KNOWLEDGE MEDIA

n f/ _ ~
=

Open Services on the Web

Technical Report kmi-09-5

Maleshkova, M., Kopecky, J., and Pedrinaci, C. (2009) Adapting
SAWSDL for Semantic Annotations of RESTful Services, Workshop:
Beyond SAWSDL at OnTheMove, OTM2009, Vilamoura, Portugal, OTM
2009 Workshops

Maleshkova, M., Pedrinaci, C., and Domingue, J. (2009) Supporting
the Creation of Semantic RESTful Service Descriptions, Workshop:
Service Matchmaking and Resource Retrieval in the Semantic Web
(SMR2) at 8th International Semantic Web Conference, Proceedings
of ISWC '09, Washington D.C., USA

November 2009

Maria Maleshkova

The Open University

Open Services on the Web

Maria Maleshkova

First Year Probation Report
Knowledge Media Institute, The Open University,
Walton Hall, MK7 6AA, Milton Keynes,
United Kingdom

m.maleshkova@open.ac.uk

November 2009

Contents

1 Introduction
1.1 WebServices
1.2 OpenServiceontheWeb
1.3 Motivation and Research Problem
2 State of the Art
2.1 Descriptions of Web Services and Open Services onthe Web
2.2 Semantic Descriptions of Web Services and Web APIs
23 LinkedData
2.4 Supporting the Creation of Semantic Descriptions of Open Services on
theWeb
2.5 DefiningtheGap
3 Open Services on the Web
3.1 Approach and Research Contribution
3.2 Completed Work and Initial Results
33 ProgressPlan
34 Conclusion

AN W N

11
15

17
21

Chapter 1

Introduction

The goal of the here described research is to explore the possibilities of combining
Semantic Web [1] technologies and fundamental Web principles, including URIs and
HTTP, and to apply these on open services on the Web, in order to contribute to a
Semantic Web, which is not only an extension of the current Web with more semantic
descriptions of data but is rather more dynamic and seamlessly integrates services as
sources of that data, which can be automatically discovered, composed and executed
by the computer on behalf of its user. This document is the first year probation report
of this PhD study on open services on the Web.

The World Wide Web [2] has undergone significant changes since it was first
launched and became popular. It provides ubiquitous access to heterogeneous data re-
siding anywhere on the Internet, however, it is more than a system of static interlinked
hypertext documents. The Web has evolved and is now not only a significant source
of information, media and entertainment but is also a platform for communication and
doing business, where individuals, but also companies and devices, can consume and
provide content and services alike. The initial practice of publishing static web pages
in plain HTML has developed into a generation of dynamic web pages populated at
runtime, based on user requests and queries. Moreover, the value of Web applica-
tions is augmented in providing content to consumers but also in exposing functionality
through an increasing number of public APIs designed for machine consumption.

Currently, more and more Web applications and APIs expose functionalities for
providing access to resources in different representation forms. Some of these Web
applications and APIs conform to the REST (Representational State Transfer [3]) ar-
chitectural style and are therefore commonly refereed to as RESTful Web services [4].
RESTHful services are characterized by their relative simplicity and their natural suit-
ability for the Web. However, a good portion of the currently existing Web application
and APIs do not strictly follow the REST principles but rather loosely adopt these
notions, in order to provide an entry point for interaction with application resources.
Therefore we introduce the term open services on the Web, to refer to Web Applica-
tions and APIs, which use URIs (sometimes parameterized) for identifying resources
and links between them, and HTTP for retrieving and manipulating representations of
these resources.

As a result open services on the Web use the same solutions that allow users to
interact with any Web site by providing a browser with the HTTP URI, and implement
them in order to enable the transferring and manipulation of representations of resource
through predefined access points, rather than operating directly on those resources. For
example, popular Web 2.0 applications by Facebook, Google, Flickr and Twitter offer
easy-to-use, resource-oriented APIs, which provide simple access to diverse resources
and also enable combining heterogeneous data coming from diverse services, in order
to create data-oriented service compositions called mashups.

Even though Web applications and APIs are already widely used, their potential
and wider adoption is hindered by the fact that their discovery, composition and in-
vocation have to be completed manually and significant human labour has to be de-
voted to locating existing APIs, understanding their documentation, and implementing
software that uses them. This is mainly because 1) the majority of open services on
the Web are described in HTML pages and commonly lack machine-processable de-
scriptions, 2) API implementations, in general, follow the fundamental Web principles
but frequently differ in the particular implementation details and 3) open service
descriptions have no semantic metadata, which limits the automation of discovery,
composition and invocation, possible through the adoption of existing Semantic Web
Service technologies. Initial progress towards tackling these challenges has already
been made. In particular, there is some research on the formal description of RESTful
services [5], [6] and on the machine-processable tagging of service properties [7]. On
the other hand, advances in the semantic annotation of RESTful services have resulted
in annotation formalism [8], [9] for describing service metadata.

Although, there is some pioneer research in the area of the semantic description of
Web applications and APIs (e.g. [8], [7], [9], [10]), there is still a lot to be done until
open services on the Web can be seamlessly integrated into the Semantic Web and be
automatically discovered, composed and invoked. Therefore, the here presented work
explores the potential of combining Semantic Web technologies and fundamental Web
principles for the creation of semantic descriptions of open services on the Web as
means for simplifying and automating the Web API-based interaction with resources.

This report is structured as follows: Chapter 1 details the background and the mo-
tivation for this work. It also describes the identified research problem and research
questions, which need to be addressed. Chapter 2 presents related work and unad-
dressed research issues in the area. Chapter 3 provides details on the approach and
results of initial prototype work. The report is concluded by a roadmap and planned
future work.

1.1 Web Services

”Classical” Web services, based on WSDL and SOAP, have for a long time dominated
the service world, playing a major role in the interoperability within and among en-
terprises and serving as the basic construct for the rapid development of low-cost and
easy-to-compose distributed applications in heterogeneous environments [11]. Web
Service [12] technology enables the publishing and consuming of functionalities of
existing applications, facilitating the development of systems based on decoupled and

distributed components. Therefore, Web Services can be seen as reusable building
blocks for creating open distributed systems, which allow companies and individuals
to make their digital assets available to the global community in a simple and effective
manner.

Web services, or more precisely services based on the Web services technology
stack [12], are an established technology and are commonly used. However, despite
their popularity there are still only a few services available (28 000! in comparison to
112 million of registered domains® and over 182 million websites) and this number
is not significantly increasing. Moreover, services based on WS-* (SOAP, WSDL,
WS-Addressing, WS-Messaging and WS-Security, ...) [13] are argued to have high
complexity and require trained developers, relatively sophisticated infrastructure or
extensive tooling.

The Web Service Description Language (WSDL) [5], [14] is used to describe the
service access endpoint, providing a machine-processable description of the structure
of the service, its operations and the request and response messages. In addition, SOAP
[15] is used for specifying the messages exchanged between the service consumer and
provider. Both WSDL and SOAP as well as WS-Addressing, WS-Messaging, WS-
Security, etc., add complexity and this can often lead to implementation difficulties
and interoperability problems.

Web services complexity can be handled by trained developers, backed up by good
tool support. However, a more critical problem hindering the greater success of the Web
service technology is the low level of automation of common tasks such as discovery,
composition and invocation [16], [17]. Currently, developers need to manually search
for services in repositories such as UDDI, subsequently design service compositions
and develop software that is able to invoke and manipulate them. In order to address
this problem, semantic Web services [16], that is Web services enhanced with semantic
descriptions of both functional and non-functional properties, have been proposed. The
main idea underlying semantic Web services is the use of formal descriptions of Web
service characteristics as means for automating many common tasks involved in using
Web services. In this way, discovery, negotiation, composition and invocation can
have a higher level of automation, when Web services are supplemented with semantic
descriptions of their properties.

In contrast to Web services, which profit from a range of formalisms and descrip-
tion forms as well as from developed approaches for discovery, matchmaking and com-
position, research in the area of Web applications and APIs is still relatively limited.
However, Web services are a good starting point for analyzing some of the problems,
common for both types of services, and enable the reusing of solutions provided by
semantic Web service technologies as a basis for developing solutions in the Web API
area.

ISource: http://webservices.seekda.com/

2Daily updated statistics at http: //www.domaintools.com/internet-statistics/.

3Source: Netcraft http://news.netcraft.com/archives/2008/10/29/october_
2008_web_server_survey.html

1.2 Open Service on the Web

Currently, there is an increasing importance and use of Web applications and APIs and
sometimes it is even argued that they have displaced Web services [18]. This trend is
strongly supported by the growing popularity and use of Web 2.0 technologies, because
many Web 2.0 applications offer Web APIs as access points for interaction with appli-
cation resources. Moreover, Web APIs enable combining heterogeneous data coming
from diverse sources, in order to create data-oriented compositions called mashups
[19].

Web APIs, which conform to the REST principles are commonly referred to as
RESTful Web services. The representational state transfer (REST) paradigm was first
described by Roy Fielding in his Ph.D. dissertation [4] denoting an architecture style of
large-scale distributed systems. A RESTful web service is a simple web service based
on REST principles and commonly implemented by using HTTP. RESTful services
comprise a collection of resources and have the following main principles*:

o Uniquely identified resources: All resources are identified by URIs [20], which
are unique and enable the addressing and identifying of resources in a global
space. In the context of services, a RESTful service exposes a set of resources,
which identify the endpoints for interaction with clients.

e Fixed set of operations: All resources can be manipulated by using only four
fixed operations: GET, POST, PUT, DELETE. GET and POST retrieve or trans-
fer the current state of a resource, correspondingly. In a similar way, PUT and
DELETE create a new resource and delete a new resource. These operations
result from the fact that RESTful services are commonly based on HTTP for
transferring messages.

o Stateless client/server architecture: Every interaction with a resource is stateless
and each request is complete and contains all information necessary for the server
to process it. Response messages can contain states, which point to valid future
states of interaction. However, the interaction itself does not modify the state of
the process.

e Resource representation decoupling: Resource content can be accessed via dif-
ferent formats, since resources are not bound to one specific representation.

