KMi Publications

Tech Reports

Tech Report kmi-98-04 Abstract


Decision Theoretic Foundations of Graphical Model Selection
Techreport ID: kmi-98-04
Date: 1998
Author(s): Paola Sebastiani and Marco Ramoni
Download PDF

This paper describes a decision theoretic formulation of learning the graphical structure of a Bayesian Belief Network from data. This framework subsumes the standard Bayesian approach of choosing the model with the largest posterior probability as the solution of a decision problem with a 0-1 loss function and allows the use of more general loss functions able to trade-off the complexity of the selected model and the error of choosing an over-simplified model. A new class of loss functions, called disintegrable, is introduced, to allow the decision problem to match the decomposability of the graphical model. With this class of loss functions, the optimal solution to the decision problem can be found using an efficient bottom-up search strategy. 1. Department of Actuarial Science and Statistics, City University. 2. Knowledge Media Institute, The Open University.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Future Internet is...


Future Internet
With over a billion users, today's Internet is arguably the most successful human artifact ever created. The Internet's physical infrastructure, software, and content now play an integral part of the lives of everyone on the planet, whether they interact with it directly or not. Now nearing its fifth decade, the Internet has shown remarkable resilience and flexibility in the face of ever increasing numbers of users, data volume, and changing usage patterns, but faces growing challenges in meetings the needs of our knowledge society. Globally, many major initiatives are underway to address the need for more scientific research, physical infrastructure investment, better education, and better utilisation of the Internet. Within Japan, USA and Europe major new initiatives have begun in the area.

To succeed the Future Internet will need to address a number of cross-cutting challenges including:

  • Scalability in the face of peer-to-peer traffic, decentralisation, and increased openness

  • Trust when government, medical, financial, personal data are increasingly trusted to the cloud, and middleware will increasingly use dynamic service selection

  • Interoperability of semantic data and metadata, and of services which will be dynamically orchestrated

  • Pervasive usability for users of mobile devices, different languages, cultures and physical abilities

  • Mobility for users who expect a seamless experience across spaces, devices, and velocities