
SemSearch: A Search Engine for the Semantic
Web

Yuangui Lei, Victoria Uren, and Enrico Motta

Knowledge Media Institute (KMi), The Open University, Milton Keynes,
{y.lei, v.s.uren, e.motta}@open.ac.uk

Abstract. Semantic search promises to produce precise answers to user
queries by taking advantage of the availability of explicit semantics of
information in the context of the semantic web. Existing tools have been
primarily designed to enhance the performance of traditional search tech-
nologies but with little support for naive users, i.e., ordinary end users
who are not necessarily familiar with domain specific semantic data, on-
tologies, or SQL-like query languages. This paper presents SemSearch,
a search engine, which pays special attention to this issue by hiding the
complexity of semantic search from end users and making it easy to use
and effective. In contrast with existing semantic-based keyword search
engines which typically compromise their capability of handling complex
user queries in order to overcome the problem of knowledge overhead,
SemSearch not only overcomes the problem of knowledge overhead but
also supports complex queries. Further, SemSearch provides comprehen-
sive means to produce precise answers that on the one hand satisfy user
queries and on the other hand are self-explanatory and understandable
by end users. A prototype of the search engine has been implemented
and applied in the semantic web portal of our lab. An initial evaluation
shows promising results.

1 Introduction

One important goal of the semantic web is to make the meaning of information
explicit through semantic mark-up, thus enabling more effective access to knowl-
edge contained in heterogeneous information environments, such as the web. Se-
mantic search plays an important role in realizing this goal, as it promises to
produce precise answers to user’s queries by taking advantage of the availability
of explicit semantics of information.

For example, when searching for news stories about phd students, with tra-
ditional searching technologies, we often could only get news entries in which
the term “phd students” appears. Those entries which mention the names of
students but do not use the term “phd students” directly will be missed out.
Such news entries however are often the ones that the user is really interested
in. In the context of the semantic web, where the meaning of web content is
made explicit, the semantic meaning of the keyword (which is a general concept
in the example of phd students) can be figured out. Furthermore, the underly-
ing semantic relations of metadata can be exploited to support the retrieving of



2 Y.Lei et. al

information which is closely related to the keyword. Thereby, the search perfor-
mance can be significantly improved by expanding the query with instances and
relations.

A number of semantic search tools have been recently developed [5, 4, 7, 2,
9, 6]. Our overview of the state-of-art semantic search tools reveals that while
these tools do enhance the performance of traditional search technologies, they
are however not suitable for naive users, i.e. ordinary end users who are not
necessarily familiar with domain specific semantic data, ontologies, or SQL-like
query languages. The semantic search engine we present here, SemSearch, pro-
vides several means to address this issue.

– SemSearch tackles the problem of knowledge overhead by supporting a Google-
like query interface. As will be described in Section 4, the proposed query
interface provides a simple but powerful way of specifying queries.

– SemSearch addresses the problem of existing semantic-based keyword search
engines by supporting complex queries. It provides comprehensive means to
make sense of user queries and to translate them into formal queries.

– SemSearch takes the focus of user queries into consideration when generating
formal queries, thus being able to produce precise results that on the one
hand satisfy user queries and on the other hand are self-explanatory and
understandable by end users.

Thus, SemSearch makes it possible for ordinary end users to harvest the
benefits of semantic search and other semantic web technologies without having
to know the underlying semantic data or to learn a SQL-like query language. A
prototype of the search engine has been implemented and applied in the semantic
web portal of our lab1. An initial evaluation shows promising results.

The rest of the paper is organized as follows. We begin in Section 2 by
investigating how current semantic search tools approach the issue of end user
support. We then present an overview of SemSearch in Section 3. Thereafter,
we explain the Google-like query interface in Section 4. We describe the major
steps of the semantic search process in sections 5 and 6. In Section 7, we describe
the implementation of SemSearch and the experimental evaluation. Finally, in
Section 8, we conclude our paper with a discussion of our contributions and
future work.