It is important to point out that currently, most available Web APIs do not follow
all of these REST principles. Commonly, Web APIs use uniquely identified resources,
enable resource representation decoupling and use a fixed set of operations. However,
for example, often POST and GET operations are misused for deleting or modifying
resources and requests are sent in a stateful manner. In addition, very often URI are
defined in a parameterized manner, so that different resources are retrieved for different
parameter values. In order to acknowledge the fact that not all Web APIs are strictly
RESTful, we introduce the term ”open service on the Web* to refer to Web applications
and APIs, which are based on the fundamental Web technologies (URIs for identifying

A complete and exhaustive list is available in [4].

entities and links between them, and HTTP) and provide access points for interaction
with resources.

Open services on the Web have a number of advantages in comparison to WSDL
[5]-based services. They are simpler to use because they are not burdened by the com-
plexity of the WS technology stack and instead are based on HTTP, URIs and links
between resources, which are also the underlying principles of the Web. Therefore,
open service have a natural suitability for the Web, as opposed to WSDL-based ser-
vices, which abuse HTTP for tunneling SOAP [21]. The simplicity of Web APIs at
the technological level results in the fact that developers do not need extensive training
and can create, invoke and test implementations without greater efforts. Open services
on the Web can be described in simple HTML pages, they can be tested from an ordi-
nary Web browser and their development is very similar to developing a dynamic web
site. As a result, open services are very accessible and users with little training can
create service descriptions, invoke services, and even make simple resource-oriented
compositions.

1.3 Motivation and Research Problem

Despite their technological simplicity and ease of implementation in comparison to
WSDL-based services, open services on the Web have one fundamental limitation:
the lack of formal and machine-processable descriptions. While, WSDL provides
a machine-processable description of the structure of Web services, most Web APIs
are usually textually described in HTML pages and documents, following no strict
guidelines or format. As a result, developers need to spend time and effort on reading
and understanding service descriptions, which is a major hindrance for the automated
processing.

In addition, the task of finding services also has to be completed manually by
searching the very few existing Web API repositories, which contain services manu-
ally collected over time, or by using common search engines, which do no differentiate
between Web API descriptions and normal HTML pages. Similarly, mashups have to
be programatically created, even though, there are already some tools available, which
provide developer support®. The resulting solutions are custom-tailored to fulfill the
particular development goal and do not support the reusability of the included Web
APIs.

Finally, similarly to the other service-related tasks, the invocation of individual
services or service compositions has to be done manually as well. Invocation is partic-
ularly challenging because, even though, all open services on the Web are based on the
same underlying principles, they frequently differ in the particular implementation de-
tails, which effect the invocation method. In addition, the HTML documentation often
does not provide details about the service functionality, which is in accordance with
the black-box service realization principles, but is extremely hindering if it influences
the way in which the service needs to be invoked. User authentication is also an issue,
which makes invocation more challenging, since the majority of the existing Web APIs

SSome available tools, which support the manual composition of a restricted number of services are
Yahoo Pipes (http://pipes.yahoo.com/pipes/)and DERIPipeshttp://pipes.deri.org/

require a user to have an API Key or to be registered to use the service. As a result,
developers have to devote extra effort ensuring proper invocation and its automation is
even more difficult.

Web APIs and applications have already had some initial success and are becoming
increasingly adopted®. Open services on the Web have great potential because they are
based on the technologies of the Web, which have proven to be scalable and lack the
overhead introduced by the WS-* stack. In addition, they are easily accessible and can
seamlessly be integrated in the Semantic Web, where the user does not have to differ-
entiate whether he/she is getting information directly from a Web site or from a Web
API or even a mashup. In order to overcome the current challenges faced by open ser-
vices and to enable their wider adoption, we propose semantic service descriptions of
open services on the Web, which are both machine-processable and, similarly to tra-
ditional SWS that improve the automation of WSDL-based solutions, bring automation
to common tasks such as discovery, composition and invocation.

Therefore, the main research problem addressed in this PhD work is How to cre-
ate semantic service descriptions of open services on the Web? This main research
problem is tackled by exploring the answers of the following specific research ques-
tions:

e RQ1: How can semantic descriptions of open services on the Web be cre-
ated? In particular, this requires the analysis of approaches for identifying ser-
vice properties within existing HTML descriptions and enchanting these with
semantic information. The annotation of services with semantic information can
serve different purposes and can be used for completely different tasks. For
example, enhancing services with information about their functionality is very
helpful for finding services, however, it does not necessarily support their in-
vocation. Therefore, it is necessary to define 1) the minimal required, but also
sufficient, semantic information, which needs to be included in a semantic ser-
vice description, in order to support the automation of the discovery, composition
and invocation tasks; 2) the semantic description form, which supports the pro-
visioning of these annotations.

e RQ2: How can the creation of semantic open services on the Web be sup-
ported? Provided with a formalism for the semantic description of open services
on the Web, developers need to be supported by tools and guidelines, which
make the creation of semantic descriptions easier. The goal is to hide formalism
complexities by providing extensive tool support and to automate as much as
possible the creation of semantic descriptions: based on already existing textual
descriptions; based on support for finding ontologies necessary for the semantic
annotation; and based on recommendation of suitable annotations.

The addressing of these two main research questions will directly contribute to integrat-
ing open services on the Web in the Semantic Web. The Semantic Web can serve as a
valuable source of background knowledge, which will be used to assist the process of
creating semantic descriptions. In addition, already existing services can be facilitated

6The number of Web APIs and existing mashups at http://www.programmableweb.com has
constantly increased during the past year.

and integrated in the user support for semantically annotating services, and the imple-
mentation results of the research can be provided in the form of new semantic services
that build upon the Web and provide new functionalities for others to exploit. In this
way, the Semantic Web becomes a space for both retrieving and publishing semantic
service-related data.

The existence of semantic data and common information models plays a major role
for the creation of semantic descriptions of services. Initial research in the area of
semantic Web services was forced to rely on information extraction and data analysis
approaches, in combination with ontology learning, in order to acquire the necessary
metadata and models for the semantic annotation [22], [23], [24]. Currently, this situ-
ation has changed and there exists a good basis of semantic data, which can be used to
directly describe service properties or to serve as feedback information for improving
the annotation process. This development can be further supported by an increased use
and popularity of Linked Data.

The main underlying idea behind Linked Data [25] is that the same principles that
enable the Web of documents to be so successful have to be applied on available struc-
tured data as well. This is achieved by following a set of best practices for publishing
and connecting data on the Web, which lead to the enrichment of the Web with a global
data space connecting data coming from diverse domains. The resulting Web of Data
[25] can be used as basis for developing a wide variety of new applications, which can
dynamically analyze and interpret the data, browse from one data source to another
by following the links, or collect and query data related to particular topic of interest.
More importantly, in the context of open service on the Web, linked data can be used as
background information, used as support for suggesting service annotations, but also
it already provides a set of ontologies, which can directly be used for semantically
describing services. In addition, the resulting semantic descriptions of open services
on the Web can be published by following the linked data principles and be directly
integrated in the Web of data.

The following chapter provides an overview of the state of the art relevant to an-
swering the here formulated research questions.

Chapter 2

State of the Art

This chapter focuses on current research related to the creation of semantic descriptions
of open services on the Web. We divide the state of the art in three main sections. The
first two sections focus on work related to RQ1. First, we provided an overview of the
existing formalisms for the description of Web services and Web APIs and an analysis
of research work in the area of semantic description for Web services. The following
sections provides and introduction to Linked Data principles and address state of the
art related to user support (RQ2). Since, the manual annotation of Web services is
an effort- and time-consuming task, we consider existing research contributing to the
automation of this task. This includes approaches for the recommendation of semantic
annotations, service classification and finding suitable ontologies. Finally, existing
tools for ontology visualization and service annotation are described.

2.1 Descriptions of Web Services and Open Services on
the Web

Web services enable the publishing and consuming of functionalities of existing ap-
plications, facilitating the development of systems based on decoupled and distributed
components. WSDL [5], [14] is an XML-based language for describing the interface
of a Web service. A WSDL service description specifies: 1) the supported operations
for consuming the Web service; 2) its transport protocol bindings; 3) the message ex-
change format; and 4) its physical location. In this way, the WSDL description contains
all information necessary for invoking a service and since it is XML-based, conforming
to the WSDL XML schema, it is also machine-processable.

WSDL. Similarly, to Web services, which provide access to the functionality of ex-
isting components, Web APIs and Web applications conforming to the REST paradigm,
provide access to the state of existing resources, by using the WWW as an infrastruc-
ture platform. Based on this parallel between the two types of services, WSDL was
extended to Version 2.0 [5], which can also be used for formally describing RESTful
services. As a result WSDL is a machine-processable, platform and language indepen-
dent form of describing Web services and RESTful services alike.

The difficulty of using WSDL for RESTful services, is that it was not especially de-
signed for resource-oriented services and as a result, everything has to be described in
an operation-based manner. In addition, WSDL introduces some difficulties with spec-
ifying the message exchange format and limits HTTP authentication methods. More-
over, the most important drawback is that it lacks support for simple links. There is no
mechanism in WSDL 2.0 to describe new resources that are identified by links in other
documents. However, one of the most important characteristic of RESTful services is
that they consist of collections of interlinked resources.

WADL. In contrast to WSDL, the Web Application Description Language (WADL) [6]
was especially designed for describing RESTful services in a machine-processable
way. It is also XML-based and is platform and language independent. As opposed
to WSDL, WADL models the resources provided by a service, and the relationships
between them in the form of links. A service is described using a set of resource
elements. Each resource contains descriptions of the inputs and method elements, in-
cluding the request and response for the resource. In particular, the request element
specifies how to represent the input, what types are required and any specific HTTP
headers. The response describes the representation of the service’s response, as well as
any fault information, to deal with errors.

