KMi Publications

Tech Reports

Tech Report kmi-98-06 Abstract


Model Selection and Model Averaging with Missing Data
Techreport ID: kmi-98-06
Date: 1998
Author(s): Marco Ramoni and Paola Sebastiani
Download PDF

Missing data can impair the reliability of statistical inference as they may affect the representativity of the sample. Nonetheless, under some conditions guaranteeing that the missing data mechanism is ignorable, reliable conclusions can be still drawn from the incomplete sample. Ignorability conditions are well-understood for parameter estimation but when the inference task involves the computation of the posterior probability of a data model, as required by Bayesian model selection and prediction through model averaging, these conditions are not sufficient. This paper defines new ignorability conditions for model selection and model averaging from incomplete data. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
 
KMi Publications
 

Future Internet is...


Future Internet
With over a billion users, today's Internet is arguably the most successful human artifact ever created. The Internet's physical infrastructure, software, and content now play an integral part of the lives of everyone on the planet, whether they interact with it directly or not. Now nearing its fifth decade, the Internet has shown remarkable resilience and flexibility in the face of ever increasing numbers of users, data volume, and changing usage patterns, but faces growing challenges in meetings the needs of our knowledge society. Globally, many major initiatives are underway to address the need for more scientific research, physical infrastructure investment, better education, and better utilisation of the Internet. Within Japan, USA and Europe major new initiatives have begun in the area.

To succeed the Future Internet will need to address a number of cross-cutting challenges including:

  • Scalability in the face of peer-to-peer traffic, decentralisation, and increased openness

  • Trust when government, medical, financial, personal data are increasingly trusted to the cloud, and middleware will increasingly use dynamic service selection

  • Interoperability of semantic data and metadata, and of services which will be dynamically orchestrated

  • Pervasive usability for users of mobile devices, different languages, cultures and physical abilities

  • Mobility for users who expect a seamless experience across spaces, devices, and velocities