2 State of the art

In this section, we investigate how current semantic search approaches address
user support. We have identified four categories of semantic search engines, ac-
cording to the user interface they provide: i) form-based search engines, which
provide sophisticated web forms that allow users to specify queries, in the format
of choosing ontologies, classes, properties, and values; ii) RDF-based querying
languages fronted search engines, which provide sophisticated querying languages

1 http://semanticweb.kmi.open.ac.uk/semantic searhing.jsp/



SemSearch: A Search Engine for the Semantic Web 3

to support semantic search; iii) semantic-based keyword search engines, which en-
hance the performance of traditional keyword search techniques by making use of
available semantic data; and iv) question answering tools, which exploit available
semantic mark-up to answer questions asked in natural language format.

The SHOE search engine [5] is one of the first form-based semantic search
engines. It provides sophisticated web forms that allow users to specify queries.
Such forms however are only suitable for those users who are fairly familiar with
the back-end ontologies and knowledge bases. Naive users have difficulties in
understanding these forms. Further, they have difficulties in formulating queries
using their own view on the information they aim to find.

The Corese search engine [2] is an example of RDF-based querying language
fronted search engines. Other examples include the engines built in CS AKTive
Space [8] and the SemanticWeb.org portal2. Such search engines usually provide
a sophisticated querying language to support semantic data querying. However,
in order to be able to ask queries with these search engines, end users will have to
be fairly familiar with both the back-end ontologies and the provided querying
language.

The TAP search engine [4] and the search engine presented in [7] are examples
of semantic-based keyword search engines. The search process of such search
engines often comprises two major steps: i) finding an instance match for the
user keyword and ii) retrieving instances which are closely related to the instance
match of the user keyword. Such search engines often provide comprehensive
means to support the clustering of search results.

AquaLog [6] and ORAKEL [1] are examples of ontology-based question an-
swering engines. They make use of natural language processing technologies to
reformulate natural language queries into ontological triples (e.g., in AquaLog)
or into specific query languages (e.g., in ORAKEL). While these tools appear to
be ideal for naive users, their performance on searching is heavily influenced by
the performance of the used natural language processing techniques.

All the tools described above are able to enhance the search performance by
making use of available semantic data and their underlying ontologies. With the
partial exception of ontology-based question answering tools, state-of-art tools
are however not suitable for naive users. One problem is knowledge overhead,
which is requiring users to be equipped with extensive knowledge of the back-end
ontologies and knowledge bases (e.g. form-based search engines) or specific SQL-
like querying languages (e.g. RDF-based query language fronted search engines)
in order to be able to formulate queries or to understand the search result.

Another problem is the lack of support for answering complex queries
presented by current semantic-based keyword search engines. These search en-
gines are often only able to accept one keyword as input and give back the
semantic entities which are related to the keyword as results. Relation centered
search that finds relations between multiple keywords is not supported. This
greatly limits the scope of user queries. For example, current semantic-based

2 http://semanticweb.org/



4 Y.Lei et. al

keyword search engines typically could not even handle simple queries where
two keywords are involved such as news about phd students.

3 An overview of SemSearch

One major goal of this work is to hide the complexity of semantic search from
end users and to make it easy to use and effective for naive users. To achieve
this goal, we identified the following key requirements:

– Low barrier to access for ordinary end users. Our semantic search
engine should overcome the problem of knowledge overhead and ensure that
ordinary end users are able to use it without having to know about the
vocabulary or structure of the ontology or having to master a special query
language.

– Dealing with complex queries. In contrast with existing semantic-based
keyword search engines which only answer simple queries, our semantic
search engine should allow end users to ask complex queries and provide
comprehensive means to handle them.

– Precise and self-explanatory results. Our semantic search engine should
be able to produce precise results that on the one hand satisfy user queries,
and on the other hand are self-explanatory. Thus, ordinary end users can
understand the results (e.g. what they are and why they are there) without
having to consult the back-end semantic data repositories or their underlying
ontologies.