Currently, both WADL and WSDL for RESTful services are not widely used. A
Google search for WADL files returns only 49 unique results', while from the popular
Web 2.0 applications only delicious? and YahooSearch® have WADL descriptions. The
main difficulty of using WADL descriptions is that they are complex, which requires
that developers have a certain level of training and tool support that enables the ap-
plication development with WADL. This complexity contradicts the simplicity of the
open services on the Web principles, which enable the easy retrieving of resources only
thought an HTTP request, directly in the Web browser. In addition, the majority of the
Web API descriptions are usually given in textual form in Web pages. This description
form is supported by the increasing popularity of Web 2.0 applications such as Face-
book, Twitter, Last.fm, which are user-centric and provide access to their resources
through Web APIs, which are described in plain HTML.

HTML-based Web API descriptions follow no standards or guidelines regarding the
form or the content of the description. Therefore, it is up to the developer to decide what
structure to use and what information to provide. As a result, everyone who is able to
create a Web page is also able to create a Web API desciption. Probably, this is also one
of the main reasons why this description form is so popular. However, plain text/tHTML
descriptions, in contrast to WSDL descriptions, are not machine-processable, which
means that if a developer wants to use a particular service, he/she has to go to an
existing description Web page, study it and write the application manually. Therefore,
current research proposes the creation of machine-processable descriptions on top of
existing HTML descriptions by using microformats [26]. Microformats offer means
for annotating human-oriented Web pages in order to make key information machine-
processable, without modifying the visualization or the content.

ISearch done on October 5th, 2009
2http://delicious.com/
3http://search.yahoo.com/

10

hRESTS. One particular approach for creating machine-processable descriptions
for RESTful services by using microformats is hRESTS (HTML for RESTful Services)
[7]. hRESTS enables the marking of service properties including operations, inputs and
outputs, HTTP methods and labels, by inserting HTML tags within the HTML. In this
way, the user does not see any changes in the Web page, however, based on the tags
the service can be automatically recognized by crawlers and the service properties can
directly be extracted by applying a simple XSL transformation.

RDFa. An alternative to using hRESTS is offered by RDFa [27] that enables the
embedding of RDF data in HTML. RDFa is similar to using microformats, but is some-
what more complex and offers more HTML marking options, as opposed to hRESTS.
Approaches, based on making existing RESTful service descriptions machine-processable
by using HTML tags are simpler and more lightweight as opposed to WSDL and
WADL. In addition, they can be applied directly on already available descriptions,
rather then creating new service descriptions from scratch. The adoption by developers
is also easier, since the creation of a machine-processable RESTful service description
is equivalent to Web content creation or modification.

Because of these characteristics and because of the fact that currently the majority
of Web applications and APIs are described in HTML Web pages, we chose to use
the lightweight hRESTS approach for out initial work on creating semantic RESTful
service descriptions. Moreover, hRESTS provides a good basis for providing semantic
annotations, which can be used to improve the automation of service discovery, com-
position and invocation tasks, while WADL does not support the addition of semantic
metadata.

2.2 Semantic Descriptions of Web Services and Web
APIs

This section focuses on existing research work related to the semantic description of
open services on the Web, addressing in this way approaches related to RQ1.

Machine-processable service descriptions support the creation, publication and con-
sumption of services. However, the service descriptions remain on a syntactic level
with a strong technical focus. This requires that the identification of suitable Web ser-
vices for a given task is performed through manual inspection. In oder to address this
challenge, research on semantic Web services (SWS) has been devoted to reducing the
extensive manual effort required for manipulating Web services [17], [16]. The main
idea behind this research is that tasks such as the discovery, negotiation, composition
and invocation of Web services can have a higher level of automation, when services
are enhanced with semantic descriptions of their properties. In particular, SWS applies
inference-based techniques on formalized semantic descriptions, in order to better sup-
port the analysis of Web services. Moreover, most SWS technologies use ontologies as
the underlying data model, which provide means for tackling the interoperability prob-
lem at the semantic level and, more importantly, enable the integration of Web services
within the Semantic Web.

Since open services on the Web face similar challenges as WSDL-based Web ser-

11

vices, including the lack of automation of common service tasks, research related to
SWS descriptions and approaches should be carefully considered as a basis for seman-
tically enchanting open services on the Web as well. In addition, if Web APIs can be
semantically described by directly applying or by adapting existing SWS formalisms,
this would support the reuse of already developed semantic-enabled discovery, com-
position and invocation approaches. Moreover, the integration of open services in the
Semantic Web can be facilitated by the same SWS technologies, which are the basis
for integration of Web services.

OWL-S. The foundation for the SWS research is laid by a number of standardized
notations for the formal specification of Web services with semantically rich descrip-
tions. One common approach is facilitated by OWL-S [28], which defines an upper on-
tology for semantically annotating Web services. OWL-S consist of three main parts:
1) the Service Profile for advertising and discovering services, which contains the name
of the Web service, its provider, a natural language description, and a formal functional
description that is defined in terms of inputs and outputs, preconditions and effects;
2) the Process Model, which gives a detailed description of a service’s operation and
describes how the Web service works; and 3) the Service Grounding, which provides
details on how to access the service and how to interoperate with a service, via mes-
sages.

The service profile supports manual service discovery, based on the the natural
language descriptions, as well as automatic discovery, based on the formal functional
description. The service model provides information for determining whether the com-
munication between a client and the Web service can be carried out successfully. Fi-
nally, the service grounding defines the mapping between the semantic descriptions and
technological implementation in order to conduct the actual message exchange. The
commonly pointed out weakness of OWL-S are related to conceptual insufficiencies, in
particular, addressing the inadequacy of the process description language [29]. Related
to open services on the Web services, OWL-S provides a good basis for identifying the
semantic information, which needs to be included in the service description, in order
to effectively support the discovery, composition and invocation tasks.

WSMO. Another SWS description formalism is the Web Service Modeling On-
tology (WSMO) [30]. It defines four top-level notions including: 1) Onfologies that
define formalized domain knowledge; 2) Goals that describe the client’s objective in
using the Web service; 3) semantic description of Web services; and 4) Mediators for
enabling interoperability and handling heterogeneity. In contrast to other description
formalisms, WSMO propagates a goal-based approach for semantic Web services. A
client formulates requests in terms of goals, which formally describe the objective to
be achieved while abstracting from technical details. The task of the system is to au-
tomatically discover and execute Web services, which satisfy the client’s goal. In this
way, Web services are not described only in terms of their capabilities but also in terms
of problems that they solve. This approach is supported by the integrated mediators,
which enable the handling of potentially occurring heterogeneities.

WSMO is more exhaustive than OWL-S and promotes a goal-driven approach,
which goes beyond the idea of merely annotating Web services, aiming to provide
means of expressing service offers and needs. In addition, WSMO defines an own
specification language WSML [31] that covers all ontology languages that are consid-

12

ered for the Semantic Web, and provides reasoners for them. Moreover, there are im-
plementations of execution environments for Semantic Web services, namely WSMX
as the WSMO reference implementation (see www.wsmx.org) and IRS as a goal-based
broker for Semantic Web services [32].

Similarly to OWL-S, WSMO provides details about the semantic information nec-
essary for creating semantic descriptions of open services on the Web, which support
the automation of service tasks. In addition, WSMO provides a new perspective to
services by introducing the concept of goals. Maybe, this approach can successfully
be applied on open services, by describing services in terms of resource or data objec-
tives. Still, it is important to point out that both OWL-S and WSMO bring a certain
level of complexity, which requires developers with good ontological knowledge and
experience in using the formalisms. This somehow contradicts the current trend in
Web APIs, where the majority of the descriptions are given in simple HTML and the
technology is more accessible to less-trained developers.

SAWSDL. A more lightweight description formalism is the Semantic Annotations
for WSDL and XML Schema (SAWSDL) [33], which currently is the only official
W3C recommendation for semantic Web services. It defines a set of extension at-
tributes for WSDL, which enable the linking of semantic entities to the service de-
scription. SAWSDL consists of two parts: 1) Mappings of XML schema definitions
to ontology concepts, which specify the translation of data between the semantic layer
and the layer of technical implementation; and 2) Semantic annotation of WSDL oper-
ations through references to ontology concepts.

Although SAWSDL service annotations are not as expressive as OWL-S or WSMO
ones and adding of semantic information is limited to service properties associated
with semantic concepts, several recent works build on this light-weight SWS approach
[34], [8]. In the context of open services on the Web, the SAWSDL approach is very
promising because it enables adding semantic information directly on top of existing
service descriptions, by liking service keywords to ontology elements.

WSMO-Lite. SAWSDL supports the development of lightweight service descrip-
tion formats, in order to enable the creation of semantic Web service descriptions based
on limited amounts of service information. Such a lightweight format is WSMO-
Lite [34], which supports lightweight descriptions of WSDL services, by filling the
SAWSDL annotations with concrete service semantics. WSMO-Lite defines four as-
pects of service semantics including: 1) Information Model, which defines the data
model for input, output and fault messages; 2) Functional Semantics, which define the
functionality, which the service offers to a client when it is invoked; 3) Behavioral
Semantics, which define details specific to a service provider, or the service implemen-
tation or its running environment; and 4) Nonfunctional Descriptions, which define
nonfunctional service properties such as quality of service or price. These service
semantic are linked to a WSDL description by applying the SAWSDL annotation ap-
proach.

In particular, WSMO-Lite supports two types of annotations, namely reference an-
notations and transformation annotations. A reference annotation points from a WSDL
component (XML Schema message or type definition, interface, operation, binding,
service, or endpoint) to a WSMO-Lite semantic concept. A transformation annotation
specifies a data transformation called /ifting from a component of XML schema to an

13

element of ontology; and a reverse transformation (from ontology to XML) called low-
ering. A major advantage of the WSMO-Lite approach is that it provides means for
describing service semantics without really being bound to a particular service descrip-
tion format (for example, WSDL). As a result, service properties, for example, marked
with hRESTS, in an HTML description of a RESTful service can be used as annota-
tion points for linking WSMO-Lite semantic concepts in the same way as using service
properties described in WSDL.

