, Cy — where Cj, represents the cluster mem-
bership of the transition matrix of X;|X;_; — using a well-known Bayesian method [2]. Let
nkij be the observed frequencies of transitions : — j in cluster Cy, and let ng; = 3, ngi; be
the number of transitions observed from state 7 in cluster C}. We define m;, to be the num-
ber of time series that are merged into cluster Cy. The observed frequencies (n;;) and (mg)
are the data required to learn the probabilities (pg;;) and (pi) respectively and, together
with the prior hyper-parameters ay;;, they are all that is needed to compute the prob-
ability p(S|M.), which is the product of two components: f(S,C) and f(S, X;—1,Xs, C).
Intuitively, the first quantity is the likelihood of the data, if we assume that we can partition
the m MCs into c¢ clusters, and it is computed as

_ TNae) < Doy +my)
IEO= tarm LT

The second quantity measures the likelihood of the data when, conditional on having ¢
clusters, we uniquely assign each time series to a particular cluster. This quantity is given
by

f(Sa Xt—laXt; H H akz ) f[ F(akZ] +nkl])

it i1 Tlows + ngg NG
where I'(-) denotes the Gamma function. Once created, the transition probability matrix
of a cluster (', — obtained by merging m; time series — can be estimated as py;; =

(akij + nkig) /(omi + ki)

In principle, we just need a search procedure over the set of possible partitions and the
posterior probability of each partition as a scoring metric. However, the number of possible
partitions grows exponentially with the number of MCs to be considered and, therefore, a
heuristic method is required to make the search feasible. The solution we propose is to use a
meagure of similarity between estimated transition probability matrices to guide the search.
Let P, and P» be transition probability matrices of two MCs. We adopt, as measure of
similarity, the average Kulback-Liebler distance between the rows of the two matrices. Let
p1i; and py;; be the probabilities of the transition ¢ — 5 in P; and P,. The Kulback-Liebler
distance of these two probability distributions is D(p1i,pei) = >_j—1 p1ij log p1ij/pei; and
the average distance between P; and P; is then D(P1, Po) = Y, D(p14,p2i)/s-
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Our algorithm performs a bottom-up search by recursively merging the closest MCs
(representing either a cluster or a single trial) and evaluating whether the resulting model
is more probable than the model where these MCs are separated. When this is the case,
the procedure replaces the two MCs with the cluster resulting from their merging and tries
to cluster the next nearest MCs. Otherwise, the algorithm tries to merge the second best,
the third best, and so on, until the set of pairs is empty and, in this case, returns the most
probable partition found so far. The rationale behind this ordering is that merging closer
MCs first should result in better models and increase the posterior probability sooner. Note
that the agglomerative nature of the clustering procedure spares us the further effort of
assigning each single time series to a cluster, because this assignment comes as a side effect
of clustering process.

We conclude this section by suggesting a choice of the hyper-parameters oy;;. We use
uniform prior distributions for all the transition probability matrices considered at the
beginning of the search process. The initial m X s x s hyper-parameters oy;; are set equal
to a/(ms?) and, when two MCs are similar and the corresponding observed frequencies of
transitions are merged, their hyper-parameters are summed up. Thus, the hyper-parameters
of a cluster corresponding to the merging of m;, initial MCs will be mya/(ms?). In this way,
the specification of the prior hyper-parameters requires only the prior global precision «,
which measures the confidence in the prior model. An analogous procedure can be applied
to the hyper-parameters «y, associated with the prior estimates of pr. We note that, since
I'(z) is defined only for values greater than zero, the hyper-parameters cy;; must be non-
negative.

4. Clusters of Dynamics

The 81 times series generated with AFS for the Capture the Flag scenario consist of 42 trials
in which the blue team captures the red flag (end state A), 17 trials in which the blue forces
are defeated (end state B) and 22 which were stopped after 125 time steps (end state C).
We used our clustering algorithm to partition the times series according to the dynamics
they represent. A choice of a prior global precision o = 972 — corresponding to the initial
assignment ay;; = 1/12 in the 81 transition probability matrices — yields 8 clusters. Table
3 gives the assignment of time series to each of the 8§ clusters. By analyzing the dynamics
represented by each cluster, it is possible to reconstruct the course of events for each trial.
We did this “by hand” to understand and evaluate the clusters, to see whether the algorithm
divides the trials in a significant way. We found that, indeed, the clusters correspond not
only to end states, but different prototypical ways in which the end states were reached.
Clusters C2, C4 and C5 consist entirely of trials in which blue captured the flag or time
expired (end state A and C). While this may at first be seen as the algorithm’s inability
to distinguish between the two events, a large majority (though it is not possible to judge
how many) of the “time-outs” were caused by the blue team’s inability to capitalize on a
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Cluster | A | B | C | Total
C1 5 11 13 |9