– Quick response. Our semantic search engine should provide quick response
to user queries, thus encouraging ordinary end users to harvest the benefit
of the semantic web technology. This requires that we make the mechanism
of semantic search as simple as possible.

To meet these requirements, we chose the keyword-based searching route
rather than the natural language question answering route, and deliberately
avoided linguistic processing which is a relatively expensive process in terms of
search. We overcome the limitation of current keyword-based semantic search
engines by supporting a Google-like query interface which supports complex
queries in terms of multiple keywords. Figure 1 shows a layered architecture of
our semantic search engine. It separates end users from the back-end heteroge-
neous semantic data repositories by several layers.

– The Google-like User Interface Layer, which allows end users to specify
queries in terms of keywords. As will be described in Section 4, the Google-
like query interface extends traditional keyword search languages by allowing
the explicit specification of i) the queried subject and ii) the combination of
multiple keywords.

– The Text Search Layer, which makes sense of user queries by finding out
the explicit semantic meanings of the user keywords. As will be described
in Section 5, central to this layer are two components: i) a semantic entity



SemSearch: A Search Engine for the Semantic Web 5

Fig. 1. An overview of the SemSearch architecture.

index engine, which indexes documents and their associated semantic entities
including classes, properties, and individuals; and ii) a semantic entity search
engine, which supports the searching of semantic entity matches for the user
keywords.

– The Semantic Query Layer, which produces search results for user queries
by translating user queries into formal queries. This layer comprises three
components, including i) a formal query construction engine, which trans-
lates user queries into formal queries, ii) a query engine, which queries the
specified meta-data repository using the generated formal queries, and iii)
a ranking engine, which ranks the search results according to the degree of
their satisfactory on the user query. The mechanism of formal query gener-
ation will be described in Section 6.

– The Formal Query Language Layer, which provides a specific formal
query language that can be used to retrieve semantic relations from the
underlying semantic data layer.

– The Semantic Data Layer, which comprises semantic metadata that are
gathered from heterogeneous data sources and are represented in different
ontologies.

Figure 2 shows an overall diagram of the SemSearch search engine. It ac-
cepts keywords as input and produces results which are closely related to the
user keywords in terms of semantic relations. The search process of SemSearch
comprises four major steps:

– Step1. Making sense of the user query, which is to find out the semantic
meanings of the keywords specified in a user query.

– Step2. Translating the user query into formal queries.
– Step3. Querying the back-end semantic data repositories using the gener-

ated formal queries.



6 Y.Lei et. al

Fig. 2. An overall diagram of the SemSearch search engine.

– Step4. Ranking the querying results.

Step1 is carried out within the Text Search Layer. The rest of the steps are
associated with the Semantic Query Layer. In the following sections, we will first
describe the Google-like query interface (in Section 4). We will then come back
to detail the first two steps of the search process (Step 1 in Section 5 and Step2
in Section 6). The two further steps will be briefly described in Section 7 when
we describe the implementation of the search engine.

4 The Google-like query interface

The query interface of SemSearch extends traditional keyword search languages
by allowing the explicit specification of i) the queried subject and ii) the combi-
nation of keywords. By the term subject, the user can explicitly tell the search
engine the expected type of the search results. For example, when the user spec-
ifies the keyword “news” as the subject keyword, he or she expects the search
results to be the instances of the class entity that matches against the keyword
“news”. By allowing the specification of how to combine multiple keywords, the
search engine provides end users a simple way of expressing complex queries.

SemSearch uses three heuristic operators to support the specification of user
queries. The first one is the symbol “:”, which supports the specification of query
subjects. The second one is the word “and”, which indicates that all the keywords
connected by the word are required to have connections with the search results.
The last one is the word “or ”, which supports the specification of optional
keywords. Thus, a user query in SemSearch looks like “subject:keyword1 and/or
keyword2 and/or keyword3 ...”.