MicroWSMO. In comparison to WSDL-based services, which have a somewhat
longer history of research on semantic descriptions and annotation approaches, re-
search in the area of semantic RESTful services is newer and therefore relatively
limited. MicroWSMO [8] is a formalism for the semantic description of RESTful
services, which is based on adapting the SAWSDL approach. MicroWSMO uses mi-
croformats for adding semantic information on top of HTML service documentation,
by relying on hRESTS for marking service properties and making the descriptions
machine-processable. It uses three main types of link relations: 1) model, which can
be used on any service property to point to appropriate semantic concepts identified
by URIs; 2) lifting and 3) lowering, which associate messages with appropriate trans-
formations (also identified by URIs) between the underlying technical format such as
XML and a semantic knowledge representation format such as RDF. Therefore, Mi-
croWSMO, based on hRESTS, enables the semantic annotation of RESTful services
in the same way in which SAWSL, based on WSDL, supports the annotation of Web
services.

In addition, MicroWSMO can be complemented by the WSMO-Lite service on-
tology specifying the content of the semantic annotations. Since both RESTful and
WSDL-based services can have WSMO-Lite annotations, this provides a basis for in-
tegrating the two types of services. Therefore, WSMO-Lite enables unified search over
both WSDL-based and RESTful services and tasks such as discovery, composition and
mediation can be performed based on WSMO-Lite, completely independently from the
underlying Web service technology (WSDL/ SOAP or REST/HTTP).

SA-REST. Another formalism for the semantic description of RESTful services is
SA-REST [9], which also applies the grounding principles of SAWSDL but instead
of using hRESTS relies on RDFa [27] for marking service properties. Similarly to
MicroWSMO, SA-REST enables the annotation of existing HTML service descriptions
by defining the following service elements: input, output, operation, lifting, lowering,
or fault and linking these to semantic entities. The main differences between the two
approaches are not the underlying principles but rather the implementation techniques.
In addition, MicroWSMO aims to add semantics as means for Web service automation,
while SA-REST is more oriented towards enabling tool support in the context of service
discovery and composition by mashup or smashup [35].

Even though, there is some initial research in the area of semantic RESTful ser-
vices, which can be used as a foundation for further work, none of the here described
formalism can be directly adopted for the creation of semantic descriptions, which
enable the seamless integration of open services on the Web in the Semantic Web.
The existing formats for creating machine-processable descriptions based on available
HTML descriptions, in particular hRESTS, do not support the identification of all ser-
vice elements usually provided within a Web API or Web application documentation.

14

For instance, most service descriptions include information about the necessary authen-
tication, the response format, and examples. However, currently none of the available
formats can represent this information.

Similarly, MicroWSMO and SA-REST, which are used specifically for the seman-
tic annotation, also have some limitations. For example, descriptions provided in ether
from very seldom provide enough information for automatic service invocation. There-
fore there is the strong need to identify the service elements, which need to be included
in the semantic service description, as well as the required semantic metadata.

2.3 Linked Data

Linked Data is used to refer to a set of principles describing the way for publishing and
connecting structured data on the Web [25]. Following these principles, data providers
can publish and link their data, contributing to the development of a global data space
— the Web of Data. Linked Data suggest that the same principles that enabled the Web
of documents to become so popular should be applies on data as well. In this way, data
coming from diverse domains, which has previously been hidden away in databases
or repositories, can be made available on the Web and interlinked with existing docu-
ments.

The Web of Data provides the basis for new types of applications, which can op-
erate on it. For example, data can be explored with the help of a browser such as
Tabulator [36], by following links to related data sources. In addition, it can be used
for building Web applications [37] or it can be searched and queried for a particular
topic of interest by simultaneously covering a number of linked sources.

By applying the underlying principles of the Web, Linked Data uses the Web to
create links between data coming from different sources. The resulting published data
is machine-readable, with explicitly defined meaning, and is linked to/from other exter-
nal data sets. In oder to conform to these requirements, there are a set of rules* defined
for publishing data on the Web in a way that it becomes part of a single global data
space. These rules are summarized below:

1. All items should be identified by using URISs.

2. Use HTTP URIs to enable looking up the item identified by the URI.

3. When looking up an URI, it leads to more data.

4. Links to other URIs should be included, which enables the discovery of more data.

These rules are commonly referred to as the “Linked Data Principles” and provide
the fundamental guidelines for using the Web infrastructure for publishing and con-
necting data. Therefore, these principles should be carefully evaluated, in the context
of open services on the Web, since services can operate on and manipulate the data, in
return providing output information, which can be linked to the Web of data as well.
The main technologies behind Linked Data includes HyperText Transfer Protocol
(HTTP), Uniforms Resource Identifiers (URIs) and Resource Description Framework
(RDF). HTTP and URI are essential technologies for the Web, where URI provides

‘http://www.w3.org/DesignIssues/LinkedData.html

15

means for identifying documents and other entities and HTTP enables the retrieving of
resources or entity descriptions based on the provided URI. These are supplemented
by RDF, which provides a graph-based data model for structuring and linking data that
describes things in the world.

By using these three underlying technologies and by following the linked data prin-
ciples, data providers can add their data to the global data space, where it can be dis-
covered and used by applications and users alike. There are three basis steps for pub-
lishing data sets as Linked Data:

1. Entities described by the data should be assigned URIs and these URIs, when re-
trieved over HTTP, should result in the corresponding RDF representations.

2. RDF links to other data sources on the Web should be defined.

3. The published data should be supplemented by metadata.

National

Semantic
Audio- Web.or ol
MySpace Scrobbler g onter "
Wrapper orpus
r‘\ v ﬁl" RAE
sac Crunch FOAF e 2001
Jom -
O N e E) NS :
DBLP
NV 1o A N\ re
e Geo- Froect wrapor / Virtsoso /R Explorer &
uoe names _berg 7 Sponger s “l\
BBC \ ‘w\- 2% \\
Programmes A Y/ open T X
/’ & A /] ‘Q.\
Yord ECs V |
oo

RDF Book
Mashup

As of July 2009

Figure 2.1: Linked Open Data Cloud

More detailed guidelines about how to publish linked data on the Web are available
in [38]. By following these steps for adding data sets and adopting the Linked Data
principles, the W3C’s Linking Open Data’ (LOD) project was developed. Figure 2.1 ¢
illustrates the data sets participating in the LOD. This is currently the most advanced
example of contributing to the Web of Data. The project aims to identify existing open

Shttp://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData
6Source: by Richard Cyganiak at http://richard.cyganiak.de/2007/10/1lod/

16

licensed data sets, to convert these to RDF and publish them on the Web. In this way,
by starting with only a few initially added data sets, more and more data sets can be
linked, leading to the bootstrapping of the Web of Data. Due to the opened nature
of the project anyone can publish a data set by following the Linked Data principles.
Currently, the cloud includes diverse information, including data about people, science
publication, books, geographical locations, music, films, and many more.

The resulting Web of data can be used as basis for developing a wide variety of new
applications, which can dynamically analyze and interpret the data, browse from one
data source to another by following the links, or collect and query data related to par-
ticular topic of interest. More importantly, in the context of open service on the Web,
linked data can be used as background information, used as support for suggesting ser-
vice annotations, but also it already provides a set of ontologies, which can directly
be used for semantically describing services. In addition, the resulting semantic de-
scriptions of open services on the Web can be published by following the linked data
principles and be directly integrated in the Web of data.

2.4 Supporting the Creation of Semantic Descriptions
of Open Services on the Web

This section describes research work related to supporting the creation of semantic de-
scriptions of open services on the Web (RQ2). The formalisms, which make HTML
service descriptions machine-processable and enable the adding of semantic informa-
tion, provide the means for creating semantic descriptions of open services on the Web.
However, without supporting tools or guidelines, the developer would have to modify
and enhance the descriptions manually by using a simple text/HTML editor. In ad-
dition, the complete annotation process would have to be manually completed, if the
developer cannot rely on tools, which will help him/her to find suitable domain ontolo-
gies or to reuse annotations of previously semantically described services. In order to
address these challenges and to facilitate the easier adoption of semantic description
of open services by supporting users in their creation, we consider research related to
1) acquiring semantic Web service descriptions, to 2) annotation recommendation and
finally, to 3) tools for visualizing and editing semantic data.

Acquisition of semantic Web service descriptions. There are a number of devel-
oped approaches aiming to support the acquisition of semantic Web service descrip-
tions. Paolucci et al [22] offers a simple solution by addressing the problem of creating
semantic metadata (in the form of OWL-S) from WSDL. The result is a syntactical
transformation of the WSDL description, which contains no semantic information be-
cause WSDL contains no semantic information, in the first place. A challenge that is
not addressed by this approach, is the mapping of WSDL-based service properties to
classes or instance in an ontology. In addition, the difficulty of determining a suitable
domain ontology for service annotation is also not discussed.

Sabou et al [23] tackles precisely this problem of creating suitable domain ontolo-
gies. She uses shallow natural language processing techniques to assist the user in
creating an ontology based on software APIs. The approaches are presented based

17

on two ontology building processes in the context of two concrete research projects,
revealing some of the major aspects necessary for building a Web service ontology.

Focusing on the Web service annotation task, Patil et al [39] applies graph sim-
ilarity techniques to select a relevant domain ontology for a given WSDL file from
a collection of ontologies. The presented approach involves also work on matching
XML schemas to ontologies in the Web Services domain. They use a combination of
lexical and structural similarity measures, based on the assumption that the user’s goal
is not to annotate similar services with one common ontology, but rather to use differ-
ent ontologies. Therefore, they also address the problem of choosing the right domain
ontology withing a set of ontologies.

Finally, Hess and Kushmerick [24] employ Naive Bayes and SVM machine learn-
ing methods to classify WSDL files in manually defined task hierarchies. In addition,
there are a number of approaches, which use existing Web service repositories, in par-
ticular UDDI, and enhance them with complex semantic markup [40], [41].

Currently, there are no approaches developed for RESTful services, which lack
structured descriptions such as WSDL files. Therefore the here described approaches,
which rely on the available syntactical information cannot be directly applied on open
services on the Web and some modifications are necessary in order to enable the pro-
viding of semantic annotations on top of existing HTML descriptions.

