KMi Publications

Tech Reports

Tech Report kmi-00-04 Abstract


Multivariate Clustering by Dynamics
Techreport ID: kmi-00-04
Date: 2000
Author(s): Marco Ramoni, Paola Sebastiani and Paul Cohen
Download PDF

We present a Bayesian clustering algorithm for multivariate time series. A clustering is regarded as a probabilistic model in which the unknown auto-correlation structure of a time series is approximated by a first order Markov Chain and the overall joint distribution of the variables is simplified by conditional independence assumptions. The algorithm searches for the most probable set of clusters given the data using a entropy-based heuristic search method. The algorithm is evaluated on a set of multivariate time series of propositions produced by the perceptual system of a mobile robot. 1. Knowledge Media Institute, The Open University 2. Department of Mathematics, Imperial College of Science, Technology and Medicine 3. Department of Computer Science, University of Massachusetts at Amherst.

Publication(s):

Also in Proceedings of the 2000 National Conference on Artificial Intelligence (AAAI-2000), Morgan Kaufman, San Mateo, CA, 2000.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.