With this query syntax, the example of “news about phd students” can be
easily specified as news:phd students, where the term news is the query subject
and the term phd students is a required keyword. More complex queries in which



SemSearch: A Search Engine for the Semantic Web 7

multiple keywords (except the subject keyword) are involved also can be easily
specified. For example, when querying for projects in which both Enrico and
John participate, the query can be specified as project:Enrico and John. If the
user wants to know all the projects that Enrico or John are involved in, the
query is project:Enrico or John.

In order to satisfy a query, each of the required keywords (please note that
subject is a special required keyword) must be satisfied, which means that the
search results must be semantically related to each of the required keywords. In
the case when there are optional keywords, one of the optional keywords must
be satisfied.

The SemSearch query interface provides a simple, flexible, and powerful ap-
proach for specifying user queries in semantic search. First, it overcomes the
problem of knowledge overhead suffered in formal query fronted search engines
and form-based semantic search engines, as it does not require end users to be
familiar with any particular ontology, semantic data, or any special query lan-
guage. Second, the query interface provides a more flexible way of specifying
queries than the interface presented by form-based search engines. Indeed, it
does not confine users to any pre-defined query subjects and values. Third, in
contrast with current semantic-based keyword search engines which only accept
one keyword as input, this query interface supports the specification of complex
queries in the format of specifying multiple keywords and the expected type of
results. Finally, this query interface is simpler than question answering tools as
the search engine does not need to spend time calculating which of the keywords
are in a user’s query.

In this paper, we focus on the user queries in which there are at least two
keywords involved, in order to better explain the distinctive features of our
search engine. Regarding those queries that only comprise one keyword, the
search engine develops an approach that is similar to the ones used in TAP and
in [7] to find instances that are closely related to the semantic entity matches of
the keyword.

5 Making sense of the user query

As mentioned earlier in Section 3, making sense of the user query is the first
step of the search process in SemSearch, whose task is to find out the semantic
meanings of the keywords specified in a user query so that the search engine
knows what the user is looking for and how to satisfy the user query.

From the semantic point of view, one keyword may match i) general concepts
(e.g., the keyword “phd students” which matches the concept phd-student), ii)
semantic relations between concepts, (e.g. the keyword “author” matches the
relation has-author), or iii) instances entities (e.g., the keyword “Enrico” which
matches the instance Enrico-Motta, the keyword “chief scientist” which matches
the values of the instance Marc-Eisenstadt of the property has-job-title). The
ideal goal of this task is to find out the exact semantic meaning of each keyword.
This is however not easy to achieve, as there may be more than one semantic



8 Y.Lei et. al

entity which matches a keyword. Thus, we relaxed the goal as finding out all the
semantic entity matches for each keyword.

For the purpose of finding out semantic entity matches, we used the labels
of semantic entities as the main search source. The rational for this choice is
that from the user point of view labels often catch the meaning of semantic
entities in an understandable way. In the case of instances, we also used their
short literal values as the search source. So that when the user is searching for
“chief scientist”, the instance that has such a string as a value of its properties
can be reached.

In order to produce fast response, the search engine first indexes all the
semantic entities contained in the back-end semantic data repositories, including
classes, properties, and instances. It then searches the indexed repository to find
out matches for keywords. Thus, two components are developed in the search
engine, namely the semantic entity index engine and the semantic entity search
engine. As it narrows the search sources to labels and short literals of semantic
entities, the search engine is able to find out semantic entity matches for each
keyword. These matches are the possible semantic meanings of keywords.

Please note that for the sake of getting quick response, we only use text
search to find string matches for user keywords at the moment. We avoid using
techniques like WordNet [3] based comparison to find matches. This might cost
us some good matches, e.g., losing the match table if the user is searching for
desk. But one to one comparison is time consuming and expensive in real-time
scenarios. This is indeed a trad-off as well as a research challenge that we need
to address in future.

6 Translating the user query into formal queries

In this step, the search engine takes as input the semantic matches of user
search terms and outputs an appropriate formal query according to the semantic
meanings of keywords. To achieve this task, the search engine needs to capture
the focus of the user query (i.e., the type of the expected search results). As
described earlier in Section 4, the subject keyword specifies the type of the
expected search result. Thus, it is reasonable to expect that the queried subject
is a general topic or concept (i.e. class). In the case when the subject keyword
does not match any class, the search engine needs to figure out what the expected
results are. This will be discussed in the following subsections.