Annotation Recommendation. In general, the main aim of recommender sys-
tems is to assist users in making decisions among different alternatives, based on user
preferences. Or more precisely, recommender systems support users by identifying
interesting products and services in situations where the number and complexity of
offers outstrips the user’s capability to survey them and reach a decision [42]. In the
case of semantic service descriptions, recommender systems can be effectively used to
recommend suitable service annotations.

There are a number of recommender systems developed for the purpose of aiding
users in providing semantic information and these systems are particularly relevant
to our work on creating semantic descriptions of open services on the Web. TagAssist
[43] is a system, which provides tag suggestions for new blog posts by utilizing existing
tagged posts. Similarly, [44] uses collective intelligence extracted from collaborative
tagging, in addition to word semantics, in order to learn the best set of tags to use
for new blog entries. The approach presented in [45] is an adaptation of user-based
collaborative recommendation and graph-based recommender, which suggests tags for
different resources. All of these approaches use common recommender techniques,
profiting from semantic information, for the purpose of making the process of adding
semantic information on the Web easier, by suggesting tags and annotations.

Particularly in the context of semantic service descriptions, such annotation rec-
ommender systems can prove to be useful. There are different formats and methods
for creating semantic service descriptions, however, there are some main tasks, which
very commonly need to be addressed. These include the classification of the service
based on its functionality, the assigning of a domain ontology and the annotation of
the individual service properties. ASSAM [46], a tool, that assists a user in creating
semantic metadata for Web Services, offers a solution for some of these issues. It
automatically suggests semantic metadata based on two main machine learning algo-
rithms. The first one, aims to semantically classify Web service, while the second one,

18

facilitates recommendation of semantic annotations by aggregating data returned by
multiple semantically related Web services. A similar approach is taken in METEOR-
S [39], a framework for semi-automatically marking up Web service descriptions with
ontologies. The framework focuses on determining a relevant domain ontology and
annotating WSDL files, based on it. Classification is also applied by using domain on-
tologies to categorize Web services into domains. Both systems show very promising
experimental results.

METEOR-S addresses one of the main problems of creating semantic descriptions
of open services on the Web, namely, the determining of suitable domain ontologies.
Similarly to [23], some research on the semantic description of Web services focuses
on learning domain ontologies for service annotation. Such approaches are effective
because learnt ontologies are more service-specific and, therefore, more suitable for the
annotation than general purpose ontologies. However, this means that each service or
group of services has its own ontology and as a result, service discovery has to devote
processing tasks related to ontology mapping and concept matching, which would not
be the case if a set of common ontologies were used for the annotation. In addition,
instead of reusing annotations from already semantically described services, service-
based ontology learning adds additional complexity to the service annotation process.

Recently, with the growing use and popularity of the Semantic Web, there is an
abundance of semantic data available and the Semantic Web represents a very valuable
source of ontologies and background knowledge. This provides the basis for enchant-
ing existing techniques for annotation recommendation to use this semantic data. In
addition, there are tools such as Watson [47] and Sindice [48], which assist users in
searching for semantic tags and ontologies. For the semantic annotation of open ser-
vices on the Web this means that the Semantic Web provides the basis for the develop-
ment of less complex approaches, based on reusing existing data.

In contras to most recommendation approaches, Billsus and Pazzani [49] address
the problem in a different way. They suggest that the recommendation of alternatives
based on user ratings can be solved by transforming the recommendation problem into
a classification problem. Automatically assigning a Web service to a particular group
of services with similar functionality or similar application domain, already provides
semantic information, which directly contributers to the improved automation of ser-
vice discovery and composition tasks. Moreover, in some approaches, the classification
task can be equivalent to determining a suitable domain ontology for the annotation of
the service [50], in other approaches it can at least simplify the process of determining
a domain ontology and finally, sometimes [51] annotation recommendations are com-
puted as part of the classification process. Therefore, most approaches for acquiring
semantic Web service annotations rely on service classification. Commonly used clas-
sification approaches are the k-nearest neighbor, naive Bayes and Rocchio [51], while
naive Bayes is the most commonly used one. Support vector machines based on docu-
ment frequency values are also used in Web service classification and annotation [52].
A general survey of text-based classification is given by [53].

In summary, even though, the challenges of adding semantic information to Web
services have already been addressed in a number of approaches, there is a lot to be
done in the area of semantic descriptions of open services on the Web. In contrast
to WSDL-based services, Web API descriptions are text/HTML based and, therefore,

19

require information extraction preprocessing before the recommendation analysis and
the actual annotation can be performed. Still, some of the Web service classification
or domain ontology assigning approaches can be adapted and used for the semantic
description of open services on the Web.

Ontology Visualization and Annotation Tools. The process of semantic annota-
tion can be supported by ontology visualization tools, which enable users to view and
explore an ontology and to decide whether or not it can be used for the annotation of
a particular service. A good overview of current ontology visualization tools is pro-
vided in [54], including common tools with explorer-based view of the ontology such
as Protégé [55], OntoEdit [56], Kaon [57] and OntoRama [58].

Ontology visualization already provides some user support, however, functional-
ities such as adding or viewing annotations are even more relevant in the context of
supporting the creation of semantic descriptions of open services on the Web. There
are tools, which enable the annotation of Web content such as OntoMat-Annotizer and
SMORE. OntoMat-Annotizer is a web page annotation tool [59], which supports users
in creating and maintaining ontology-based OWL-markups. A similar tool is SMORE,
which enables users to markup HTML documents in OWL by using Web ontologies.
It includes some options for ontology editing and provides users with the possibility to
create a new ontology based on terms from web documents. The results of both tools
are a web page with attached markup.

PowerMagpie [60], [61] is a tool that uses semantic information in a quite different
way. PowerMagpie was initially implemented as a tool using ontologies to markup web
documents. Its current version has evolved into a semantically-enhanced web browser.
While browsing, PowerMagpie identifies and provides any available semantic markup,
which can be found on the Semantic Web. It is not restricted to one predefined ontol-
ogy, but rather accesses the whole of the Semantic Web through Watson and selects and
presents to the user relevant information. Tools such as PowerMagpie, lay the foun-
dation for the development of a tool for the semi-automatic acquisition of semantic
descriptions of open services on the Web.

In addition to web-content annotation tools, there are some desktop-based tools
which are particularly useful for the creation of semantic Web service descriptions.
These include WSMO Studio [62] and the Web Service Modeling Toolkit [63] (WSMT).
WSMO Studio is developed for modeling and creating semantic Web services and se-
mantic business processes. It provides a modeling and visualization framework for
assisting users working in the WSMO domain with tasks related to the semantic Web
service annotation. Similarly, the Web Service Modeling Toolkit (WSMT) comprises a
number of tools for semantic Web services, based on WSMO, WSML and WSMX, in-
cluding a Web Service Modeling Language visualizer, a WSML reasoner and a WSMX
data mediation mapping tool.

Currently, the only tool particularly targeted at the semi-automatic creation of se-
mantic Web service descriptions is ASSAM [46]. It includes a WSDL tree-based
viewer, a category browser, as well as a data types display and a service browser. These
components are common also for other annotation tools, however, the key feature of
the WSDL annotator is the ability to suggest which ontological concept to use for an-
notating service elements. The result is a higher level of automation in comparison to
other existing tools for creating semantic Web service descriptions.

20

Up to date, there are no tools developed for supporting the semantic annotation of
open services on the Web. However, existing tools for the annotation of WSDL-based
services can be analyzed and used for determining requirements and guidelines for
the necessary computational and visualization components. Approaches for ontology
visualization and browsing can be simplified and adopted from popular tools such as
Protégé. Since the majority of the existing Web APIs are described in HTML Web
pages, a necessary feature for a tool developed to support the creation of semantic
descriptions of open services on the Web would be the to be able to directly manipulate
the HTML content displayed in a Web browser, similarly to PowerMagpie.

2.5 Defining the Gap

Current research related to the creation of semantic descriptions of open services on the
Web provides a foundation, which can be extended by approaches and tools particularly
targeted at handling the challenges faced by open services. Still, there are a number of
gaps, which need to be addressed in order to enabled the more automated use of open
services on the Web and their seamless integration in the Semantic Web.

The following topics, which need to be targeted by future research, have been iden-
tified based on the analysis of the state of the art:
— There are no guidelines or formalisms, which specify the information, which needs
to be provided in a HTML-based Web API description.
— There are no rules or guidelines for the form and structure of HTML-based Web API
descriptions.
— Currently, there is no way of differentiating between Web API descriptions and com-
mon Web pages, which plays an important role for achieving higher automation of the
service discovery task.
— Since the majority of the open services on the Web are described in plain HTML
within normal Web pages, there is the need of a formalism for describing open services
in a machine-processable, so that:

1. The formalism can be applied on existing Web API descriptions;

2. The resulting description can easily support adding of semantic annotations;

3. The resulting description preserves the lightweight characteristic of open ser-
vices on the Web;

4. All service elements contained in the unstructured documentation can be re-
flected in the resulting formal description.
— There is no common repository (such as UDDI), where semantic descriptions of open
services on the Web can be published, annotated and searched.
— It is necessary to define the minimum but sufficient semantic information required
for supporting automation of open service discovery, composition and invocation.
— There is a need for a formalism for the semantic description of open services on the
Web (this can incorporate the formalism for machine-procesable descriptions), which
provides sufficient metadata for supporting the automation of service tasks.
— Currently there are no tools that support the creation and use of semantic open ser-
vices on the Web.
— All tasks related to semantic open services on the Web have to be completed manu-

21

ally by the user.
— Developers need to be supported by tools and approaches, which reduce the manual
effort required for creating semantic descriptions of open services on the Web.

Some of the here identified topics of future research are addressed in our work
on the creation of semantic descriptions of open services on the Web. The following
chapter described the followed research approach, initial work and results, as well as a
roadmap of the planned future work.