Cy 2 0 2 4

Cs 710 |0 |7

Cy 14 |0 12 | 26

Cs 1 0 1 2

Cs 8 |16 |4 |28

Cr 2 |0 |0 |2

Cs 3 |0 |0 |3
Total 42 | 17 | 22 | 81

Table 3: Summary of the clusters identified by the algorithm.

favorable circumstance. A good example is a situation in which the red team is eliminated,
but the blue blobs overlap in their attempt to reach the flag. This causes them to slow to
a speed at which they were unable to move to the flag before time expires. Only a handful
of “time-outs” represent an encounter in which the red team held the blue team away from
the flag. Clusters Cs, C4 and C; demonstrate that the clustering algorithm can identify
subtleties in the dynamics of trials, as no information about the end state is provided,
implicitly or explicitly, by the world state.

Clusters C; and Cg merge trials of all types. C) is an interesting cluster of drawn out
encounters in which the advantage changes sides, and blobs engage and disengage much
more than in the other clusters. For example, C] is the only cluster in which the MC visits
all states of the variable and, in particular, is the only cluster in which state 8 is visited.
By looking at the transition probabilities, we see that state 8 is more likely to be reached
from state 6, and to be followed by state 0. Thus, from a condition of equal free units (F2)
we move to a situation in which blue disengages a unit and has a free unit advantage (F3),
which is immediately followed by a situation in which red has a free units advantage (F'1).
The “time-outs” (end state C) in this cluster represent the red team holding off the blue
team until time runs out.

Cluster Cg, on the other hand, contains all but one of the trials in which the red team
eliminated all of the blue units (end state B), as well as very similar trials where the red blobs
appear dominant, but the blue team makes a quick move and grabs the flag. The cluster
is characterized by having transitions among states 0, 4 and 10, with a large probability of
staying in state 0 (in which the red forces are dominant) when reached. The large number
of trials in which the blue team wins (especially large when we realize that C-endings are
blue wins but for the fact that overlapping forces move very slowly) is a result of Blue 1
being tasked to escort Blue 2, a tactic which allows Blue 1 to adapt its actions to a changing
environment more readily than other unit’s tactics, and in many trials, gives blue a tactical



Discovering Dynamics using Bayesian Clustering

@m

CLUSTER 3 CLUSTER 7 CLUSTER 8

Figure 1: Markov Chains representing clusters C3, C7 and Cg.

advantage.

Clusters C3, C7 and Cg merge only times series of end state A, in which the blue team
always captured the flag. Figure 1 displays the MC representing the three clusters (in which
we have removed transitions with very low probability). Each cluster captures a different
dynamics of how a blue victory was reached. For example, cluster Cg is characterized by
transitions among states 1, 5, 7 and 11 in which the blue team maintains dominance, and
transitions to states 4 and 8 — in which the red forces are dominant — are given a very
low probability. Indeed, the number of time steps of the trials assigned to cluster Cs was
always low, as the blue team maintained dominance throughout the trials and states 4 and
8 were never visited.

The trials in cluster C7 visited states 0, 4, and 10 frequently and correspond to cases
in which the blue team won despite a large mass deficit. In these cases, the objective was
achieved by a break away of one of the blue blobs that outruns the red blobs to capture the
flag. The trials assigned to cluster C7; concluded with victory of the blue team despite a
large mass deficit (the objective was achieved by a break away of one of the blue blobs that
outruns the red blobs to capture the flag). Cluster C5 displays transitions among states
0,1,4,5, 6,10 and 11 and represents longer, more balanced encounters in which the blue
team was able to succeed.

5. Conclusions

Our overriding goal is to develop a program that automatically generates explanations of
time series data, and this paper takes a step toward this goal by introducing a new method
for clustering by dynamics. This method starts by modeling the dynamics as MCs and then
applies a Bayesian clustering procedure to merge these MCs in a smaller set of prototypical
dynamics. Explaining half a dozen clusters is much easier than explaining hundreds of time
series. Although the explanations offered in this paper are still generated by human analysts
— we have not yet achieved fully-automated explanation — the explanatory task is made
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much eagier by our method.
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