To better understand how to construct formal queries from user queries, we
classify user queries into two types: i) simple queries which only comprise two
keywords, and ii) complex queries where more than two keywords are involved. In
the case of simple queries where the types of semantic entity match combinations
are fixed, we developed a set of templates to support the formulation of formal
queries. The situation is much trickier in the case of complex queries where there
are many variables for keywords combinations.

In this section, we first look at the formulation of formal queries from simple
user queries. We then investigate how to handle complex ones. As we used the



SemSearch: A Search Engine for the Semantic Web 9

Sesame SeRQL language3 as the formal query language in the prototype of the
SemSearch search engine, we explain the mechanism using the same language
(Please note the underlying approach does not confine itself to any specific query
language).

6.1 Simple user queries

As described earlier, we define simple user queries as those which involve only
two keywords. In this subsection, we first describe the query templates. We then
describe how to instantiate the query templates to construct formal queries in
the case of simple user queries.

Fig. 3. The SeRQL query templates for two semantic entities.

3 http://www.openrdf.org/



10 Y.Lei et. al

Query templates. The query templates are developed to describe how to retrieve
relations between two semantic entities. As each semantic entity can be a class,
a property or a instance, there are nine possible combinations in terms of formu-
lating queries to find their relations. In the situation when the subject keyword
does not produce a class match, but the other keyword does, we swap their posi-
tion and treat the other keyword as the subject keyword. Thus, we are left with
seven combinations. Figure 3 shows all these combinations and their templates.

Now let us investigate the first combination, which is when two keywords in
a query both match classes. Suppose the subject keyword matches the class Cs

and the other keyword matches the class Ck. The search results are expected
to be the instances of the class Cs which have explicitly specified relations with
the instances of the class Ck. For example, when querying for news about “phd
students”, the expected results are the news entries in which phd students are
involved. Further, the search results are also expected to be self-explanatory,
e.g., to motivate why certain news entries appear and others do not. Thus,
along with the retrieving of news instances, the related phd stduents and the
relations between students and news entries also need to be retrieved. Therefore,
the search results of the query news:phd students are expected to be triples of
(news, relation, phd-sudent). Finally, in order to make the search results more
understandable, the labels of each semantic entity also need to be pulled out to
give an understandable explanation to users.

As shown in Figure 3, the query template of the combination described above
is composed of two queries, which cover the relations from the instance of Cs

to the instances of Ck in both directions. There are three pairs of variables in
the query. The first pair, i1 and li1, denotes the instances of the class Cs (i.e.,
URIs and labels), e.g. news stories in the example mentioned above. The second
pair, p and lp, indicates the relations defined between i1 and i2, e.g. has-author
or mentions-person in the example. The last pair is the variables i2 and li2
which represent the instances of the class Ck, e.g. phd students involved in the
corresponding news stories.

As we can see from the code, we only take into account the direct relations
that are explicitly specified in the back-end repository. The techniques for finding
implicit relations like the ones used in TAP and in [7] have not been used. This
is for the sake of simplicity and for the sake of improving response time.

There are six other combinations, which have also been shown in Figure 3.
When the subject keyword matches a class, the search results are the instances
of the matched class that have relations with the matches of other keywords.

In the situations when there are no class matches found for both keywords,
the focus of user query varies according to the type of the semantic matches of
keywords:

– When the subject keyword matches an instance and the keyword matches
a property, the search results are the values of the matched property of the
matched instance. For example, the results of the query AKT:member are
the members of the project AKT.



SemSearch: A Search Engine for the Semantic Web 11

– When the subject match is a property and the keyword matches an instance,
the results are the semantic entities which have the matched instance as the
value of the matched property. For example, when query for author:enrico,
the results are the instances (e.g. publications) that have the person Enrico
Motta as authors.