22

Chapter 3

Open Services on the Web

The goal of the here described PhD work is to explore the possibilities of combin-
ing Semantic Web technologies and fundamental Web principles, including URIs and
HTTP, and to apply these on open services on the Web, in order to contribute to a Se-
mantic Web, which is not only an extension of the current Web with more semantic
descriptions of data but is rather more dynamic and seamlessly integrates services as
sources of that data, which can be automatically discovered, composed and executed
by the computer on behalf of its user. In particular, this goal will be achieved by sup-
porting the creation of semantic descriptions of open services on the Web, which
are the basis for the automation of service discovery, compositions and invocation, by
providing an access layer, which abstracts from the actual technical implementation
and enables data manipulation based on semantic entities. This will enable a Semantic
Web, where users can retrieve information without differentiating weather its source is
a website, a Web API or even a mashup.

3.1 Approach and Research Contribution

The here proposed approach is to create a semantic layer on top of existing Web API
descriptions, which enables the automation of service discovery, composition and in-
vocation. The approach includes three main parts. First, a formalism for the semantic
description of open services on the Web will be developed. This formalism is based
on a service model, which is defined by analyzing common open service descriptions
and annotation requirements. Second, a methodology for the creation of semantic
descriptions of open services on the Web will be developed, which enables applying
the designed formalism on existing HTML documentation. Third, developer support
will be provided, including tools, which hide formalism complexities behind a user
interface, and automated techniques, which will reduce the manual effort required for
service annotation by suggesting suitable service metadata. In this way, the formal
solutions can be directly put into practice by using the implemented tools.
The envisioned research work is divided into three main phases.

23

Phase 0: Analysis of current descriptions of open services on the web

This phase focuses on completing preliminary work necessary for the creation of se-
mantic descriptions of open services on the Web. In particular, this includes:

— Analysis of current state of the art in areas directly related to open services on the
Web.

— Completion of a literature review, based on this analysis.

— Analysis of common Web API descriptions and identification of description types
and main description characteristics.

— Identifying a set of common service elements, contained in current Web API descrip-
tions.

— Collection of requirements for the annotation of open services on the Web.

— Identifying use cases for a tool supporting developers in the creation of semantic de-
scriptions of open services on the Web.

— Collection of tool requirements.

Phase 1: Manual creation of semantic descriptions of open services on the Web
This phase focuses on: 1) developing an initial methodology for the creation of seman-
tic descriptions of open services on the Web; 2) drafting a first version of the description
formalism; and 3) implementing supporting tool prototypes. In detail this includes:

— Defining an initial set of service elements, which need to be contained in the service
description.

— Extending these with information required for service discovery, composition and
invocation.

— Definition of a open service model based on the identified common service elements.
— Based on the service model, define a formalism for the semantic description of open
services on the Web.

These first four tasks will not be completed in a sequential manner but rather in an itera-
tive way, where experience gained through initial implementation work and methodol-
ogy development is reflected though refinement in the service model and the developed
formalism.

— Initial description of the process of creating semantic descriptions of open services
on the Web.

— Initial draft of a methodology and guidelines for creating semantic descriptions of
open services on the Web.

Similarly, these two tasks will also be performed in an iterative manner and will lead
to the refinement of the results.

— Identification of sources of domain ontologies and possible approaches for searching
for domain ontologies.

This step can be replaced by already existing ontology learning approaches, if the ini-
tial results show that reusing already available ontologies on the Web is not feasible. A
hybrid solution is also possible.

— Initial design and architecture for supporting tools.

— Initial components implementation.

— Initial set of user guidelines for creating semantic descriptions of open services on
the Web.

It is important to point out that some of these tasks can be performed in parallel, while

24

others are tightly related and result in valuable feedback, which can change the ini-
tial design. Therefore, it is necessary to cross-analyze the results and identify possible
gaps, incompleteness or even conflicts.

Phase 2: Automating the creation of semantic descriptions of open services on
the Web

This phase relies on the results of Phase 1, which provides complete support for the
manual creation of semantic descriptions of open services on the Web. It identifies
tasks, which have the potential to be automated, and develops solutions, which require
less manual effort and user interaction. In particular, this includes:

— Parsing and processing of service descriptions in order to automatically identify ser-
vice properties. (Developing of heuristics and language processing techniques espe-
cially targeted at identifying service properties.)

The service properties identified by this task will be visually highlighted in the service
description, so that the user can easily recognize possible mistakes and validate the
results. These service properties will serve as the basis for attaching semantic informa-
tion.

The task of recommending suitable annotations for the service as a whole and for the
separate service properties is a very challenging one. Therefore, an initial solution
will be developed by reducing the complexity of the problem. This is achieved by
focusing on groups of services belonging to a common functionality domain (for ex-
ample, weather services or geographic services). In this way, a restricted number of
domain ontologies can be used for annotating all services. It is important that the cho-
sen domains contain enough service examples, so that the developed approach can be
extended and generalized.

— Determining a set of fixed domains (3-4 domains), with a sufficient number of ser-
vices. This task will be completed by manually searching for Web API descriptions
in service repositories, such as programmableweb, or directly searching the Web by
using a set of characteristic key words such as “Web API, REST web service, REST
web service documentation, etc.”. The goal is to identify three or four domains such
as messaging, mapping, financial, photos and travel, each containing at least 40-50
services, which can be used as the basis for developing a recommendation approach
and performing experiments. If initial results show that these numbers are insufficient,
more services will be collected.

— Developing an annotation recommendation approach and implementation for these
particular fixed domains.

— Refining the domain ontologies search methods defined in Phase 1.

— Developing an approach for service classification, which will automatically assign
services to a particular domain.

— Extrapolating the domain-specific annotation recommendation approach to a general
annotation recommendation approach. The service classification approach, in com-
bination with the annotation recommendation approach, will provide support for au-
tomating the process of creating semantic descriptions of open services on the Web.

— Extending the tool support developed in Phase 1.

Similarly to Phase 1, these tasks will also be performed in an iterative manner, using
results to improve already developed solutions and to refine the overall approach.

25

Initial work, following the here described approach, has already been completed
and is described in the next section.

3.2 Completed Work and Initial Results

Following the approach described in the previous section and the tasks list for the
different phases, in summary, Phase 0 is almost complete, while Phase 1 in mostly
work in progress, and Phase 2 will shortly be intiated. The completed work and initial
results are described in detail if the following sections.

As part of the tasks done for Phase 0, a literature review was completed, which was
partially summarized in the state of the art section of this report. In addition, a manual
analysis of Web API descriptions was performed, identifying: 1. elements which are
common for most of the descriptions; 2. typical description structures; 3. common de-
scription types; and 4. description forms. This analysis resulted in a preliminary list of
common service elements found in Web API descriptions and in the definition of three
main types of services. These findings were published as part of two workshop papers
at OnTheMove, Nov. 2009 [64], and ISWC, Oct. 2009 [65]. There is still some work
to be done on determining a minimal service model, based on the semantic information
required for supporting the automation of discovery, composition and invocation tasks.

In addition to doing initial work for defining a formalism for the semantic descrip-
tion of open services on the Web, some preparation for the implementation of tools was
also done. In particular, potential use cases were determined based on the scenarios
defined in the SOA4All' project and initial set of requirements were derived. These
results were used for developing and initial implementation and architecture design
of an overall solution, which is visualized in Figure 3.1. Some of the components such
as the Document Analysis component were rather designed as a black-box component
because at this stage the particular approach was not clear (to be completed in Phase
2). While other components such as the Visualization component and the Ontologies
Access component were realized in actual implementations, shortly after the design
was complete.

Data
Preprocessing

Document

% Visualization : Annotations Recommender
1

Gul GuI L Gul

Analysis

: v
H Crawled

n TP, x Services
1
i
' Ontologies Access

7 : o ,
Events Service Data — Relationship
Controller Preprocessing C—J Analysis

Internal
Model

Figure 3.1: Initial Architecture

The work on the description formalism and on the supporting tool implementation
was always done almost in parallel, integrating results on semantic description of open
services on the Web into the prototype implementations and vice versa. This resulted in

Thttp://www.soadall.eu/

26

the development of an initial approach for the creation of semantic descriptions of
open services on the Web and two tool implementations, targeted at supporting users
in two different use cases. The developed approach is very lightweight and is based on
using the hRESTS microformat (for details see Section 2.1), which enables the creation
of machine-processable Web API descriptions based on available HTML documenta-
tion. hRESTS is complemented by the MicroWSMO microformat (See Section 2.3),
which introduces additional HTML classes, in order to enable the specification of a
model reference. This approach was chosen because hRESTS and MicroWSMO are
very lightweight and easy to use (as opposed to RDFa and SA-REST). In addition,
they enable the creation of semantic descriptions on top of existing HTML documen-
tation, which is an important feature, since the majority of the Web APIs are textually
described in Web pages. In this way, hRESTS and MicroWSMO can be used as a ba-
sis for identifying gaps in the machine-processable description and lacking semantics,
which are necessary for the automation of the discovery, composition and invocation
tasks.

In order to be able to verify the applicability of this initial approach for formal
description of semantic open services on the Web, two tool implementations of Mi-
croWSMO editors were developed. As a result, the integrated creation of MicroWSMO-
based semantic service descriptions is realized. The MicroWSMO editor, as the name
suggests, supports users in creating MicroWSMO semantic annotations. We have de-
cided to call it SWEET: Semantic Web sErvices Editing Tool and SWEET currently
has a website? providing up to date information and a demo site®, where users can
directly test the tools.

