KMi Publications

Tech Reports

Tech Report kmi-00-09 Abstract


Scholarly Discourse as Computable Structure
Techreport ID: kmi-00-09
Date: 2000
Author(s): Simon Buckingham Shum, John Domingue and Enrico Motta
Download PDF

In their initial proposal for structural computing (SC), NŸrnberg et al. [18] point to hypertext argumentation systems as an example of an application domain in which structure is of first-order importance. In this paper we summarise the goals and implementation of a knowledge based hypertext environment called ScholOnto (for Scholarly Ontologies), which aims to provide researchers with computational support in representing and analysing the structure of scholarly claims, argumentation and perspectives. A specialised web server will provide a medium for researchers to contest the significance of concepts and emergent structures. In so doing, participants construct an evolving structure that reflects a community's understandings of its field, and which can support computational services for scholars. Using structural analyses of scholarly argumentation, we consider the connections with structural computing, and propose a number of requirements for generic SC environments.

Publication(s):

Second International Workshop on Structural Computing, San Antonio, Texas, June 3, 2000. ACM Hypertext 2000 [www.ht00.org]
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Future Internet is...


Future Internet
With over a billion users, today's Internet is arguably the most successful human artifact ever created. The Internet's physical infrastructure, software, and content now play an integral part of the lives of everyone on the planet, whether they interact with it directly or not. Now nearing its fifth decade, the Internet has shown remarkable resilience and flexibility in the face of ever increasing numbers of users, data volume, and changing usage patterns, but faces growing challenges in meetings the needs of our knowledge society. Globally, many major initiatives are underway to address the need for more scientific research, physical infrastructure investment, better education, and better utilisation of the Internet. Within Japan, USA and Europe major new initiatives have begun in the area.

To succeed the Future Internet will need to address a number of cross-cutting challenges including:

  • Scalability in the face of peer-to-peer traffic, decentralisation, and increased openness

  • Trust when government, medical, financial, personal data are increasingly trusted to the cloud, and middleware will increasingly use dynamic service selection

  • Interoperability of semantic data and metadata, and of services which will be dynamically orchestrated

  • Pervasive usability for users of mobile devices, different languages, cultures and physical abilities

  • Mobility for users who expect a seamless experience across spaces, devices, and velocities