– When both keywords match instances, the intension of the user query is often
to find out the instances that have relations with both matched instances.
For example, the results of the query Victoria:Enrico are the instances that
have relations with both people, e.g., projects that both people participate
in, publications that both people co-authored, etc.

– When both keywords match properties, the results are the instances that
have both of the matched properties as relations to other instances. One
example is the query author:member, which gives back persons who are both
authors and project members.

Query formulation. In the context of simple queries where only two keywords
are involved, the task of query formulation is relatively easy, which is to initiate
the template that corresponds to the combinations of the semantic matches of
the user keywords. As each keyword may match more than one semantic entity,
often more than one query needs to be constructed. More specifically, if the
subject keyword matches ns semantic entities and the other keyword has nk

matches, there are ns*nk queries that need to be constructed. For example in
the query news:phd students, two formal queries need to be constructed. This
is because while the subject keyword matches the class news-item the keyword
“phd students” matches two semantic entities, including the class phd-student
and the instance phd. The more the generated formal queries, the slower the
search process will become. This problem becomes more acute when there are
many keywords involved in the user query. We will discuss how to reduce the
number of formal queries in the following.

6.2 Complex user queries

We define complex queries as those which involve more than two keywords. As
described earlier in Section 4, such keywords can be required or optional, and
there is always at least one required keyword, which is the subject keyword. The
Text Search Layer of the search engine finds semantic matches for the keywords.
To construct formal queries, the search engine needs to combine the semantic
matches together and construct sub-queries for each of the combinations. A key
operational problem is that in real world situations there can be a large number
of matches and hence even more combinations.

Combining different keywords. For keywords k1, k2, ..., kn, suppose that the
number of the semantic matches of the keyword ki is ni. There will be n1*n2*...*nn

(which can be respresented as
∏n

i=1 ni) different combinations when considering
all the keywords as required ones. Each combination of the matches corresponds



12 Y.Lei et. al

to a RDF-based formal query. Apart from considering all the keywords as re-
quired ones, the search engine also needs to investigate the combinations where
one or more keywords are left out, in order to producing complete result sets to
end users. Table 1 shows how to calculate the numbers of combinations pos-
sible for choosing different numbers of keywords from the keywords set. Note
that because keyword k1, the subject keyword, is always a required keyword in
SemSearch, n1 appears in all these calculations.

Table 1. Numbers of keywords combinations for keywords k2, k2, ..., kn

Number of Number of combinations
considered keywords

n Cn =
∏n

i=1
ni

n-1 Cn−1 = n1 ∗
∑n

i=2

∏n

j=2,j 6=i
nj

n-2 Cn−2 =
n1∗

∑n

i=2

∑n

j=2,j 6=i

∏n

k=2,k 6=i,k 6=j
nk

2!

n-3 Cn−3 =
n1∗

∑n

i=2

∑n

j=2,j 6=i

∑n

k=2,k 6=i,k 6=j

∏n

m=2,m 6=i,m 6=j,m6=k
nm

3!

...

2 C2 = n1 ∗
∑n

i=2
ni

Total combinations
∑n

i=2
Ci

The total number of keywords combinations is the sum of the combination
number of choosing n, n-1,..., 2 keywords from the specified keywords, which is∑n

i=2 Ci. This indicates that the total number of different combinations can get
huge when i) there are many keywords involved and ii) some keywords are very
generic and thus have many matches. For instance, imagine there are 3 keywords
in the user query (including the subject keyword). Each keyword matches 3 dif-
ferent semantic entities. There will be 3*3*3=27 combinations for considering all
three keywords as required ones and 3*(3+3)=18 combinations for only consid-
ering two. Thus the total number of combinations is 27+18=45. This indicates
that rules are needed to reduce the number of matches for each keyword. In this
context, we used several heuristic rules.

– Rule1. The subject keyword always matches class entities when there are
more than two keywords involved in the user query.

– Rule2. Choose the closest entity matches of the keyword. This rule can
significantly help us to reduce the number of entity matches. We are however
concerned about losing useful matches.