") Ribbit Send SMS Service - Mozilla Firefox

File Edit View History Bookmarks Tools Help

OFcx . ER [»

|2| Most Visited | SWEET b5 Bing [loading . Test Service 1 [Test Service 2) GeoNames Web Service . | | Ribbit Send SMS Service >
SWEET SR I~
hREST Tags -
=] -‘1 hitpuilw ww . wsmo.org/na/hrests#
s d s MS @ service™
en (@ Address
@ Label %
{3 Operation %>
Example usage G Input &
?recipient=tel:447712345678smessage=mes| @ output >
SendSMS Method Service Properties +
recipient Domain Ontologies + (L
I‘;\‘lstlqu recipent phone numbers in the format "tel:" followed by an international phone number (e.g. 44771 P -
He
Details
message
Content of the message. Please select some text on the page, then
click on the wand symbol
sender
Optional. Sender of the message. s Export

/| Il

Figure 3.2: SWEET: Browser-based Version

2http://sweet.kmi.open.ac.uk/
3http://sweetdemo.kmi.open.ac.uk/

27

The MicroWSMO editor is implemented in two main versions. The first ver-
sion takes the form of a vertical widget displayed within a web browser. It is very
lightweight and can be used to directly annotate RESTful service descriptions visu-
alized in the browser window. The second implementation is integrated in a fully-
fledged platform for the creation, discovery, composition, invocation and monitoring
of services, which is part of the SOA4All project. Both MicroWSMO editor imple-
mentations share common main functionalities:

o Creating machine-processable service descriptions by inserting hRESTS micro-
format tags in the HTML documentation, in order to mark service properties
(service, operation, address, HTTP method, input, output and label).

o Integrated ontology search for linking semantic information to service properties
by using Watson.

o Creating semantic service annotations by inserting MicroWSMO model refer-
ence tags, pointing to the associated semantic meaning of the service properties.

e Saving of semantically annotated HTML RESTful service description.

e Automatic extraction of RDF MicroWSMO service descriptions, based on the
annotated HTML, and saving of the resulting RDF.

Each of the MicroWSMO editor implementations addresses different user needs
and supports different use cases. The browser-based lightweight version (figure 3.2) is
suitable for users who are browsing for RESTful services and want to directly annotate
the currently displayed description. Whenever a user wants to create MicroWSMO
annotations of the currently viewed service, he/she can simply click on the bookmarklet
of the MicroWSMO editor, initiate it and directly use it.

Semantic Description + | Mavigator % imnotation Edibor
4 [nrest http:/fopen.3scale.net/happenthappenr s
] service1 happent API - inmert hTags
4 «f hilp s wsmo.onginss

@ Senvice
@ Label

Al ould be directed at Mipihappens 2acale net @ Metnod

Example usage @ Asdress

t 3 ' X . & Operation
4l f s phpTuser Al
@
wxd <)
14 —
getEvents Metho
received ram Haj order o que ehze
Hagpan] is w
Service Propes s =
-
Save 4] | R Doman Crivloges
console Arnotatons

Figure 3.3: SWEET: Platform-integrated Version

28

On the other hand, the implementation of the MicroWSMO editor, integrated in
the fully-fledged platform (Figure 3.3), is suitable in cases where the user performs
multiple tasks, in addition to RESTful service annotation, and where a set of RESTful
services are already known in the platform, for example through a crawler component.
For instance, the user can annotate a multitude of services from the same domain and
switch between the MicroWSMO editor and the WSMO-Lite editor, depending on the
service type. After the services are annotated, he/she can use them in service compo-
sitions or directly execute them. Such more complex use cases are better facilitated by
the platform-integrated MicroWSMO editor. Still both implementation can be used to
support both use cases, even though one is more suitable than the other.

The challenge of finding appropriate domain ontologies for the service annotation
was solved in an integrated way by using Watson [47]. Watson enables the search for
ontologies based on keywords, which are matched against semantic entities’ labels. In
this way, the user can directly select a service property in the RESTful service descrip-
tion and simply by clicking on a button in the MicroWSMO editor, find ontologies that
can directly be used for the annotation.

The results of the here described initial approach and implementation were pub-
lished in the form of two posters at ESWC, May 2009 [66], and STI Offsite, May
2009 [67], one demo at ISWC, Oct. 2009 [68], two workshop papers at OnTheMove,
Nov. 2009 [64], and ISWC, Oct. 2009 [65], and two project deliverables for SOA4All
in Feb. 2009 [69], and Aug. 2009[70]. Future work in the short term will focus on
collecting evaluation results of the initial approach and the two tool implementations.
After this, work on the annotations recommendation will be initiated by defining three
or four fixed service domains and developing a recommendation approach within these
domains. The following section shortly describes the planned progress of the PhD
work for the next two years.

3.3 Progress Plan

Table 3.1 summarizes the main activities planned for the second year of this PhD work.

The work will follow the already outlined approach, focusing both on the develop-
ment of a formalism and a methodology for the semantic description of open services
on the Web as well as on implementing the corresponding tool support. In particular,
implementation work will be divided into two main parts, initially focusing on de-
veloping new tool functionalities and subsequently working on refining the resulting
implementation, improving the usability and stability, and reacting to user feedback.
In order to support the uptake and increase the impact of the research work, extra care
will be devoted to dissemination activities, going beyond the presentation of results at
conferences and workshops. Dissemination will be conducted through standardization
channels and established community sites or bodies on the Web. These activities will
also be continuously pursued during the third and final year.

Evaluation of the current results will be conducted periodically, at least every three
months. For this purpose, during the first year, a concrete use case will be designed,
which will serve as the basis for testing and measuring the progress and the completed
work. In addition, analysis of existing mashups and other application areas of ser-

29

Table 3.1: Progress Plan for the Second Year

M1 M2 M3 M4 M5 M6 M7 M8 M9 M 10M 11M 12
Internal Seminar I X
Internal Seminar IT X
Implementation Work X X | X |X | X
Impl. Refinement X [X | X | X X | X | X
IDissemination Activities X | X | X X | X | X
I[Evaluation X X X X
Conference Submission X | X [X [X [X | X |[X X X
Report Research School I | X
Report Research School 11 X
Thesis Overview X [X
2nd Year Report X
2nd Year Viva X
vices will be used to determine the adequacy and automation support provided by the
developed semantic description for service on the Web.

Table 3.2: Progress Plan for the Third Year

M1 M2 M3 M4 M5 M6 M7 M8 M9 M 10M 11M 12
Internal Seminar III X
Impl. Refinement X [X [X [X | X |[X
Impl. Maintenance X | X | X X | X | X
Dissemination Activities X [X [X [X |[X [X |[X |[X |X X | X | X
[Evaluation X | X X |X
Conference Submission X [X [X [X | X [X |[X | X |X X | X
Report Research School 11T X
Thesis Writing X | X [X [X | X |X X | X
Thesis Submission X
3nd Year Viva X

The third year will not focus so much on producing new results and implemented
components but rather on making the achieved progress visible. This will be done
through the intensive participation in conferences and workshops. The two main en-
visioned conferences are ESWC (submission deadline in December) and ISWC (sub-
mission deadline in June). Naturally, one of the main tasks, which has to be completed
during this final year, is the documentation of the made contributions and results in the
form of a thesis.

30

3.4 Conclusion

Currently, Web applications and APIs are becoming more and more popular, however,
the general adoption of open services on the Web is hindered by the fact that they can-
not be found, interpreted and invoked without the extensive user involvement and a
multitude of manual tasks. This challenges can be addressed through the creation of
machine-processable descriptions, which serve as the basis for automatically finding
services, through crawlers and search engines, and processing them. Moreover, ex-
tended with semantic annotations, open services on the Web can even be discovered,
composed and invoked automatically, following the principles of the SWS research.
Therefore the goal of this PhD work is to explore the possibilities of combining Se-
mantic Web technologies and fundamental Web principles, in order to contribute to a
Semantic Web, which seamlessly integrates services.

This report provides an overview of the approach for the creation of semantic de-
scriptions of open services on the Web. It also describes some initial results, including
an integrated lightweight approach for formally describing RESTful services based on
MicroWSMO. This initial approach uses two microformats: the hRESTS microformat
that enables the tagging of key service properties and therefore supports the creation
of machine-processable service descriptions; and the MicroWSMO microformat that
enables the linking of semantic information to service properties. The approach is fa-
cilitated by two implementations of a MicroWSMO editor, which effectively supports
users in creating semantic descriptions of open services on the Web, by providing func-
tionalities for both the creation of machine-processable descriptions and the addition
of semantic annotations based on hRESTS and MicroWSMO.

Future work will focus on developing a formalism for the semantic description of
open services on the Web, based on the results of the initial MicroWSMO approach,
which will be used to identify information gaps and missing semantics. In addition,
work will be devoted to developing an initial annotation recommendation approach, in
order to reduce the number of manual tasks that the user has to complete. Future work
will also include the development of supplementary functionalities of the MicroWSMO
editors, which will provide additional user support. Also, some work will be devoted to
the automatic recognition of service properties such as operations and input parameters,
so that the user only has to verify the pre-marked service properties.

31

Bibliography

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. 2001.
[2] T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.
[3] L. Richardson and S. Ruby. RESTful Web Services. OReilly, May 2007.

[4] R. T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, 2000.

[5] W3C WS Description Working Group. Web service description
language (WSDL) Version 2.0, W3C proposed recommendation.
http://www.w3.org/TR/wsdl20-primer, May 2007.

[6] M. J. Hadley. Web application description language (WADL). Technical report,
Sun Microsystems. https://wadl.dev.java.net, November 2006.

[7] Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. hRESTS: an HTML Mi-
croformat for Describing RESTful Web Services. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), 2008.

[8] J. Kopecky and T. Vitvar. MicroWSMO. CMS Working Draft.
http://www.wsmo.org/TR/d38/v0.1/20080219/, February 2008.

[9] A.P.Sheth, K. Gomadam, and J. Lathem. SA-REST: Semantically interoperable
and easier-to-use services and mashups. IEEE Internet Computing, 11(6):91-94,
2007.

[10] Jonathan Douglas Lathem, John Miller, and Lakshmish Ramaswamy. SA-REST:
Bring the power of semantics to REST-based web services. Master’s thesis, Uni-
versity of Georgia, August 2007.

[11] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Com-
puting: A research roadmap. International Journal of Cooperative Information
Systems, 17(2), 223-255, 2008.

[12] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2003.
[13] G. Alonso, F. Casati, H. Kuno, and V. Machira ju. Web services: Concepts,

architectures and applications. Data-Centric Systems and Applications, 2004.