– Rule3. Choose the most specific class match among the class matches.

Formulating formal queries For each combination of semantic matches, a formal
query needs to be constructed. As mentioned earlier, we assume that the subject
keyword always matches at least one class concept. Thereby, for keywords k1, k2,
..., kn, we can expect that the main search results will always be the instances
of the matches of the keyword k1 (i.e. the subject keywords) that have relations



SemSearch: A Search Engine for the Semantic Web 13

with other keywords. Furthermore, as described earlier in the last section, in
order to allow the search results to be understandable, the relations and the
related instances also need to be pulled out, which explains the search results.

A formal query in SeRQL comprises three building blocks: the head block,
which describes what needs to be retrieved, the body block, which describes
how, and the condition block, which expresses conditions. In addition, in order
to cover relations of two entities in both directions, the query also comprises a
union block, which covers all the possible relations between the involved key-
words. The construction of all these blocks depends on the type (i.e. class, prop-
erty, or instance) of the semantic entity match of each keyword contained in a
combination of keywords’ matches.

Figure 4 shows a fragment of Java code for constructing SeRQL queries from
combinations of semantic matches of keywords. In the head block, two pairs of
variables (pj , lpj) and (ij , lij) are added for each keyword, which give back
the relations of the search results and the keyword in question thus facilitating
the self-explanation of search results. The body block specifies that the search
results and each keyword must be explicitly connected in triples according to
the type of the semantic entity match of each keyword. The union block covers
the other direction that is not covered in the main query. These building blocks
are derived from the templates of simple user queries described in section 6.1.

7 Implementation and experimental evaluation

A prototype of SemSearch has been implemented, which uses Sesame and Lucene4.
Sesame provides a query language and a query engine for semantic data repre-
sented in RDF. Lucene provides a fast text search engine, which is used to build
the semantic entity index engine and the semantic entity search engine contained
in the Text Search Layer of SemSearch.

The prototype has been applied to the semantic web portal of our lab. Fig-
ure 5 shows a screenshot of the search results of the query example news:phd
students. As described earlier, the search engine not only gives back the informa-
tion that the user is looking for but also gives back explanations, which makes
the search results much more understandable than those in state-of-art tools.
The search results are ranked according to their closeness to the specified user
keywords. The search engine takes two factors into consideration when ranking.
One is the matching distance between each keyword and its semantic matches.
The other is the number of keywords the search results satisfy. The search en-
gine also provides support for search refinement. It provides a web form to allow
the user to choose the meaning of the keywords and thus supports the user in
reformulating a better search.

To assess the performance of the semantic search engine, we carried out
an initial study in the context of the KMi semantic web portal. We used the
questions that were gathered to evaluate AquaLog (a question answering tool

4 http://lucene.apache.org/



14 Y.Lei et. al

Fig. 4. A fragment of Java code for SeRQL query construction.

developed in our lab) [6] as the basis for experimental evaluation. Several re-
formulations of each search were attempted if necessary. For each search, we
assigned a score that describes the performance of the search engine: i) 0 - no
result; ii) 1 - could get a result with heavy analysis; iii) 2 - could get a result
with moderate analysis; and iv) 3 - good result.

Taking into account only the questions for which an answer is possible, the
average score was 2.1. The performance scores are only a qualitative assessment
of how we felt the system answered the questions so these results are biased.
However, based on these rudimentary performance measures the semantic search
is answering questions reasonably well where data is available. In particular,
SemSearch was able to answer a high proportion of the questions despite its
simplicity. It is intuitive and simple to learn. The user doesn’t need to have a
full grasp of the ontology to get started (though they need to know something).
This is an affordance of the way that results are presented in the interface in
a way that informs the user about the terms in the ontology. That information
can be used to help with search refinement. For example, the user might not
remember relations like “generic-area-of-interest” but might remember that the



SemSearch: A Search Engine for the Semantic Web 15

Fig. 5. A screenshot of the search results of the query example news:phd students.

word “area” is involved in a lot of relations about research topics and by browsing
through the output of a search just for “area” can gather the information on the
ontology vocabulary needed to formulate a better one.