32

[14] W3C WS Description Working Group. Web service description language
(WSDL) Version 1.1, W3C Note. http://www.w3.org/TR/wsdl, March 2001.

[15] W3C WS XML Protocol Working Group. Simple Object Access Protocol
(SOAP) Version 1.2, April 2007.

[16] S. Mcllraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46-53, 2001.

[17] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and
J. Domigue. Enabling Semantic Web Services. The Web Service Modeling Ontol-
ogy. Springer, Berlin, Heidelberg, 2006.

[18] Alex Rodriguez. RESTful Web services: The basics. IBM developerWorks,
November 2008.

[19] B. Worthen. Mashups sew data together: Mashup tools can cut costs, time for
linking information sources. The Wallstreet Journal, 31 July, 2007.

[20] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource
Identifier (URI): Generic syntax. http://tools.ietf.org/html/rfc3986, 2005.

[21] Steve Vinoski. Putting the "web” into web services: Interaction models, part 2.
IEEE Internet Computing, 6(4):90-92, 2002.

[22] M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. Towards a semantic
choreography of web services: From WSDL to DAML-S. In First International
Conference on Web Services (ICWS’03), June 2003.

[23] M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt. Learning domain on-
tologies for semantic web service descriptions. Journal of Web Semantics, 3(4),
2005.

[24] A. Hess and N. Kushmerick. Machine learning for annotating semantic web ser-
vices. In AAAI Spring Symposium on Semantic Web Services, March 2004.

[25] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems (IJSWIS), 2009.

[26] R. Khare and T. Celik. Microformats: a pragmatic path to the semantic web
(poster). In Proceedings of the 15th international conference on World Wide Web,
2006.

[27] RDFa in XHTML: Syntax and Processing. Recommendation W3C.
http://www.w3.org/TR/rdfa-syntax/, October 2008.

[28] D. Martin. OWL-S: Semantic Markup for Web Services. W3C member submis-
sion, 22 November 2004. http://www.w3.org/Submission/OWL-S/, 2004.

[29] R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of
WSMO and OWL-S. In Proceedings of the European Conference on Web Ser-
vices, 2004.

33

[30] D. Roman, U. Keller, H. Lausen, J. Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied
Ontology, pages 1(1): 77 — 106, 2005.

[31] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu,
M. Kifer, and D. Fensel. The Web Service Modeling Language (WSML).
http://www.wsmo.org/TR/d16/d16.1/v0.2/, 2005.

[32] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and
C. Pedrinaci. IRS-III: A Broker-based Approach to Semantic Web Services. Jour-
nal of Web Semantics, 2008.

[33] J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema
(SAWSDL). W3C recommendation. http://www.w3.0rg/TR/2007/REC-sawsdI-
20070828/, August 2007.

[34] T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel. WSMOLite annotations for web
services. Sth European Semantic Web Conference, ESWC 2008, In The Semantic
Web: Research and Applications:Springer, 2008.

[35] A. Sheth, K. Verma, and K. Gomadam. Semantics to energize the full services
spectrum. Comm. ACM, pages vol. 49, no. 7, pp.55-61, 2006.

[36] Tim Berners-lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and
analyzing linked data on the semantic web. In In Proceedings of the 3rd Interna-
tional Semantic Web User Interaction Workshop, 2006.

[37] Michael Hausenblas. Exploiting linked data to build web applications. [EEE
Internet Computing, 13(4):68-73, 2009.

[38] Chris Bizer, Richard Cyganiak, and Tom Heath. How to publish linked data on
the web. 2007.

[39] Abhijit Patil, Swapna Oundhakar, Amit Sheth, and Kunal Verma. METEOR-S
web service annotation framework. pages 553-562. ACM Press, 2004.

[40] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder. A method for semantically
enhancing the service discovery capabilities of UDDI. IIWeb, pages 87-92, 2003.

[41] J. Luo, B. Montrose, and M. Kang. An approach for semantic query processing
with UDDI. OTM Workshops, pages 89-98, 2005.

[42] Loren Terveen and Will Hill. Beyond recommender systems: Helping people
help each other. In HCI in the New Millennium, pages 487-509. Addison-Wesley,
2001.

[43] Sanjay C. Sood and Kristian J. Hammond. TagAssist: Automatic tag suggestion
for blog posts. In In International Conference on Weblogs and Social, 2007.

34

[44]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

Sigma On Kee Lee and Andy Hon Wai Chun. Automatic tag recommendation for
the web 2.0 blogosphere using collaborative tagging and hybrid ANN semantic
structures. In ACOS’07: Proceedings of the 6th Conference on WSEAS Interna-
tional Conference on Applied Computer Science, pages 88-93, 2007.

Robert Jaeschke, Ro Marinho, Andreas Hotho, Lars Schmidt-Thieme, and Gerd
Stumme. Tag recommendations in folksonomies. In PKDD, pages 506-514.
Springer, 2007.

A. Hess, E. Johnston, and N. Kushmerick. @ ASSAM: A tool for semi-
automatically annotating semantic web services. In Proceedings of the 3rd In-
ternational Semantic Web Conference (ISWC), 2004.

M. d’Aquin, M. Sabou, E. Motta, S. Angeletou, L. Gridinoc, V. Lopez, and
F. Zablith. What can be done with the Semantic Web? an overview of Watson-
based applications. In 5th Workshop on Semantic Web Applications and Perspec-
tives, 2008.

Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving the
open linked data. In Proceedings of the International Semantic Web Conference
(ISWC), 2007.

Michael J. Pazzani and Daniel Billsus. Content-based recommendation systems.
In The Adaptive Web: Methods and Strategies of Web Personalization. Volume
4321 of Lecture Notes in Computer Science, pages 325-341. Springer-Verlag,
2007.

Andreas Hess and Nicholas Kushmerick. Automatically attaching semantic meta-
data to web services. In Proceedings of [IWeb, pages 111-116, 2003.

Nicole Oldham, Christopher Thomas, Amit Sheth, and Kunal Verma. METEOR-
S web service annotation framework with machine learning classification. In
Proc. of the 1 st Int. Workshop on Semantic Web Services and Web Process Com-
position (SWSWPC), 2004.

Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, and Rita Scog-
namiglio. An approach to support web service classification and annotation. In
Proc. of IEEE International Conference on e-Technology, e-Commerce and e-
Service, pages 138—143. IEEE Press, 2005.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In Proceedings of the Fourteenth International Conference
on Machine Learning table of contents, 1997.

Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and Eu-
genia Giannopoulou. Ontology visualization methods—a survey. ACM Comput.
Surv., 39(4):10, 2007.

35

[55]

[56]

[57]
(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

N.F. Noy, R.W. Fergerson, and M.A. Musen. The knowledge model of Protégé-
2000: Combining interoperability and flexibility. Lecture Notes in Computer
Science, 1937:69-82, 2000.

York Sure, J”urgen Angele, and Steffen Staab. OntoEdit: Guiding ontology de-
velopment by methodology and inferencing. In CooplS/DOA/ODBASE, pages
1205-1222, 2002.

KAON. http://kaon.semanticweb.org/.

Peter Werner Eklund, Nataliya Roberts, and Steve P. Green. OntoRama: Brows-
ing an RDF ontology using a hyperbolic-like browser. In The First International
Symposium on CyberWorlds (CW2002), Theory and Practices, pages 405—411.
IEEE press, 2002.

Siegfried Handschuh and Steffen Staab. Authoring and annotation of web pages
in CREAM. In WWW °02: Proceedings of the 11th international conference on
World Wide Web, pages 462473, New York, NY, USA, 2002. ACM.

M. Dzbor, E. Motta, and J. Domingue. Magpie: Experiences in supporting Se-
mantic Web browsing. Web Semantics: Science, Services and Agents on the
WWW, 2007.

Mathieu d’Aquin, Enrico Motta, Martin Dzbor, Laurian Gridinoc, Tom Heath,
and Marta Sabou. Collaborative semantic authoring. IEEE Intelligent Systems,
23(3):80-83, 2008.

M. Dimitrov, A. Simov, M. Konstantinov, L. Cekov, and Momtchev V. WSMO
Studio - a semantic web services modelling environment for WSMO (system
description). In Proceedings of the 4th European Semantic Web Conference
(ESWC). Number 4519 in LNCS, 2007.

Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel. The Web Ser-
vice Modeling Toolkit - An integrated development environment for semantic
web services (system description). In Proc. of the 4th European Semantic Web
Conference (ESWC), pages 789-798, 2007.

M. Maleshkova, J. Kopecky, and C. Pedrinaci. Adapting SAWSDL for semantic
annotations of RESTful services. In Beyond SAWSDL at OnTheMove Federated
Conferences and Workshops, 2009.

M. Maleshkova, C. Pedrinaci, and J. Domingue. Supporting the creation of se-
mantic RESTful service descriptions. In Service Matchmaking and Resource Re-
trieval in the Semantic Web (SMR2) at 8th International Semantic Web Confer-
ence, 2009.

M. Maleshkova, L. Gridinoc, C. Pedrinaci, and J Domingue. Supporting the semi-
automatic acquisition of semantic RESTful service descriptions. In Poster session
of the European Semantic Web Conference, ESWC, 2009.

36

[67] M. Maleshkova, L. Gridinoc, C. Pedrinaci, and J Domingue. Semi-automatic
acquisition of semantic RESTful service descriptions. In Poster session of 2nd
STI International Offsite, 2009.

[68] M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantically annotating REST-
ful services with SWEET. In Demo session at 8th International Semantic Web
Conference ISWC, 2009.

[69] M. Maleshkova, G. A. Rey, and A. Simov. D2.1.3 Service provisioning platform
first prototype documentation. In SOA4All Deliverables, August 2009.

[70] C. Pedrinaci, M. Maleshkova, G. A. Rey, C. R. Moreno, S. Dietze, and
A. Gugliotta. D2.1.1 Service provisioning platform design. In SOA4All Deliv-
erables, March 2009.

37

	cp.pdf
	ReportVersion2-20091221.pdf