8 Conclusions and future work

The core observation that underlies this paper is that, in the case of semantic
search that promises to produce precise answers to user queries, it is important
to ensure that it is easy to use and effective for ordinary end users who are not
necessarily familiar with domain specific semantic data, ontologies, or SQL-like
query languages. Our survey of state-of-art semantic search tools however reveals
that current tools provide little support for end users.

In contrast with these efforts, our semantic search engine, SemSearch, pro-
vides several means to address this issue. First, SemSearch overcomes the prob-
lem of knowledge overhead by supporting a Google-like query interface. As de-
scribed in Section 4, the proposed query interface provides a simple but powerful
way of specifying queries. Second, SemSearch is able to produce precise answers
for user queries by providing comprehensive means to make sense of user queries
and to translate them into formal queries. In particular, as described in Section
6, the produced answers on the one hand satisfy user queries and on the other
hand are self-explanatory and understandable by end users. Finally, SemSearch
provides means (i.e., search refinement forms) to support end users in refor-



16 Y.Lei et. al

mulating better queries. A prototype has been implemented. The experimental
study indicates a encouraging results.

Future work will focus on i) carrying out a more thorough evaluation which
will help us to investigate the problems of each main component of the search en-
gine and to improve their performance accordingly; ii) developing comprehensive
means to perform semantic matching between keywords and semantic entities
without compromising the performance of the search engine in terms of time;
iii) developing more fine grained rules which on the one hand will help us to sig-
nificantly reduce the number of keywords combinations and on the other hand
will help us to identify and keep useful information in the reduction process; and
iv) developing a powerful ranking mechanism, which guarantees the best results
always staying on the top.

Acknowledgements

We wish to thank Marta Sabou for her valuable comments on earlier drafts of
this paper. This work was funded by the Advanced Knowledge Technologies
Interdisciplinary Research Collaboration (IRC) and the Knowledge Sharing and
Reuse across Media (X-Media) project. AKT is sponsored by the UK Engineering
and Physical Sciences Research Council under grant number GR/N15764/01.
X-Media is sponsored by the European Commission as part of the Information
Society Technologies (IST) programme under EC Grant IST-FP6-26978.

References

1. P. Cimiano. ORAKEL: A Natural Language Interface to an F-Logic Knowledge
Base. In Proceedings of the 9th International Conference on Applications of Natural
Language to Information Systems, pages 401–406, 2004.

2. O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the Semantic web with
Corese Search Engine. In Proceedings of 15th ECAI/PAIS, Valencia (ES), 2004.

3. C. Fellbaum. WORDNET: An Electronic Lexical Database. MIT Press, 1998.
4. R. Guha, R. McCool, and E. Miller. Semantic Search. In Proceedings of the 12th

international conference on World Wide Web, pages 700–709, 2003.
5. J. Heflin and J. Hendler. Searching the Web with SHOE. In Proceedings of the

AAAI Workshop on AI for Web Search, pages 35 – 40. AAAI Press, 2000.
6. V. Lopez, M. Pasin, and E. Motta. AquaLog: An Ontology-portable Question An-

swering System for the Semantic Web. In Proceedings of European Semantic Web
Conference (ESWC 2005), 2005.

7. C. Rocha, D. Schwabe, and M. de Aragao. A Hybrid Approach for Searching in the
Semantic Web. In Proceedings of the 13th International World Wide Web Confer-
ence, 2004.

8. M.C. Schraefel, N.R. Shadbolt, N. Gibbins, H. Glaser, and S. Harris. CS AKTive
Space: Representing Computer Science in the Semantic Web. In Proceedings of the
13th International World Wide Web Conference, 2004.

9. L. Zhang, Y. Yu, J. Zhou, C. Lin, and Y. Yang. An Enhanced Model for Searching
in Semantic Portals. In Proceedings of the 14th international conference on World
Wide Web (WWW 2005), 2005.


